mirror of
https://github.com/torvalds/linux.git
synced 2024-12-26 21:02:19 +00:00
681f3e6854
At the moment, a lot of load balancing code that is irrelevant to non SMP systems gets included during non SMP builds. This patch addresses this issue and reduces the binary size on non SMP systems: text data bss dec hex filename 10983 28 1192 12203 2fab sched.o.before 10739 28 1192 11959 2eb7 sched.o.after Signed-off-by: Peter Williams <pwil3058@bigpond.net.au> Signed-off-by: Ingo Molnar <mingo@elte.hu>
258 lines
5.8 KiB
C
258 lines
5.8 KiB
C
/*
|
|
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
|
|
* policies)
|
|
*/
|
|
|
|
/*
|
|
* Update the current task's runtime statistics. Skip current tasks that
|
|
* are not in our scheduling class.
|
|
*/
|
|
static void update_curr_rt(struct rq *rq)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
u64 delta_exec;
|
|
|
|
if (!task_has_rt_policy(curr))
|
|
return;
|
|
|
|
delta_exec = rq->clock - curr->se.exec_start;
|
|
if (unlikely((s64)delta_exec < 0))
|
|
delta_exec = 0;
|
|
|
|
schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
|
|
|
|
curr->se.sum_exec_runtime += delta_exec;
|
|
curr->se.exec_start = rq->clock;
|
|
}
|
|
|
|
static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
|
|
{
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
list_add_tail(&p->run_list, array->queue + p->prio);
|
|
__set_bit(p->prio, array->bitmap);
|
|
}
|
|
|
|
/*
|
|
* Adding/removing a task to/from a priority array:
|
|
*/
|
|
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
|
|
{
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
update_curr_rt(rq);
|
|
|
|
list_del(&p->run_list);
|
|
if (list_empty(array->queue + p->prio))
|
|
__clear_bit(p->prio, array->bitmap);
|
|
}
|
|
|
|
/*
|
|
* Put task to the end of the run list without the overhead of dequeue
|
|
* followed by enqueue.
|
|
*/
|
|
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
list_move_tail(&p->run_list, array->queue + p->prio);
|
|
}
|
|
|
|
static void
|
|
yield_task_rt(struct rq *rq)
|
|
{
|
|
requeue_task_rt(rq, rq->curr);
|
|
}
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
if (p->prio < rq->curr->prio)
|
|
resched_task(rq->curr);
|
|
}
|
|
|
|
static struct task_struct *pick_next_task_rt(struct rq *rq)
|
|
{
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
struct task_struct *next;
|
|
struct list_head *queue;
|
|
int idx;
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
if (idx >= MAX_RT_PRIO)
|
|
return NULL;
|
|
|
|
queue = array->queue + idx;
|
|
next = list_entry(queue->next, struct task_struct, run_list);
|
|
|
|
next->se.exec_start = rq->clock;
|
|
|
|
return next;
|
|
}
|
|
|
|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
update_curr_rt(rq);
|
|
p->se.exec_start = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Load-balancing iterator. Note: while the runqueue stays locked
|
|
* during the whole iteration, the current task might be
|
|
* dequeued so the iterator has to be dequeue-safe. Here we
|
|
* achieve that by always pre-iterating before returning
|
|
* the current task:
|
|
*/
|
|
static struct task_struct *load_balance_start_rt(void *arg)
|
|
{
|
|
struct rq *rq = arg;
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
struct list_head *head, *curr;
|
|
struct task_struct *p;
|
|
int idx;
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
if (idx >= MAX_RT_PRIO)
|
|
return NULL;
|
|
|
|
head = array->queue + idx;
|
|
curr = head->prev;
|
|
|
|
p = list_entry(curr, struct task_struct, run_list);
|
|
|
|
curr = curr->prev;
|
|
|
|
rq->rt.rt_load_balance_idx = idx;
|
|
rq->rt.rt_load_balance_head = head;
|
|
rq->rt.rt_load_balance_curr = curr;
|
|
|
|
return p;
|
|
}
|
|
|
|
static struct task_struct *load_balance_next_rt(void *arg)
|
|
{
|
|
struct rq *rq = arg;
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
struct list_head *head, *curr;
|
|
struct task_struct *p;
|
|
int idx;
|
|
|
|
idx = rq->rt.rt_load_balance_idx;
|
|
head = rq->rt.rt_load_balance_head;
|
|
curr = rq->rt.rt_load_balance_curr;
|
|
|
|
/*
|
|
* If we arrived back to the head again then
|
|
* iterate to the next queue (if any):
|
|
*/
|
|
if (unlikely(head == curr)) {
|
|
int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
|
|
|
|
if (next_idx >= MAX_RT_PRIO)
|
|
return NULL;
|
|
|
|
idx = next_idx;
|
|
head = array->queue + idx;
|
|
curr = head->prev;
|
|
|
|
rq->rt.rt_load_balance_idx = idx;
|
|
rq->rt.rt_load_balance_head = head;
|
|
}
|
|
|
|
p = list_entry(curr, struct task_struct, run_list);
|
|
|
|
curr = curr->prev;
|
|
|
|
rq->rt.rt_load_balance_curr = curr;
|
|
|
|
return p;
|
|
}
|
|
|
|
static unsigned long
|
|
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
unsigned long max_load_move,
|
|
struct sched_domain *sd, enum cpu_idle_type idle,
|
|
int *all_pinned, int *this_best_prio)
|
|
{
|
|
struct rq_iterator rt_rq_iterator;
|
|
|
|
rt_rq_iterator.start = load_balance_start_rt;
|
|
rt_rq_iterator.next = load_balance_next_rt;
|
|
/* pass 'busiest' rq argument into
|
|
* load_balance_[start|next]_rt iterators
|
|
*/
|
|
rt_rq_iterator.arg = busiest;
|
|
|
|
return balance_tasks(this_rq, this_cpu, busiest, max_load_move, sd,
|
|
idle, all_pinned, this_best_prio, &rt_rq_iterator);
|
|
}
|
|
|
|
static int
|
|
move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
struct sched_domain *sd, enum cpu_idle_type idle)
|
|
{
|
|
struct rq_iterator rt_rq_iterator;
|
|
|
|
rt_rq_iterator.start = load_balance_start_rt;
|
|
rt_rq_iterator.next = load_balance_next_rt;
|
|
rt_rq_iterator.arg = busiest;
|
|
|
|
return iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
|
|
&rt_rq_iterator);
|
|
}
|
|
#endif
|
|
|
|
static void task_tick_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* RR tasks need a special form of timeslice management.
|
|
* FIFO tasks have no timeslices.
|
|
*/
|
|
if (p->policy != SCHED_RR)
|
|
return;
|
|
|
|
if (--p->time_slice)
|
|
return;
|
|
|
|
p->time_slice = DEF_TIMESLICE;
|
|
|
|
/*
|
|
* Requeue to the end of queue if we are not the only element
|
|
* on the queue:
|
|
*/
|
|
if (p->run_list.prev != p->run_list.next) {
|
|
requeue_task_rt(rq, p);
|
|
set_tsk_need_resched(p);
|
|
}
|
|
}
|
|
|
|
static void set_curr_task_rt(struct rq *rq)
|
|
{
|
|
struct task_struct *p = rq->curr;
|
|
|
|
p->se.exec_start = rq->clock;
|
|
}
|
|
|
|
const struct sched_class rt_sched_class = {
|
|
.next = &fair_sched_class,
|
|
.enqueue_task = enqueue_task_rt,
|
|
.dequeue_task = dequeue_task_rt,
|
|
.yield_task = yield_task_rt,
|
|
|
|
.check_preempt_curr = check_preempt_curr_rt,
|
|
|
|
.pick_next_task = pick_next_task_rt,
|
|
.put_prev_task = put_prev_task_rt,
|
|
|
|
#ifdef CONFIG_SMP
|
|
.load_balance = load_balance_rt,
|
|
.move_one_task = move_one_task_rt,
|
|
#endif
|
|
|
|
.set_curr_task = set_curr_task_rt,
|
|
.task_tick = task_tick_rt,
|
|
};
|