mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
8e0ef41286
Use queue_limits_set which validates the limits and takes care of updating the readahead settings instead of directly assigning them to the queue. For that make sure all limits are actually updated before the assignment. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mike Snitzer <snitzer@kernel.org> Link: https://lore.kernel.org/r/20240228225653.947152-4-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
1152 lines
36 KiB
C
1152 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions related to setting various queue properties from drivers
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/backing-dev-defs.h>
|
|
#include <linux/gcd.h>
|
|
#include <linux/lcm.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-rq-qos.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
|
|
{
|
|
q->rq_timeout = timeout;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
|
|
|
|
/**
|
|
* blk_set_stacking_limits - set default limits for stacking devices
|
|
* @lim: the queue_limits structure to reset
|
|
*
|
|
* Prepare queue limits for applying limits from underlying devices using
|
|
* blk_stack_limits().
|
|
*/
|
|
void blk_set_stacking_limits(struct queue_limits *lim)
|
|
{
|
|
memset(lim, 0, sizeof(*lim));
|
|
lim->logical_block_size = SECTOR_SIZE;
|
|
lim->physical_block_size = SECTOR_SIZE;
|
|
lim->io_min = SECTOR_SIZE;
|
|
lim->discard_granularity = SECTOR_SIZE;
|
|
lim->dma_alignment = SECTOR_SIZE - 1;
|
|
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
|
|
|
|
/* Inherit limits from component devices */
|
|
lim->max_segments = USHRT_MAX;
|
|
lim->max_discard_segments = USHRT_MAX;
|
|
lim->max_hw_sectors = UINT_MAX;
|
|
lim->max_segment_size = UINT_MAX;
|
|
lim->max_sectors = UINT_MAX;
|
|
lim->max_dev_sectors = UINT_MAX;
|
|
lim->max_write_zeroes_sectors = UINT_MAX;
|
|
lim->max_zone_append_sectors = UINT_MAX;
|
|
lim->max_user_discard_sectors = UINT_MAX;
|
|
}
|
|
EXPORT_SYMBOL(blk_set_stacking_limits);
|
|
|
|
static void blk_apply_bdi_limits(struct backing_dev_info *bdi,
|
|
struct queue_limits *lim)
|
|
{
|
|
/*
|
|
* For read-ahead of large files to be effective, we need to read ahead
|
|
* at least twice the optimal I/O size.
|
|
*/
|
|
bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
|
|
bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
|
|
}
|
|
|
|
static int blk_validate_zoned_limits(struct queue_limits *lim)
|
|
{
|
|
if (!lim->zoned) {
|
|
if (WARN_ON_ONCE(lim->max_open_zones) ||
|
|
WARN_ON_ONCE(lim->max_active_zones) ||
|
|
WARN_ON_ONCE(lim->zone_write_granularity) ||
|
|
WARN_ON_ONCE(lim->max_zone_append_sectors))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
|
|
return -EINVAL;
|
|
|
|
if (lim->zone_write_granularity < lim->logical_block_size)
|
|
lim->zone_write_granularity = lim->logical_block_size;
|
|
|
|
if (lim->max_zone_append_sectors) {
|
|
/*
|
|
* The Zone Append size is limited by the maximum I/O size
|
|
* and the zone size given that it can't span zones.
|
|
*/
|
|
lim->max_zone_append_sectors =
|
|
min3(lim->max_hw_sectors,
|
|
lim->max_zone_append_sectors,
|
|
lim->chunk_sectors);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check that the limits in lim are valid, initialize defaults for unset
|
|
* values, and cap values based on others where needed.
|
|
*/
|
|
static int blk_validate_limits(struct queue_limits *lim)
|
|
{
|
|
unsigned int max_hw_sectors;
|
|
|
|
/*
|
|
* Unless otherwise specified, default to 512 byte logical blocks and a
|
|
* physical block size equal to the logical block size.
|
|
*/
|
|
if (!lim->logical_block_size)
|
|
lim->logical_block_size = SECTOR_SIZE;
|
|
if (lim->physical_block_size < lim->logical_block_size)
|
|
lim->physical_block_size = lim->logical_block_size;
|
|
|
|
/*
|
|
* The minimum I/O size defaults to the physical block size unless
|
|
* explicitly overridden.
|
|
*/
|
|
if (lim->io_min < lim->physical_block_size)
|
|
lim->io_min = lim->physical_block_size;
|
|
|
|
/*
|
|
* max_hw_sectors has a somewhat weird default for historical reason,
|
|
* but driver really should set their own instead of relying on this
|
|
* value.
|
|
*
|
|
* The block layer relies on the fact that every driver can
|
|
* handle at lest a page worth of data per I/O, and needs the value
|
|
* aligned to the logical block size.
|
|
*/
|
|
if (!lim->max_hw_sectors)
|
|
lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
|
|
if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
|
|
return -EINVAL;
|
|
lim->max_hw_sectors = round_down(lim->max_hw_sectors,
|
|
lim->logical_block_size >> SECTOR_SHIFT);
|
|
|
|
/*
|
|
* The actual max_sectors value is a complex beast and also takes the
|
|
* max_dev_sectors value (set by SCSI ULPs) and a user configurable
|
|
* value into account. The ->max_sectors value is always calculated
|
|
* from these, so directly setting it won't have any effect.
|
|
*/
|
|
max_hw_sectors = min_not_zero(lim->max_hw_sectors,
|
|
lim->max_dev_sectors);
|
|
if (lim->max_user_sectors) {
|
|
if (lim->max_user_sectors > max_hw_sectors ||
|
|
lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
|
|
return -EINVAL;
|
|
lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
|
|
} else {
|
|
lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
|
|
}
|
|
lim->max_sectors = round_down(lim->max_sectors,
|
|
lim->logical_block_size >> SECTOR_SHIFT);
|
|
|
|
/*
|
|
* Random default for the maximum number of segments. Driver should not
|
|
* rely on this and set their own.
|
|
*/
|
|
if (!lim->max_segments)
|
|
lim->max_segments = BLK_MAX_SEGMENTS;
|
|
|
|
lim->max_discard_sectors =
|
|
min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
|
|
|
|
if (!lim->max_discard_segments)
|
|
lim->max_discard_segments = 1;
|
|
|
|
if (lim->discard_granularity < lim->physical_block_size)
|
|
lim->discard_granularity = lim->physical_block_size;
|
|
|
|
/*
|
|
* By default there is no limit on the segment boundary alignment,
|
|
* but if there is one it can't be smaller than the page size as
|
|
* that would break all the normal I/O patterns.
|
|
*/
|
|
if (!lim->seg_boundary_mask)
|
|
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
|
|
if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Devices that require a virtual boundary do not support scatter/gather
|
|
* I/O natively, but instead require a descriptor list entry for each
|
|
* page (which might not be identical to the Linux PAGE_SIZE). Because
|
|
* of that they are not limited by our notion of "segment size".
|
|
*/
|
|
if (lim->virt_boundary_mask) {
|
|
if (WARN_ON_ONCE(lim->max_segment_size &&
|
|
lim->max_segment_size != UINT_MAX))
|
|
return -EINVAL;
|
|
lim->max_segment_size = UINT_MAX;
|
|
} else {
|
|
/*
|
|
* The maximum segment size has an odd historic 64k default that
|
|
* drivers probably should override. Just like the I/O size we
|
|
* require drivers to at least handle a full page per segment.
|
|
*/
|
|
if (!lim->max_segment_size)
|
|
lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
|
|
if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* We require drivers to at least do logical block aligned I/O, but
|
|
* historically could not check for that due to the separate calls
|
|
* to set the limits. Once the transition is finished the check
|
|
* below should be narrowed down to check the logical block size.
|
|
*/
|
|
if (!lim->dma_alignment)
|
|
lim->dma_alignment = SECTOR_SIZE - 1;
|
|
if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
|
|
return -EINVAL;
|
|
|
|
if (lim->alignment_offset) {
|
|
lim->alignment_offset &= (lim->physical_block_size - 1);
|
|
lim->misaligned = 0;
|
|
}
|
|
|
|
return blk_validate_zoned_limits(lim);
|
|
}
|
|
|
|
/*
|
|
* Set the default limits for a newly allocated queue. @lim contains the
|
|
* initial limits set by the driver, which could be no limit in which case
|
|
* all fields are cleared to zero.
|
|
*/
|
|
int blk_set_default_limits(struct queue_limits *lim)
|
|
{
|
|
/*
|
|
* Most defaults are set by capping the bounds in blk_validate_limits,
|
|
* but max_user_discard_sectors is special and needs an explicit
|
|
* initialization to the max value here.
|
|
*/
|
|
lim->max_user_discard_sectors = UINT_MAX;
|
|
return blk_validate_limits(lim);
|
|
}
|
|
|
|
/**
|
|
* queue_limits_commit_update - commit an atomic update of queue limits
|
|
* @q: queue to update
|
|
* @lim: limits to apply
|
|
*
|
|
* Apply the limits in @lim that were obtained from queue_limits_start_update()
|
|
* and updated by the caller to @q.
|
|
*
|
|
* Returns 0 if successful, else a negative error code.
|
|
*/
|
|
int queue_limits_commit_update(struct request_queue *q,
|
|
struct queue_limits *lim)
|
|
__releases(q->limits_lock)
|
|
{
|
|
int error = blk_validate_limits(lim);
|
|
|
|
if (!error) {
|
|
q->limits = *lim;
|
|
if (q->disk)
|
|
blk_apply_bdi_limits(q->disk->bdi, lim);
|
|
}
|
|
mutex_unlock(&q->limits_lock);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_commit_update);
|
|
|
|
/**
|
|
* queue_limits_set - apply queue limits to queue
|
|
* @q: queue to update
|
|
* @lim: limits to apply
|
|
*
|
|
* Apply the limits in @lim that were freshly initialized to @q.
|
|
* To update existing limits use queue_limits_start_update() and
|
|
* queue_limits_commit_update() instead.
|
|
*
|
|
* Returns 0 if successful, else a negative error code.
|
|
*/
|
|
int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
|
|
{
|
|
mutex_lock(&q->limits_lock);
|
|
return queue_limits_commit_update(q, lim);
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_set);
|
|
|
|
/**
|
|
* blk_queue_bounce_limit - set bounce buffer limit for queue
|
|
* @q: the request queue for the device
|
|
* @bounce: bounce limit to enforce
|
|
*
|
|
* Description:
|
|
* Force bouncing for ISA DMA ranges or highmem.
|
|
*
|
|
* DEPRECATED, don't use in new code.
|
|
**/
|
|
void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
|
|
{
|
|
q->limits.bounce = bounce;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_bounce_limit);
|
|
|
|
/**
|
|
* blk_queue_max_hw_sectors - set max sectors for a request for this queue
|
|
* @q: the request queue for the device
|
|
* @max_hw_sectors: max hardware sectors in the usual 512b unit
|
|
*
|
|
* Description:
|
|
* Enables a low level driver to set a hard upper limit,
|
|
* max_hw_sectors, on the size of requests. max_hw_sectors is set by
|
|
* the device driver based upon the capabilities of the I/O
|
|
* controller.
|
|
*
|
|
* max_dev_sectors is a hard limit imposed by the storage device for
|
|
* READ/WRITE requests. It is set by the disk driver.
|
|
*
|
|
* max_sectors is a soft limit imposed by the block layer for
|
|
* filesystem type requests. This value can be overridden on a
|
|
* per-device basis in /sys/block/<device>/queue/max_sectors_kb.
|
|
* The soft limit can not exceed max_hw_sectors.
|
|
**/
|
|
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
|
|
{
|
|
struct queue_limits *limits = &q->limits;
|
|
unsigned int max_sectors;
|
|
|
|
if ((max_hw_sectors << 9) < PAGE_SIZE) {
|
|
max_hw_sectors = 1 << (PAGE_SHIFT - 9);
|
|
pr_info("%s: set to minimum %u\n", __func__, max_hw_sectors);
|
|
}
|
|
|
|
max_hw_sectors = round_down(max_hw_sectors,
|
|
limits->logical_block_size >> SECTOR_SHIFT);
|
|
limits->max_hw_sectors = max_hw_sectors;
|
|
|
|
max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
|
|
|
|
if (limits->max_user_sectors)
|
|
max_sectors = min(max_sectors, limits->max_user_sectors);
|
|
else
|
|
max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS_CAP);
|
|
|
|
max_sectors = round_down(max_sectors,
|
|
limits->logical_block_size >> SECTOR_SHIFT);
|
|
limits->max_sectors = max_sectors;
|
|
|
|
if (!q->disk)
|
|
return;
|
|
q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
|
|
|
|
/**
|
|
* blk_queue_chunk_sectors - set size of the chunk for this queue
|
|
* @q: the request queue for the device
|
|
* @chunk_sectors: chunk sectors in the usual 512b unit
|
|
*
|
|
* Description:
|
|
* If a driver doesn't want IOs to cross a given chunk size, it can set
|
|
* this limit and prevent merging across chunks. Note that the block layer
|
|
* must accept a page worth of data at any offset. So if the crossing of
|
|
* chunks is a hard limitation in the driver, it must still be prepared
|
|
* to split single page bios.
|
|
**/
|
|
void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
|
|
{
|
|
q->limits.chunk_sectors = chunk_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_chunk_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_discard_sectors - set max sectors for a single discard
|
|
* @q: the request queue for the device
|
|
* @max_discard_sectors: maximum number of sectors to discard
|
|
**/
|
|
void blk_queue_max_discard_sectors(struct request_queue *q,
|
|
unsigned int max_discard_sectors)
|
|
{
|
|
struct queue_limits *lim = &q->limits;
|
|
|
|
lim->max_hw_discard_sectors = max_discard_sectors;
|
|
lim->max_discard_sectors =
|
|
min(max_discard_sectors, lim->max_user_discard_sectors);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_discard_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
|
|
* @q: the request queue for the device
|
|
* @max_sectors: maximum number of sectors to secure_erase
|
|
**/
|
|
void blk_queue_max_secure_erase_sectors(struct request_queue *q,
|
|
unsigned int max_sectors)
|
|
{
|
|
q->limits.max_secure_erase_sectors = max_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_write_zeroes_sectors - set max sectors for a single
|
|
* write zeroes
|
|
* @q: the request queue for the device
|
|
* @max_write_zeroes_sectors: maximum number of sectors to write per command
|
|
**/
|
|
void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
|
|
unsigned int max_write_zeroes_sectors)
|
|
{
|
|
q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_zone_append_sectors - set max sectors for a single zone append
|
|
* @q: the request queue for the device
|
|
* @max_zone_append_sectors: maximum number of sectors to write per command
|
|
**/
|
|
void blk_queue_max_zone_append_sectors(struct request_queue *q,
|
|
unsigned int max_zone_append_sectors)
|
|
{
|
|
unsigned int max_sectors;
|
|
|
|
if (WARN_ON(!blk_queue_is_zoned(q)))
|
|
return;
|
|
|
|
max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
|
|
max_sectors = min(q->limits.chunk_sectors, max_sectors);
|
|
|
|
/*
|
|
* Signal eventual driver bugs resulting in the max_zone_append sectors limit
|
|
* being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
|
|
* or the max_hw_sectors limit not set.
|
|
*/
|
|
WARN_ON(!max_sectors);
|
|
|
|
q->limits.max_zone_append_sectors = max_sectors;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
|
|
|
|
/**
|
|
* blk_queue_max_segments - set max hw segments for a request for this queue
|
|
* @q: the request queue for the device
|
|
* @max_segments: max number of segments
|
|
*
|
|
* Description:
|
|
* Enables a low level driver to set an upper limit on the number of
|
|
* hw data segments in a request.
|
|
**/
|
|
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
|
|
{
|
|
if (!max_segments) {
|
|
max_segments = 1;
|
|
pr_info("%s: set to minimum %u\n", __func__, max_segments);
|
|
}
|
|
|
|
q->limits.max_segments = max_segments;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_segments);
|
|
|
|
/**
|
|
* blk_queue_max_discard_segments - set max segments for discard requests
|
|
* @q: the request queue for the device
|
|
* @max_segments: max number of segments
|
|
*
|
|
* Description:
|
|
* Enables a low level driver to set an upper limit on the number of
|
|
* segments in a discard request.
|
|
**/
|
|
void blk_queue_max_discard_segments(struct request_queue *q,
|
|
unsigned short max_segments)
|
|
{
|
|
q->limits.max_discard_segments = max_segments;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
|
|
|
|
/**
|
|
* blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
|
|
* @q: the request queue for the device
|
|
* @max_size: max size of segment in bytes
|
|
*
|
|
* Description:
|
|
* Enables a low level driver to set an upper limit on the size of a
|
|
* coalesced segment
|
|
**/
|
|
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
|
|
{
|
|
if (max_size < PAGE_SIZE) {
|
|
max_size = PAGE_SIZE;
|
|
pr_info("%s: set to minimum %u\n", __func__, max_size);
|
|
}
|
|
|
|
/* see blk_queue_virt_boundary() for the explanation */
|
|
WARN_ON_ONCE(q->limits.virt_boundary_mask);
|
|
|
|
q->limits.max_segment_size = max_size;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_max_segment_size);
|
|
|
|
/**
|
|
* blk_queue_logical_block_size - set logical block size for the queue
|
|
* @q: the request queue for the device
|
|
* @size: the logical block size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible block size that the
|
|
* storage device can address. The default of 512 covers most
|
|
* hardware.
|
|
**/
|
|
void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
|
|
{
|
|
struct queue_limits *limits = &q->limits;
|
|
|
|
limits->logical_block_size = size;
|
|
|
|
if (limits->discard_granularity < limits->logical_block_size)
|
|
limits->discard_granularity = limits->logical_block_size;
|
|
|
|
if (limits->physical_block_size < size)
|
|
limits->physical_block_size = size;
|
|
|
|
if (limits->io_min < limits->physical_block_size)
|
|
limits->io_min = limits->physical_block_size;
|
|
|
|
limits->max_hw_sectors =
|
|
round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
|
|
limits->max_sectors =
|
|
round_down(limits->max_sectors, size >> SECTOR_SHIFT);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_logical_block_size);
|
|
|
|
/**
|
|
* blk_queue_physical_block_size - set physical block size for the queue
|
|
* @q: the request queue for the device
|
|
* @size: the physical block size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible sector size that the
|
|
* hardware can operate on without reverting to read-modify-write
|
|
* operations.
|
|
*/
|
|
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
|
|
{
|
|
q->limits.physical_block_size = size;
|
|
|
|
if (q->limits.physical_block_size < q->limits.logical_block_size)
|
|
q->limits.physical_block_size = q->limits.logical_block_size;
|
|
|
|
if (q->limits.discard_granularity < q->limits.physical_block_size)
|
|
q->limits.discard_granularity = q->limits.physical_block_size;
|
|
|
|
if (q->limits.io_min < q->limits.physical_block_size)
|
|
q->limits.io_min = q->limits.physical_block_size;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_physical_block_size);
|
|
|
|
/**
|
|
* blk_queue_zone_write_granularity - set zone write granularity for the queue
|
|
* @q: the request queue for the zoned device
|
|
* @size: the zone write granularity size, in bytes
|
|
*
|
|
* Description:
|
|
* This should be set to the lowest possible size allowing to write in
|
|
* sequential zones of a zoned block device.
|
|
*/
|
|
void blk_queue_zone_write_granularity(struct request_queue *q,
|
|
unsigned int size)
|
|
{
|
|
if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
|
|
return;
|
|
|
|
q->limits.zone_write_granularity = size;
|
|
|
|
if (q->limits.zone_write_granularity < q->limits.logical_block_size)
|
|
q->limits.zone_write_granularity = q->limits.logical_block_size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
|
|
|
|
/**
|
|
* blk_queue_alignment_offset - set physical block alignment offset
|
|
* @q: the request queue for the device
|
|
* @offset: alignment offset in bytes
|
|
*
|
|
* Description:
|
|
* Some devices are naturally misaligned to compensate for things like
|
|
* the legacy DOS partition table 63-sector offset. Low-level drivers
|
|
* should call this function for devices whose first sector is not
|
|
* naturally aligned.
|
|
*/
|
|
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
|
|
{
|
|
q->limits.alignment_offset =
|
|
offset & (q->limits.physical_block_size - 1);
|
|
q->limits.misaligned = 0;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_alignment_offset);
|
|
|
|
void disk_update_readahead(struct gendisk *disk)
|
|
{
|
|
blk_apply_bdi_limits(disk->bdi, &disk->queue->limits);
|
|
}
|
|
EXPORT_SYMBOL_GPL(disk_update_readahead);
|
|
|
|
/**
|
|
* blk_limits_io_min - set minimum request size for a device
|
|
* @limits: the queue limits
|
|
* @min: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Some devices have an internal block size bigger than the reported
|
|
* hardware sector size. This function can be used to signal the
|
|
* smallest I/O the device can perform without incurring a performance
|
|
* penalty.
|
|
*/
|
|
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
|
|
{
|
|
limits->io_min = min;
|
|
|
|
if (limits->io_min < limits->logical_block_size)
|
|
limits->io_min = limits->logical_block_size;
|
|
|
|
if (limits->io_min < limits->physical_block_size)
|
|
limits->io_min = limits->physical_block_size;
|
|
}
|
|
EXPORT_SYMBOL(blk_limits_io_min);
|
|
|
|
/**
|
|
* blk_queue_io_min - set minimum request size for the queue
|
|
* @q: the request queue for the device
|
|
* @min: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Storage devices may report a granularity or preferred minimum I/O
|
|
* size which is the smallest request the device can perform without
|
|
* incurring a performance penalty. For disk drives this is often the
|
|
* physical block size. For RAID arrays it is often the stripe chunk
|
|
* size. A properly aligned multiple of minimum_io_size is the
|
|
* preferred request size for workloads where a high number of I/O
|
|
* operations is desired.
|
|
*/
|
|
void blk_queue_io_min(struct request_queue *q, unsigned int min)
|
|
{
|
|
blk_limits_io_min(&q->limits, min);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_io_min);
|
|
|
|
/**
|
|
* blk_limits_io_opt - set optimal request size for a device
|
|
* @limits: the queue limits
|
|
* @opt: smallest I/O size in bytes
|
|
*
|
|
* Description:
|
|
* Storage devices may report an optimal I/O size, which is the
|
|
* device's preferred unit for sustained I/O. This is rarely reported
|
|
* for disk drives. For RAID arrays it is usually the stripe width or
|
|
* the internal track size. A properly aligned multiple of
|
|
* optimal_io_size is the preferred request size for workloads where
|
|
* sustained throughput is desired.
|
|
*/
|
|
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
|
|
{
|
|
limits->io_opt = opt;
|
|
}
|
|
EXPORT_SYMBOL(blk_limits_io_opt);
|
|
|
|
/**
|
|
* blk_queue_io_opt - set optimal request size for the queue
|
|
* @q: the request queue for the device
|
|
* @opt: optimal request size in bytes
|
|
*
|
|
* Description:
|
|
* Storage devices may report an optimal I/O size, which is the
|
|
* device's preferred unit for sustained I/O. This is rarely reported
|
|
* for disk drives. For RAID arrays it is usually the stripe width or
|
|
* the internal track size. A properly aligned multiple of
|
|
* optimal_io_size is the preferred request size for workloads where
|
|
* sustained throughput is desired.
|
|
*/
|
|
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
|
|
{
|
|
blk_limits_io_opt(&q->limits, opt);
|
|
if (!q->disk)
|
|
return;
|
|
q->disk->bdi->ra_pages =
|
|
max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_io_opt);
|
|
|
|
static int queue_limit_alignment_offset(const struct queue_limits *lim,
|
|
sector_t sector)
|
|
{
|
|
unsigned int granularity = max(lim->physical_block_size, lim->io_min);
|
|
unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
|
|
<< SECTOR_SHIFT;
|
|
|
|
return (granularity + lim->alignment_offset - alignment) % granularity;
|
|
}
|
|
|
|
static unsigned int queue_limit_discard_alignment(
|
|
const struct queue_limits *lim, sector_t sector)
|
|
{
|
|
unsigned int alignment, granularity, offset;
|
|
|
|
if (!lim->max_discard_sectors)
|
|
return 0;
|
|
|
|
/* Why are these in bytes, not sectors? */
|
|
alignment = lim->discard_alignment >> SECTOR_SHIFT;
|
|
granularity = lim->discard_granularity >> SECTOR_SHIFT;
|
|
if (!granularity)
|
|
return 0;
|
|
|
|
/* Offset of the partition start in 'granularity' sectors */
|
|
offset = sector_div(sector, granularity);
|
|
|
|
/* And why do we do this modulus *again* in blkdev_issue_discard()? */
|
|
offset = (granularity + alignment - offset) % granularity;
|
|
|
|
/* Turn it back into bytes, gaah */
|
|
return offset << SECTOR_SHIFT;
|
|
}
|
|
|
|
static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
|
|
{
|
|
sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
|
|
if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
|
|
sectors = PAGE_SIZE >> SECTOR_SHIFT;
|
|
return sectors;
|
|
}
|
|
|
|
/**
|
|
* blk_stack_limits - adjust queue_limits for stacked devices
|
|
* @t: the stacking driver limits (top device)
|
|
* @b: the underlying queue limits (bottom, component device)
|
|
* @start: first data sector within component device
|
|
*
|
|
* Description:
|
|
* This function is used by stacking drivers like MD and DM to ensure
|
|
* that all component devices have compatible block sizes and
|
|
* alignments. The stacking driver must provide a queue_limits
|
|
* struct (top) and then iteratively call the stacking function for
|
|
* all component (bottom) devices. The stacking function will
|
|
* attempt to combine the values and ensure proper alignment.
|
|
*
|
|
* Returns 0 if the top and bottom queue_limits are compatible. The
|
|
* top device's block sizes and alignment offsets may be adjusted to
|
|
* ensure alignment with the bottom device. If no compatible sizes
|
|
* and alignments exist, -1 is returned and the resulting top
|
|
* queue_limits will have the misaligned flag set to indicate that
|
|
* the alignment_offset is undefined.
|
|
*/
|
|
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
|
|
sector_t start)
|
|
{
|
|
unsigned int top, bottom, alignment, ret = 0;
|
|
|
|
t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
|
|
t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
|
|
t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
|
|
t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
|
|
b->max_write_zeroes_sectors);
|
|
t->max_zone_append_sectors = min(t->max_zone_append_sectors,
|
|
b->max_zone_append_sectors);
|
|
t->bounce = max(t->bounce, b->bounce);
|
|
|
|
t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
|
|
b->seg_boundary_mask);
|
|
t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
|
|
b->virt_boundary_mask);
|
|
|
|
t->max_segments = min_not_zero(t->max_segments, b->max_segments);
|
|
t->max_discard_segments = min_not_zero(t->max_discard_segments,
|
|
b->max_discard_segments);
|
|
t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
|
|
b->max_integrity_segments);
|
|
|
|
t->max_segment_size = min_not_zero(t->max_segment_size,
|
|
b->max_segment_size);
|
|
|
|
t->misaligned |= b->misaligned;
|
|
|
|
alignment = queue_limit_alignment_offset(b, start);
|
|
|
|
/* Bottom device has different alignment. Check that it is
|
|
* compatible with the current top alignment.
|
|
*/
|
|
if (t->alignment_offset != alignment) {
|
|
|
|
top = max(t->physical_block_size, t->io_min)
|
|
+ t->alignment_offset;
|
|
bottom = max(b->physical_block_size, b->io_min) + alignment;
|
|
|
|
/* Verify that top and bottom intervals line up */
|
|
if (max(top, bottom) % min(top, bottom)) {
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
t->logical_block_size = max(t->logical_block_size,
|
|
b->logical_block_size);
|
|
|
|
t->physical_block_size = max(t->physical_block_size,
|
|
b->physical_block_size);
|
|
|
|
t->io_min = max(t->io_min, b->io_min);
|
|
t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
|
|
t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
|
|
|
|
/* Set non-power-of-2 compatible chunk_sectors boundary */
|
|
if (b->chunk_sectors)
|
|
t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
|
|
|
|
/* Physical block size a multiple of the logical block size? */
|
|
if (t->physical_block_size & (t->logical_block_size - 1)) {
|
|
t->physical_block_size = t->logical_block_size;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Minimum I/O a multiple of the physical block size? */
|
|
if (t->io_min & (t->physical_block_size - 1)) {
|
|
t->io_min = t->physical_block_size;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Optimal I/O a multiple of the physical block size? */
|
|
if (t->io_opt & (t->physical_block_size - 1)) {
|
|
t->io_opt = 0;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
/* chunk_sectors a multiple of the physical block size? */
|
|
if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
|
|
t->chunk_sectors = 0;
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
t->raid_partial_stripes_expensive =
|
|
max(t->raid_partial_stripes_expensive,
|
|
b->raid_partial_stripes_expensive);
|
|
|
|
/* Find lowest common alignment_offset */
|
|
t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
|
|
% max(t->physical_block_size, t->io_min);
|
|
|
|
/* Verify that new alignment_offset is on a logical block boundary */
|
|
if (t->alignment_offset & (t->logical_block_size - 1)) {
|
|
t->misaligned = 1;
|
|
ret = -1;
|
|
}
|
|
|
|
t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
|
|
t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
|
|
t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
|
|
|
|
/* Discard alignment and granularity */
|
|
if (b->discard_granularity) {
|
|
alignment = queue_limit_discard_alignment(b, start);
|
|
|
|
if (t->discard_granularity != 0 &&
|
|
t->discard_alignment != alignment) {
|
|
top = t->discard_granularity + t->discard_alignment;
|
|
bottom = b->discard_granularity + alignment;
|
|
|
|
/* Verify that top and bottom intervals line up */
|
|
if ((max(top, bottom) % min(top, bottom)) != 0)
|
|
t->discard_misaligned = 1;
|
|
}
|
|
|
|
t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
|
|
b->max_discard_sectors);
|
|
t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
|
|
b->max_hw_discard_sectors);
|
|
t->discard_granularity = max(t->discard_granularity,
|
|
b->discard_granularity);
|
|
t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
|
|
t->discard_granularity;
|
|
}
|
|
t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
|
|
b->max_secure_erase_sectors);
|
|
t->zone_write_granularity = max(t->zone_write_granularity,
|
|
b->zone_write_granularity);
|
|
t->zoned = max(t->zoned, b->zoned);
|
|
if (!t->zoned) {
|
|
t->zone_write_granularity = 0;
|
|
t->max_zone_append_sectors = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_stack_limits);
|
|
|
|
/**
|
|
* queue_limits_stack_bdev - adjust queue_limits for stacked devices
|
|
* @t: the stacking driver limits (top device)
|
|
* @bdev: the underlying block device (bottom)
|
|
* @offset: offset to beginning of data within component device
|
|
* @pfx: prefix to use for warnings logged
|
|
*
|
|
* Description:
|
|
* This function is used by stacking drivers like MD and DM to ensure
|
|
* that all component devices have compatible block sizes and
|
|
* alignments. The stacking driver must provide a queue_limits
|
|
* struct (top) and then iteratively call the stacking function for
|
|
* all component (bottom) devices. The stacking function will
|
|
* attempt to combine the values and ensure proper alignment.
|
|
*/
|
|
void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
|
|
sector_t offset, const char *pfx)
|
|
{
|
|
if (blk_stack_limits(t, &bdev_get_queue(bdev)->limits,
|
|
get_start_sect(bdev) + offset))
|
|
pr_notice("%s: Warning: Device %pg is misaligned\n",
|
|
pfx, bdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
|
|
|
|
/**
|
|
* disk_stack_limits - adjust queue limits for stacked drivers
|
|
* @disk: MD/DM gendisk (top)
|
|
* @bdev: the underlying block device (bottom)
|
|
* @offset: offset to beginning of data within component device
|
|
*
|
|
* Description:
|
|
* Merges the limits for a top level gendisk and a bottom level
|
|
* block_device.
|
|
*/
|
|
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
|
|
sector_t offset)
|
|
{
|
|
struct request_queue *t = disk->queue;
|
|
|
|
if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
|
|
get_start_sect(bdev) + (offset >> 9)) < 0)
|
|
pr_notice("%s: Warning: Device %pg is misaligned\n",
|
|
disk->disk_name, bdev);
|
|
|
|
disk_update_readahead(disk);
|
|
}
|
|
EXPORT_SYMBOL(disk_stack_limits);
|
|
|
|
/**
|
|
* blk_queue_update_dma_pad - update pad mask
|
|
* @q: the request queue for the device
|
|
* @mask: pad mask
|
|
*
|
|
* Update dma pad mask.
|
|
*
|
|
* Appending pad buffer to a request modifies the last entry of a
|
|
* scatter list such that it includes the pad buffer.
|
|
**/
|
|
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
|
|
{
|
|
if (mask > q->dma_pad_mask)
|
|
q->dma_pad_mask = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_update_dma_pad);
|
|
|
|
/**
|
|
* blk_queue_segment_boundary - set boundary rules for segment merging
|
|
* @q: the request queue for the device
|
|
* @mask: the memory boundary mask
|
|
**/
|
|
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
|
|
{
|
|
if (mask < PAGE_SIZE - 1) {
|
|
mask = PAGE_SIZE - 1;
|
|
pr_info("%s: set to minimum %lx\n", __func__, mask);
|
|
}
|
|
|
|
q->limits.seg_boundary_mask = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_segment_boundary);
|
|
|
|
/**
|
|
* blk_queue_virt_boundary - set boundary rules for bio merging
|
|
* @q: the request queue for the device
|
|
* @mask: the memory boundary mask
|
|
**/
|
|
void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
|
|
{
|
|
q->limits.virt_boundary_mask = mask;
|
|
|
|
/*
|
|
* Devices that require a virtual boundary do not support scatter/gather
|
|
* I/O natively, but instead require a descriptor list entry for each
|
|
* page (which might not be idential to the Linux PAGE_SIZE). Because
|
|
* of that they are not limited by our notion of "segment size".
|
|
*/
|
|
if (mask)
|
|
q->limits.max_segment_size = UINT_MAX;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_virt_boundary);
|
|
|
|
/**
|
|
* blk_queue_dma_alignment - set dma length and memory alignment
|
|
* @q: the request queue for the device
|
|
* @mask: alignment mask
|
|
*
|
|
* description:
|
|
* set required memory and length alignment for direct dma transactions.
|
|
* this is used when building direct io requests for the queue.
|
|
*
|
|
**/
|
|
void blk_queue_dma_alignment(struct request_queue *q, int mask)
|
|
{
|
|
q->limits.dma_alignment = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_dma_alignment);
|
|
|
|
/**
|
|
* blk_queue_update_dma_alignment - update dma length and memory alignment
|
|
* @q: the request queue for the device
|
|
* @mask: alignment mask
|
|
*
|
|
* description:
|
|
* update required memory and length alignment for direct dma transactions.
|
|
* If the requested alignment is larger than the current alignment, then
|
|
* the current queue alignment is updated to the new value, otherwise it
|
|
* is left alone. The design of this is to allow multiple objects
|
|
* (driver, device, transport etc) to set their respective
|
|
* alignments without having them interfere.
|
|
*
|
|
**/
|
|
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
|
|
{
|
|
BUG_ON(mask > PAGE_SIZE);
|
|
|
|
if (mask > q->limits.dma_alignment)
|
|
q->limits.dma_alignment = mask;
|
|
}
|
|
EXPORT_SYMBOL(blk_queue_update_dma_alignment);
|
|
|
|
/**
|
|
* blk_set_queue_depth - tell the block layer about the device queue depth
|
|
* @q: the request queue for the device
|
|
* @depth: queue depth
|
|
*
|
|
*/
|
|
void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
|
|
{
|
|
q->queue_depth = depth;
|
|
rq_qos_queue_depth_changed(q);
|
|
}
|
|
EXPORT_SYMBOL(blk_set_queue_depth);
|
|
|
|
/**
|
|
* blk_queue_write_cache - configure queue's write cache
|
|
* @q: the request queue for the device
|
|
* @wc: write back cache on or off
|
|
* @fua: device supports FUA writes, if true
|
|
*
|
|
* Tell the block layer about the write cache of @q.
|
|
*/
|
|
void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
|
|
{
|
|
if (wc) {
|
|
blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
|
|
blk_queue_flag_set(QUEUE_FLAG_WC, q);
|
|
} else {
|
|
blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
|
|
blk_queue_flag_clear(QUEUE_FLAG_WC, q);
|
|
}
|
|
if (fua)
|
|
blk_queue_flag_set(QUEUE_FLAG_FUA, q);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_write_cache);
|
|
|
|
/**
|
|
* blk_queue_required_elevator_features - Set a queue required elevator features
|
|
* @q: the request queue for the target device
|
|
* @features: Required elevator features OR'ed together
|
|
*
|
|
* Tell the block layer that for the device controlled through @q, only the
|
|
* only elevators that can be used are those that implement at least the set of
|
|
* features specified by @features.
|
|
*/
|
|
void blk_queue_required_elevator_features(struct request_queue *q,
|
|
unsigned int features)
|
|
{
|
|
q->required_elevator_features = features;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
|
|
|
|
/**
|
|
* blk_queue_can_use_dma_map_merging - configure queue for merging segments.
|
|
* @q: the request queue for the device
|
|
* @dev: the device pointer for dma
|
|
*
|
|
* Tell the block layer about merging the segments by dma map of @q.
|
|
*/
|
|
bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
|
|
struct device *dev)
|
|
{
|
|
unsigned long boundary = dma_get_merge_boundary(dev);
|
|
|
|
if (!boundary)
|
|
return false;
|
|
|
|
/* No need to update max_segment_size. see blk_queue_virt_boundary() */
|
|
blk_queue_virt_boundary(q, boundary);
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
|
|
|
|
/**
|
|
* disk_set_zoned - inidicate a zoned device
|
|
* @disk: gendisk to configure
|
|
*/
|
|
void disk_set_zoned(struct gendisk *disk)
|
|
{
|
|
struct request_queue *q = disk->queue;
|
|
|
|
WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
|
|
|
|
/*
|
|
* Set the zone write granularity to the device logical block
|
|
* size by default. The driver can change this value if needed.
|
|
*/
|
|
q->limits.zoned = true;
|
|
blk_queue_zone_write_granularity(q, queue_logical_block_size(q));
|
|
}
|
|
EXPORT_SYMBOL_GPL(disk_set_zoned);
|
|
|
|
int bdev_alignment_offset(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (q->limits.misaligned)
|
|
return -1;
|
|
if (bdev_is_partition(bdev))
|
|
return queue_limit_alignment_offset(&q->limits,
|
|
bdev->bd_start_sect);
|
|
return q->limits.alignment_offset;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bdev_alignment_offset);
|
|
|
|
unsigned int bdev_discard_alignment(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (bdev_is_partition(bdev))
|
|
return queue_limit_discard_alignment(&q->limits,
|
|
bdev->bd_start_sect);
|
|
return q->limits.discard_alignment;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bdev_discard_alignment);
|