mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 08:31:37 +00:00
bc9ad9e40d
The EDAC_DIMM_PTR() macro takes 3 arguments from struct mem_ctl_info. Clean up this interface to only pass the mci struct and replace this macro with a new function edac_get_dimm(). Also introduce an edac_get_dimm_by_index() function for later use. This allows it to get a DIMM pointer only by a given index. This can be useful if the DIMM's position within the layers of the memory controller or the exact size of the layers are unknown. Small style changes made for some hunks after applying the semantic patch. Semantic patch used: @@ expression mci, a, b,c; @@ -EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, a, b, c) +edac_get_dimm(mci, a, b, c) [ bp: Touchups. ] Signed-off-by: Robert Richter <rrichter@marvell.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: "linux-edac@vger.kernel.org" <linux-edac@vger.kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Jason Baron <jbaron@akamai.com> Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Tero Kristo <t-kristo@ti.com> Cc: Tony Luck <tony.luck@intel.com> Link: https://lkml.kernel.org/r/20191106093239.25517-2-rrichter@marvell.com
1215 lines
35 KiB
C
1215 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Intel 7300 class Memory Controllers kernel module (Clarksboro)
|
|
*
|
|
* Copyright (c) 2010 by:
|
|
* Mauro Carvalho Chehab
|
|
*
|
|
* Red Hat Inc. http://www.redhat.com
|
|
*
|
|
* Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
|
|
* http://www.intel.com/Assets/PDF/datasheet/318082.pdf
|
|
*
|
|
* TODO: The chipset allow checking for PCI Express errors also. Currently,
|
|
* the driver covers only memory error errors
|
|
*
|
|
* This driver uses "csrows" EDAC attribute to represent DIMM slot#
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/mmzone.h>
|
|
|
|
#include "edac_module.h"
|
|
|
|
/*
|
|
* Alter this version for the I7300 module when modifications are made
|
|
*/
|
|
#define I7300_REVISION " Ver: 1.0.0"
|
|
|
|
#define EDAC_MOD_STR "i7300_edac"
|
|
|
|
#define i7300_printk(level, fmt, arg...) \
|
|
edac_printk(level, "i7300", fmt, ##arg)
|
|
|
|
#define i7300_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
|
|
|
|
/***********************************************
|
|
* i7300 Limit constants Structs and static vars
|
|
***********************************************/
|
|
|
|
/*
|
|
* Memory topology is organized as:
|
|
* Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
|
|
* Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
|
|
* Each channel can have to 8 DIMM sets (called as SLOTS)
|
|
* Slots should generally be filled in pairs
|
|
* Except on Single Channel mode of operation
|
|
* just slot 0/channel0 filled on this mode
|
|
* On normal operation mode, the two channels on a branch should be
|
|
* filled together for the same SLOT#
|
|
* When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
|
|
* channels on both branches should be filled
|
|
*/
|
|
|
|
/* Limits for i7300 */
|
|
#define MAX_SLOTS 8
|
|
#define MAX_BRANCHES 2
|
|
#define MAX_CH_PER_BRANCH 2
|
|
#define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
|
|
#define MAX_MIR 3
|
|
|
|
#define to_channel(ch, branch) ((((branch)) << 1) | (ch))
|
|
|
|
#define to_csrow(slot, ch, branch) \
|
|
(to_channel(ch, branch) | ((slot) << 2))
|
|
|
|
/* Device name and register DID (Device ID) */
|
|
struct i7300_dev_info {
|
|
const char *ctl_name; /* name for this device */
|
|
u16 fsb_mapping_errors; /* DID for the branchmap,control */
|
|
};
|
|
|
|
/* Table of devices attributes supported by this driver */
|
|
static const struct i7300_dev_info i7300_devs[] = {
|
|
{
|
|
.ctl_name = "I7300",
|
|
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
|
|
},
|
|
};
|
|
|
|
struct i7300_dimm_info {
|
|
int megabytes; /* size, 0 means not present */
|
|
};
|
|
|
|
/* driver private data structure */
|
|
struct i7300_pvt {
|
|
struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
|
|
struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
|
|
struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
|
|
struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
|
|
|
|
u16 tolm; /* top of low memory */
|
|
u64 ambase; /* AMB BAR */
|
|
|
|
u32 mc_settings; /* Report several settings */
|
|
u32 mc_settings_a;
|
|
|
|
u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
|
|
|
|
u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
|
|
u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
|
|
|
|
/* DIMM information matrix, allocating architecture maximums */
|
|
struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
|
|
|
|
/* Temporary buffer for use when preparing error messages */
|
|
char *tmp_prt_buffer;
|
|
};
|
|
|
|
/* FIXME: Why do we need to have this static? */
|
|
static struct edac_pci_ctl_info *i7300_pci;
|
|
|
|
/***************************************************
|
|
* i7300 Register definitions for memory enumeration
|
|
***************************************************/
|
|
|
|
/*
|
|
* Device 16,
|
|
* Function 0: System Address (not documented)
|
|
* Function 1: Memory Branch Map, Control, Errors Register
|
|
*/
|
|
|
|
/* OFFSETS for Function 0 */
|
|
#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
|
|
#define MAXCH 0x56 /* Max Channel Number */
|
|
#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
|
|
|
|
/* OFFSETS for Function 1 */
|
|
#define MC_SETTINGS 0x40
|
|
#define IS_MIRRORED(mc) ((mc) & (1 << 16))
|
|
#define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
|
|
#define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
|
|
#define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
|
|
|
|
#define MC_SETTINGS_A 0x58
|
|
#define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
|
|
|
|
#define TOLM 0x6C
|
|
|
|
#define MIR0 0x80
|
|
#define MIR1 0x84
|
|
#define MIR2 0x88
|
|
|
|
/*
|
|
* Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
|
|
* memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
|
|
* seems that we cannot use this information directly for the same usage.
|
|
* Each memory slot may have up to 2 AMB interfaces, one for income and another
|
|
* for outcome interface to the next slot.
|
|
* For now, the driver just stores the AMB present registers, but rely only at
|
|
* the MTR info to detect memory.
|
|
* Datasheet is also not clear about how to map each AMBPRESENT registers to
|
|
* one of the 4 available channels.
|
|
*/
|
|
#define AMBPRESENT_0 0x64
|
|
#define AMBPRESENT_1 0x66
|
|
|
|
static const u16 mtr_regs[MAX_SLOTS] = {
|
|
0x80, 0x84, 0x88, 0x8c,
|
|
0x82, 0x86, 0x8a, 0x8e
|
|
};
|
|
|
|
/*
|
|
* Defines to extract the vaious fields from the
|
|
* MTRx - Memory Technology Registers
|
|
*/
|
|
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
|
|
#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
|
|
#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
|
|
#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
|
|
#define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
|
|
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
|
|
#define MTR_DRAM_BANKS_ADDR_BITS 2
|
|
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
|
|
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
|
|
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
|
|
|
|
/************************************************
|
|
* i7300 Register definitions for error detection
|
|
************************************************/
|
|
|
|
/*
|
|
* Device 16.1: FBD Error Registers
|
|
*/
|
|
#define FERR_FAT_FBD 0x98
|
|
static const char *ferr_fat_fbd_name[] = {
|
|
[22] = "Non-Redundant Fast Reset Timeout",
|
|
[2] = ">Tmid Thermal event with intelligent throttling disabled",
|
|
[1] = "Memory or FBD configuration CRC read error",
|
|
[0] = "Memory Write error on non-redundant retry or "
|
|
"FBD configuration Write error on retry",
|
|
};
|
|
#define GET_FBD_FAT_IDX(fbderr) (((fbderr) >> 28) & 3)
|
|
#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
|
|
|
|
#define FERR_NF_FBD 0xa0
|
|
static const char *ferr_nf_fbd_name[] = {
|
|
[24] = "DIMM-Spare Copy Completed",
|
|
[23] = "DIMM-Spare Copy Initiated",
|
|
[22] = "Redundant Fast Reset Timeout",
|
|
[21] = "Memory Write error on redundant retry",
|
|
[18] = "SPD protocol Error",
|
|
[17] = "FBD Northbound parity error on FBD Sync Status",
|
|
[16] = "Correctable Patrol Data ECC",
|
|
[15] = "Correctable Resilver- or Spare-Copy Data ECC",
|
|
[14] = "Correctable Mirrored Demand Data ECC",
|
|
[13] = "Correctable Non-Mirrored Demand Data ECC",
|
|
[11] = "Memory or FBD configuration CRC read error",
|
|
[10] = "FBD Configuration Write error on first attempt",
|
|
[9] = "Memory Write error on first attempt",
|
|
[8] = "Non-Aliased Uncorrectable Patrol Data ECC",
|
|
[7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
|
|
[6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
|
|
[5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
|
|
[4] = "Aliased Uncorrectable Patrol Data ECC",
|
|
[3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
|
|
[2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
|
|
[1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
|
|
[0] = "Uncorrectable Data ECC on Replay",
|
|
};
|
|
#define GET_FBD_NF_IDX(fbderr) (((fbderr) >> 28) & 3)
|
|
#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
|
|
(1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
|
|
(1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
|
|
(1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
|
|
(1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
|
|
(1 << 1) | (1 << 0))
|
|
|
|
#define EMASK_FBD 0xa8
|
|
#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
|
|
(1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
|
|
(1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
|
|
(1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
|
|
(1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
|
|
(1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
|
|
(1 << 1) | (1 << 0))
|
|
|
|
/*
|
|
* Device 16.2: Global Error Registers
|
|
*/
|
|
|
|
#define FERR_GLOBAL_HI 0x48
|
|
static const char *ferr_global_hi_name[] = {
|
|
[3] = "FSB 3 Fatal Error",
|
|
[2] = "FSB 2 Fatal Error",
|
|
[1] = "FSB 1 Fatal Error",
|
|
[0] = "FSB 0 Fatal Error",
|
|
};
|
|
#define ferr_global_hi_is_fatal(errno) 1
|
|
|
|
#define FERR_GLOBAL_LO 0x40
|
|
static const char *ferr_global_lo_name[] = {
|
|
[31] = "Internal MCH Fatal Error",
|
|
[30] = "Intel QuickData Technology Device Fatal Error",
|
|
[29] = "FSB1 Fatal Error",
|
|
[28] = "FSB0 Fatal Error",
|
|
[27] = "FBD Channel 3 Fatal Error",
|
|
[26] = "FBD Channel 2 Fatal Error",
|
|
[25] = "FBD Channel 1 Fatal Error",
|
|
[24] = "FBD Channel 0 Fatal Error",
|
|
[23] = "PCI Express Device 7Fatal Error",
|
|
[22] = "PCI Express Device 6 Fatal Error",
|
|
[21] = "PCI Express Device 5 Fatal Error",
|
|
[20] = "PCI Express Device 4 Fatal Error",
|
|
[19] = "PCI Express Device 3 Fatal Error",
|
|
[18] = "PCI Express Device 2 Fatal Error",
|
|
[17] = "PCI Express Device 1 Fatal Error",
|
|
[16] = "ESI Fatal Error",
|
|
[15] = "Internal MCH Non-Fatal Error",
|
|
[14] = "Intel QuickData Technology Device Non Fatal Error",
|
|
[13] = "FSB1 Non-Fatal Error",
|
|
[12] = "FSB 0 Non-Fatal Error",
|
|
[11] = "FBD Channel 3 Non-Fatal Error",
|
|
[10] = "FBD Channel 2 Non-Fatal Error",
|
|
[9] = "FBD Channel 1 Non-Fatal Error",
|
|
[8] = "FBD Channel 0 Non-Fatal Error",
|
|
[7] = "PCI Express Device 7 Non-Fatal Error",
|
|
[6] = "PCI Express Device 6 Non-Fatal Error",
|
|
[5] = "PCI Express Device 5 Non-Fatal Error",
|
|
[4] = "PCI Express Device 4 Non-Fatal Error",
|
|
[3] = "PCI Express Device 3 Non-Fatal Error",
|
|
[2] = "PCI Express Device 2 Non-Fatal Error",
|
|
[1] = "PCI Express Device 1 Non-Fatal Error",
|
|
[0] = "ESI Non-Fatal Error",
|
|
};
|
|
#define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
|
|
|
|
#define NRECMEMA 0xbe
|
|
#define NRECMEMA_BANK(v) (((v) >> 12) & 7)
|
|
#define NRECMEMA_RANK(v) (((v) >> 8) & 15)
|
|
|
|
#define NRECMEMB 0xc0
|
|
#define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
|
|
#define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
|
|
#define NRECMEMB_RAS(v) ((v) & 0xffff)
|
|
|
|
#define REDMEMA 0xdc
|
|
|
|
#define REDMEMB 0x7c
|
|
|
|
#define RECMEMA 0xe0
|
|
#define RECMEMA_BANK(v) (((v) >> 12) & 7)
|
|
#define RECMEMA_RANK(v) (((v) >> 8) & 15)
|
|
|
|
#define RECMEMB 0xe4
|
|
#define RECMEMB_IS_WR(v) ((v) & (1 << 31))
|
|
#define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
|
|
#define RECMEMB_RAS(v) ((v) & 0xffff)
|
|
|
|
/********************************************
|
|
* i7300 Functions related to error detection
|
|
********************************************/
|
|
|
|
/**
|
|
* get_err_from_table() - Gets the error message from a table
|
|
* @table: table name (array of char *)
|
|
* @size: number of elements at the table
|
|
* @pos: position of the element to be returned
|
|
*
|
|
* This is a small routine that gets the pos-th element of a table. If the
|
|
* element doesn't exist (or it is empty), it returns "reserved".
|
|
* Instead of calling it directly, the better is to call via the macro
|
|
* GET_ERR_FROM_TABLE(), that automatically checks the table size via
|
|
* ARRAY_SIZE() macro
|
|
*/
|
|
static const char *get_err_from_table(const char *table[], int size, int pos)
|
|
{
|
|
if (unlikely(pos >= size))
|
|
return "Reserved";
|
|
|
|
if (unlikely(!table[pos]))
|
|
return "Reserved";
|
|
|
|
return table[pos];
|
|
}
|
|
|
|
#define GET_ERR_FROM_TABLE(table, pos) \
|
|
get_err_from_table(table, ARRAY_SIZE(table), pos)
|
|
|
|
/**
|
|
* i7300_process_error_global() - Retrieve the hardware error information from
|
|
* the hardware global error registers and
|
|
* sends it to dmesg
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_process_error_global(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 errnum, error_reg;
|
|
unsigned long errors;
|
|
const char *specific;
|
|
bool is_fatal;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* read in the 1st FATAL error register */
|
|
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_HI, &error_reg);
|
|
if (unlikely(error_reg)) {
|
|
errors = error_reg;
|
|
errnum = find_first_bit(&errors,
|
|
ARRAY_SIZE(ferr_global_hi_name));
|
|
specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
|
|
is_fatal = ferr_global_hi_is_fatal(errnum);
|
|
|
|
/* Clear the error bit */
|
|
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_HI, error_reg);
|
|
|
|
goto error_global;
|
|
}
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_LO, &error_reg);
|
|
if (unlikely(error_reg)) {
|
|
errors = error_reg;
|
|
errnum = find_first_bit(&errors,
|
|
ARRAY_SIZE(ferr_global_lo_name));
|
|
specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
|
|
is_fatal = ferr_global_lo_is_fatal(errnum);
|
|
|
|
/* Clear the error bit */
|
|
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_LO, error_reg);
|
|
|
|
goto error_global;
|
|
}
|
|
return;
|
|
|
|
error_global:
|
|
i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
|
|
is_fatal ? "Fatal" : "NOT fatal", specific);
|
|
}
|
|
|
|
/**
|
|
* i7300_process_fbd_error() - Retrieve the hardware error information from
|
|
* the FBD error registers and sends it via
|
|
* EDAC error API calls
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_process_fbd_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 errnum, value, error_reg;
|
|
u16 val16;
|
|
unsigned branch, channel, bank, rank, cas, ras;
|
|
u32 syndrome;
|
|
|
|
unsigned long errors;
|
|
const char *specific;
|
|
bool is_wr;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* read in the 1st FATAL error register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, &error_reg);
|
|
if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
|
|
errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
|
|
errnum = find_first_bit(&errors,
|
|
ARRAY_SIZE(ferr_fat_fbd_name));
|
|
specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
|
|
branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
|
|
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
|
|
NRECMEMA, &val16);
|
|
bank = NRECMEMA_BANK(val16);
|
|
rank = NRECMEMA_RANK(val16);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
NRECMEMB, &value);
|
|
is_wr = NRECMEMB_IS_WR(value);
|
|
cas = NRECMEMB_CAS(value);
|
|
ras = NRECMEMB_RAS(value);
|
|
|
|
/* Clean the error register */
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, error_reg);
|
|
|
|
snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
|
|
"Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
|
|
bank, ras, cas, errors, specific);
|
|
|
|
edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
|
|
branch, -1, rank,
|
|
is_wr ? "Write error" : "Read error",
|
|
pvt->tmp_prt_buffer);
|
|
|
|
}
|
|
|
|
/* read in the 1st NON-FATAL error register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, &error_reg);
|
|
if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
|
|
errors = error_reg & FERR_NF_FBD_ERR_MASK;
|
|
errnum = find_first_bit(&errors,
|
|
ARRAY_SIZE(ferr_nf_fbd_name));
|
|
specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
|
|
branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
REDMEMA, &syndrome);
|
|
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
|
|
RECMEMA, &val16);
|
|
bank = RECMEMA_BANK(val16);
|
|
rank = RECMEMA_RANK(val16);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
RECMEMB, &value);
|
|
is_wr = RECMEMB_IS_WR(value);
|
|
cas = RECMEMB_CAS(value);
|
|
ras = RECMEMB_RAS(value);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
REDMEMB, &value);
|
|
channel = (branch << 1);
|
|
|
|
/* Second channel ? */
|
|
channel += !!(value & BIT(17));
|
|
|
|
/* Clear the error bit */
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, error_reg);
|
|
|
|
/* Form out message */
|
|
snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
|
|
"DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
|
|
bank, ras, cas, errors, specific);
|
|
|
|
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
|
|
syndrome,
|
|
branch >> 1, channel % 2, rank,
|
|
is_wr ? "Write error" : "Read error",
|
|
pvt->tmp_prt_buffer);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* i7300_check_error() - Calls the error checking subroutines
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_check_error(struct mem_ctl_info *mci)
|
|
{
|
|
i7300_process_error_global(mci);
|
|
i7300_process_fbd_error(mci);
|
|
};
|
|
|
|
/**
|
|
* i7300_clear_error() - Clears the error registers
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_clear_error(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt = mci->pvt_info;
|
|
u32 value;
|
|
/*
|
|
* All error values are RWC - we need to read and write 1 to the
|
|
* bit that we want to cleanup
|
|
*/
|
|
|
|
/* Clear global error registers */
|
|
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_HI, &value);
|
|
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_HI, value);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_LO, &value);
|
|
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
|
|
FERR_GLOBAL_LO, value);
|
|
|
|
/* Clear FBD error registers */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, &value);
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_FAT_FBD, value);
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, &value);
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
FERR_NF_FBD, value);
|
|
}
|
|
|
|
/**
|
|
* i7300_enable_error_reporting() - Enable the memory reporting logic at the
|
|
* hardware
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt = mci->pvt_info;
|
|
u32 fbd_error_mask;
|
|
|
|
/* Read the FBD Error Mask Register */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
EMASK_FBD, &fbd_error_mask);
|
|
|
|
/* Enable with a '0' */
|
|
fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
|
|
|
|
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
|
|
EMASK_FBD, fbd_error_mask);
|
|
}
|
|
|
|
/************************************************
|
|
* i7300 Functions related to memory enumberation
|
|
************************************************/
|
|
|
|
/**
|
|
* decode_mtr() - Decodes the MTR descriptor, filling the edac structs
|
|
* @pvt: pointer to the private data struct used by i7300 driver
|
|
* @slot: DIMM slot (0 to 7)
|
|
* @ch: Channel number within the branch (0 or 1)
|
|
* @branch: Branch number (0 or 1)
|
|
* @dinfo: Pointer to DIMM info where dimm size is stored
|
|
* @dimm: Pointer to the struct dimm_info that corresponds to that element
|
|
*/
|
|
static int decode_mtr(struct i7300_pvt *pvt,
|
|
int slot, int ch, int branch,
|
|
struct i7300_dimm_info *dinfo,
|
|
struct dimm_info *dimm)
|
|
{
|
|
int mtr, ans, addrBits, channel;
|
|
|
|
channel = to_channel(ch, branch);
|
|
|
|
mtr = pvt->mtr[slot][branch];
|
|
ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
|
|
|
|
edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
|
|
slot, channel, ans ? "" : "NOT ");
|
|
|
|
/* Determine if there is a DIMM present in this DIMM slot */
|
|
if (!ans)
|
|
return 0;
|
|
|
|
/* Start with the number of bits for a Bank
|
|
* on the DRAM */
|
|
addrBits = MTR_DRAM_BANKS_ADDR_BITS;
|
|
/* Add thenumber of ROW bits */
|
|
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
|
|
/* add the number of COLUMN bits */
|
|
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
|
|
/* add the number of RANK bits */
|
|
addrBits += MTR_DIMM_RANKS(mtr);
|
|
|
|
addrBits += 6; /* add 64 bits per DIMM */
|
|
addrBits -= 20; /* divide by 2^^20 */
|
|
addrBits -= 3; /* 8 bits per bytes */
|
|
|
|
dinfo->megabytes = 1 << addrBits;
|
|
|
|
edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
|
|
|
|
edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
|
|
MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
|
|
|
|
edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
|
|
edac_dbg(2, "\t\tNUMRANK: %s\n",
|
|
MTR_DIMM_RANKS(mtr) ? "double" : "single");
|
|
edac_dbg(2, "\t\tNUMROW: %s\n",
|
|
MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
|
|
MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
|
|
MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
|
|
"65,536 - 16 rows");
|
|
edac_dbg(2, "\t\tNUMCOL: %s\n",
|
|
MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
|
|
MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
|
|
MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
|
|
"reserved");
|
|
edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
|
|
|
|
/*
|
|
* The type of error detection actually depends of the
|
|
* mode of operation. When it is just one single memory chip, at
|
|
* socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
|
|
* In normal or mirrored mode, it uses Lockstep mode,
|
|
* with the possibility of using an extended algorithm for x8 memories
|
|
* See datasheet Sections 7.3.6 to 7.3.8
|
|
*/
|
|
|
|
dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
|
|
dimm->grain = 8;
|
|
dimm->mtype = MEM_FB_DDR2;
|
|
if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
|
|
dimm->edac_mode = EDAC_SECDED;
|
|
edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
|
|
} else {
|
|
edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
|
|
if (MTR_DRAM_WIDTH(mtr) == 8)
|
|
dimm->edac_mode = EDAC_S8ECD8ED;
|
|
else
|
|
dimm->edac_mode = EDAC_S4ECD4ED;
|
|
}
|
|
|
|
/* ask what device type on this row */
|
|
if (MTR_DRAM_WIDTH(mtr) == 8) {
|
|
edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
|
|
IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
|
|
"enhanced" : "normal");
|
|
|
|
dimm->dtype = DEV_X8;
|
|
} else
|
|
dimm->dtype = DEV_X4;
|
|
|
|
return mtr;
|
|
}
|
|
|
|
/**
|
|
* print_dimm_size() - Prints dump of the memory organization
|
|
* @pvt: pointer to the private data struct used by i7300 driver
|
|
*
|
|
* Useful for debug. If debug is disabled, this routine do nothing
|
|
*/
|
|
static void print_dimm_size(struct i7300_pvt *pvt)
|
|
{
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
struct i7300_dimm_info *dinfo;
|
|
char *p;
|
|
int space, n;
|
|
int channel, slot;
|
|
|
|
space = PAGE_SIZE;
|
|
p = pvt->tmp_prt_buffer;
|
|
|
|
n = snprintf(p, space, " ");
|
|
p += n;
|
|
space -= n;
|
|
for (channel = 0; channel < MAX_CHANNELS; channel++) {
|
|
n = snprintf(p, space, "channel %d | ", channel);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
|
|
p = pvt->tmp_prt_buffer;
|
|
space = PAGE_SIZE;
|
|
n = snprintf(p, space, "-------------------------------"
|
|
"------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
|
|
p = pvt->tmp_prt_buffer;
|
|
space = PAGE_SIZE;
|
|
|
|
for (slot = 0; slot < MAX_SLOTS; slot++) {
|
|
n = snprintf(p, space, "csrow/SLOT %d ", slot);
|
|
p += n;
|
|
space -= n;
|
|
|
|
for (channel = 0; channel < MAX_CHANNELS; channel++) {
|
|
dinfo = &pvt->dimm_info[slot][channel];
|
|
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
|
|
p += n;
|
|
space -= n;
|
|
}
|
|
|
|
edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
|
|
p = pvt->tmp_prt_buffer;
|
|
space = PAGE_SIZE;
|
|
}
|
|
|
|
n = snprintf(p, space, "-------------------------------"
|
|
"------------------------------");
|
|
p += n;
|
|
space -= n;
|
|
edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
|
|
p = pvt->tmp_prt_buffer;
|
|
space = PAGE_SIZE;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* i7300_init_csrows() - Initialize the 'csrows' table within
|
|
* the mci control structure with the
|
|
* addressing of memory.
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static int i7300_init_csrows(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
struct i7300_dimm_info *dinfo;
|
|
int rc = -ENODEV;
|
|
int mtr;
|
|
int ch, branch, slot, channel, max_channel, max_branch;
|
|
struct dimm_info *dimm;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
edac_dbg(2, "Memory Technology Registers:\n");
|
|
|
|
if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
|
|
max_branch = 1;
|
|
max_channel = 1;
|
|
} else {
|
|
max_branch = MAX_BRANCHES;
|
|
max_channel = MAX_CH_PER_BRANCH;
|
|
}
|
|
|
|
/* Get the AMB present registers for the four channels */
|
|
for (branch = 0; branch < max_branch; branch++) {
|
|
/* Read and dump branch 0's MTRs */
|
|
channel = to_channel(0, branch);
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
|
|
AMBPRESENT_0,
|
|
&pvt->ambpresent[channel]);
|
|
edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
|
|
channel, pvt->ambpresent[channel]);
|
|
|
|
if (max_channel == 1)
|
|
continue;
|
|
|
|
channel = to_channel(1, branch);
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
|
|
AMBPRESENT_1,
|
|
&pvt->ambpresent[channel]);
|
|
edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
|
|
channel, pvt->ambpresent[channel]);
|
|
}
|
|
|
|
/* Get the set of MTR[0-7] regs by each branch */
|
|
for (slot = 0; slot < MAX_SLOTS; slot++) {
|
|
int where = mtr_regs[slot];
|
|
for (branch = 0; branch < max_branch; branch++) {
|
|
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
|
|
where,
|
|
&pvt->mtr[slot][branch]);
|
|
for (ch = 0; ch < max_channel; ch++) {
|
|
int channel = to_channel(ch, branch);
|
|
|
|
dimm = edac_get_dimm(mci, branch, ch, slot);
|
|
|
|
dinfo = &pvt->dimm_info[slot][channel];
|
|
|
|
mtr = decode_mtr(pvt, slot, ch, branch,
|
|
dinfo, dimm);
|
|
|
|
/* if no DIMMS on this row, continue */
|
|
if (!MTR_DIMMS_PRESENT(mtr))
|
|
continue;
|
|
|
|
rc = 0;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* decode_mir() - Decodes Memory Interleave Register (MIR) info
|
|
* @mir_no: number of the MIR register to decode
|
|
* @mir: array with the MIR data cached on the driver
|
|
*/
|
|
static void decode_mir(int mir_no, u16 mir[MAX_MIR])
|
|
{
|
|
if (mir[mir_no] & 3)
|
|
edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
|
|
mir_no,
|
|
(mir[mir_no] >> 4) & 0xfff,
|
|
(mir[mir_no] & 1) ? "B0" : "",
|
|
(mir[mir_no] & 2) ? "B1" : "");
|
|
}
|
|
|
|
/**
|
|
* i7300_get_mc_regs() - Get the contents of the MC enumeration registers
|
|
* @mci: struct mem_ctl_info pointer
|
|
*
|
|
* Data read is cached internally for its usage when needed
|
|
*/
|
|
static int i7300_get_mc_regs(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
u32 actual_tolm;
|
|
int i, rc;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
|
|
(u32 *) &pvt->ambase);
|
|
|
|
edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
|
|
|
|
/* Get the Branch Map regs */
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
|
|
pvt->tolm >>= 12;
|
|
edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
|
|
pvt->tolm, pvt->tolm);
|
|
|
|
actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
|
|
edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
|
|
actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
|
|
|
|
/* Get memory controller settings */
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
|
|
&pvt->mc_settings);
|
|
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
|
|
&pvt->mc_settings_a);
|
|
|
|
if (IS_SINGLE_MODE(pvt->mc_settings_a))
|
|
edac_dbg(0, "Memory controller operating on single mode\n");
|
|
else
|
|
edac_dbg(0, "Memory controller operating on %smirrored mode\n",
|
|
IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
|
|
|
|
edac_dbg(0, "Error detection is %s\n",
|
|
IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
|
|
edac_dbg(0, "Retry is %s\n",
|
|
IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
|
|
|
|
/* Get Memory Interleave Range registers */
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
|
|
&pvt->mir[0]);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
|
|
&pvt->mir[1]);
|
|
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
|
|
&pvt->mir[2]);
|
|
|
|
/* Decode the MIR regs */
|
|
for (i = 0; i < MAX_MIR; i++)
|
|
decode_mir(i, pvt->mir);
|
|
|
|
rc = i7300_init_csrows(mci);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Go and determine the size of each DIMM and place in an
|
|
* orderly matrix */
|
|
print_dimm_size(pvt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*************************************************
|
|
* i7300 Functions related to device probe/release
|
|
*************************************************/
|
|
|
|
/**
|
|
* i7300_put_devices() - Release the PCI devices
|
|
* @mci: struct mem_ctl_info pointer
|
|
*/
|
|
static void i7300_put_devices(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
int branch;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Decrement usage count for devices */
|
|
for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
|
|
pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
|
|
pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
|
|
pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
|
|
}
|
|
|
|
/**
|
|
* i7300_get_devices() - Find and perform 'get' operation on the MCH's
|
|
* device/functions we want to reference for this driver
|
|
* @mci: struct mem_ctl_info pointer
|
|
*
|
|
* Access and prepare the several devices for usage:
|
|
* I7300 devices used by this driver:
|
|
* Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
|
|
* Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
|
|
* Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
|
|
*/
|
|
static int i7300_get_devices(struct mem_ctl_info *mci)
|
|
{
|
|
struct i7300_pvt *pvt;
|
|
struct pci_dev *pdev;
|
|
|
|
pvt = mci->pvt_info;
|
|
|
|
/* Attempt to 'get' the MCH register we want */
|
|
pdev = NULL;
|
|
while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
|
|
pdev))) {
|
|
/* Store device 16 funcs 1 and 2 */
|
|
switch (PCI_FUNC(pdev->devfn)) {
|
|
case 1:
|
|
if (!pvt->pci_dev_16_1_fsb_addr_map)
|
|
pvt->pci_dev_16_1_fsb_addr_map =
|
|
pci_dev_get(pdev);
|
|
break;
|
|
case 2:
|
|
if (!pvt->pci_dev_16_2_fsb_err_regs)
|
|
pvt->pci_dev_16_2_fsb_err_regs =
|
|
pci_dev_get(pdev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!pvt->pci_dev_16_1_fsb_addr_map ||
|
|
!pvt->pci_dev_16_2_fsb_err_regs) {
|
|
/* At least one device was not found */
|
|
i7300_printk(KERN_ERR,
|
|
"'system address,Process Bus' device not found:"
|
|
"vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
|
|
goto error;
|
|
}
|
|
|
|
edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_0_fsb_ctlr),
|
|
pvt->pci_dev_16_0_fsb_ctlr->vendor,
|
|
pvt->pci_dev_16_0_fsb_ctlr->device);
|
|
edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_1_fsb_addr_map),
|
|
pvt->pci_dev_16_1_fsb_addr_map->vendor,
|
|
pvt->pci_dev_16_1_fsb_addr_map->device);
|
|
edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
|
|
pci_name(pvt->pci_dev_16_2_fsb_err_regs),
|
|
pvt->pci_dev_16_2_fsb_err_regs->vendor,
|
|
pvt->pci_dev_16_2_fsb_err_regs->device);
|
|
|
|
pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
|
|
NULL);
|
|
if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
|
|
i7300_printk(KERN_ERR,
|
|
"MC: 'BRANCH 0' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
|
|
goto error;
|
|
}
|
|
|
|
pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
|
|
NULL);
|
|
if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
|
|
i7300_printk(KERN_ERR,
|
|
"MC: 'BRANCH 1' device not found:"
|
|
"vendor 0x%x device 0x%x Func 0 "
|
|
"(broken BIOS?)\n",
|
|
PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
i7300_put_devices(mci);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* i7300_init_one() - Probe for one instance of the device
|
|
* @pdev: struct pci_dev pointer
|
|
* @id: struct pci_device_id pointer - currently unused
|
|
*/
|
|
static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer layers[3];
|
|
struct i7300_pvt *pvt;
|
|
int rc;
|
|
|
|
/* wake up device */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc == -EIO)
|
|
return rc;
|
|
|
|
edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
|
|
pdev->bus->number,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
|
|
|
/* We only are looking for func 0 of the set */
|
|
if (PCI_FUNC(pdev->devfn) != 0)
|
|
return -ENODEV;
|
|
|
|
/* allocate a new MC control structure */
|
|
layers[0].type = EDAC_MC_LAYER_BRANCH;
|
|
layers[0].size = MAX_BRANCHES;
|
|
layers[0].is_virt_csrow = false;
|
|
layers[1].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[1].size = MAX_CH_PER_BRANCH;
|
|
layers[1].is_virt_csrow = true;
|
|
layers[2].type = EDAC_MC_LAYER_SLOT;
|
|
layers[2].size = MAX_SLOTS;
|
|
layers[2].is_virt_csrow = true;
|
|
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
|
|
if (mci == NULL)
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(0, "MC: mci = %p\n", mci);
|
|
|
|
mci->pdev = &pdev->dev; /* record ptr to the generic device */
|
|
|
|
pvt = mci->pvt_info;
|
|
pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
|
|
|
|
pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!pvt->tmp_prt_buffer) {
|
|
edac_mc_free(mci);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* 'get' the pci devices we want to reserve for our use */
|
|
if (i7300_get_devices(mci))
|
|
goto fail0;
|
|
|
|
mci->mc_idx = 0;
|
|
mci->mtype_cap = MEM_FLAG_FB_DDR2;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = "i7300_edac.c";
|
|
mci->ctl_name = i7300_devs[0].ctl_name;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
/* Set the function pointer to an actual operation function */
|
|
mci->edac_check = i7300_check_error;
|
|
|
|
/* initialize the MC control structure 'csrows' table
|
|
* with the mapping and control information */
|
|
if (i7300_get_mc_regs(mci)) {
|
|
edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
|
|
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
|
|
} else {
|
|
edac_dbg(1, "MC: Enable error reporting now\n");
|
|
i7300_enable_error_reporting(mci);
|
|
}
|
|
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
|
if (edac_mc_add_mc(mci)) {
|
|
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
|
|
/* FIXME: perhaps some code should go here that disables error
|
|
* reporting if we just enabled it
|
|
*/
|
|
goto fail1;
|
|
}
|
|
|
|
i7300_clear_error(mci);
|
|
|
|
/* allocating generic PCI control info */
|
|
i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
|
|
if (!i7300_pci) {
|
|
printk(KERN_WARNING
|
|
"%s(): Unable to create PCI control\n",
|
|
__func__);
|
|
printk(KERN_WARNING
|
|
"%s(): PCI error report via EDAC not setup\n",
|
|
__func__);
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* Error exit unwinding stack */
|
|
fail1:
|
|
|
|
i7300_put_devices(mci);
|
|
|
|
fail0:
|
|
kfree(pvt->tmp_prt_buffer);
|
|
edac_mc_free(mci);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* i7300_remove_one() - Remove the driver
|
|
* @pdev: struct pci_dev pointer
|
|
*/
|
|
static void i7300_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
char *tmp;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
if (i7300_pci)
|
|
edac_pci_release_generic_ctl(i7300_pci);
|
|
|
|
mci = edac_mc_del_mc(&pdev->dev);
|
|
if (!mci)
|
|
return;
|
|
|
|
tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
|
|
|
|
/* retrieve references to resources, and free those resources */
|
|
i7300_put_devices(mci);
|
|
|
|
kfree(tmp);
|
|
edac_mc_free(mci);
|
|
}
|
|
|
|
/*
|
|
* pci_device_id: table for which devices we are looking for
|
|
*
|
|
* Has only 8086:360c PCI ID
|
|
*/
|
|
static const struct pci_device_id i7300_pci_tbl[] = {
|
|
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
|
|
|
|
/*
|
|
* i7300_driver: pci_driver structure for this module
|
|
*/
|
|
static struct pci_driver i7300_driver = {
|
|
.name = "i7300_edac",
|
|
.probe = i7300_init_one,
|
|
.remove = i7300_remove_one,
|
|
.id_table = i7300_pci_tbl,
|
|
};
|
|
|
|
/**
|
|
* i7300_init() - Registers the driver
|
|
*/
|
|
static int __init i7300_init(void)
|
|
{
|
|
int pci_rc;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
pci_rc = pci_register_driver(&i7300_driver);
|
|
|
|
return (pci_rc < 0) ? pci_rc : 0;
|
|
}
|
|
|
|
/**
|
|
* i7300_init() - Unregisters the driver
|
|
*/
|
|
static void __exit i7300_exit(void)
|
|
{
|
|
edac_dbg(2, "\n");
|
|
pci_unregister_driver(&i7300_driver);
|
|
}
|
|
|
|
module_init(i7300_init);
|
|
module_exit(i7300_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab");
|
|
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
|
|
MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
|
|
I7300_REVISION);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|