mirror of
https://github.com/torvalds/linux.git
synced 2024-11-06 12:11:59 +00:00
f046f89a99
Fix a bug in dm_btree_remove that could leave leaf values with incorrect reference counts. The effect of this was that removal of a shared block could result in the space maps thinking the block was no longer used. More concretely, if you have a thin device and a snapshot of it, sending a discard to a shared region of the thin could corrupt the snapshot. Thinp uses a 2-level nested btree to store it's mappings. This first level is indexed by thin device, and the second level by logical block. Often when we're removing an entry in this mapping tree we need to rebalance nodes, which can involve shadowing them, possibly creating a copy if the block is shared. If we do create a copy then children of that node need to have their reference counts incremented. In this way reference counts percolate down the tree as shared trees diverge. The rebalance functions were incrementing the children at the appropriate time, but they were always assuming the children were internal nodes. This meant the leaf values (in our case packed block/flags entries) were not being incremented. Cc: stable@vger.kernel.org Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Alasdair G Kergon <agk@redhat.com>
593 lines
15 KiB
C
593 lines
15 KiB
C
/*
|
|
* Copyright (C) 2011 Red Hat, Inc.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-btree.h"
|
|
#include "dm-btree-internal.h"
|
|
#include "dm-transaction-manager.h"
|
|
|
|
#include <linux/export.h>
|
|
|
|
/*
|
|
* Removing an entry from a btree
|
|
* ==============================
|
|
*
|
|
* A very important constraint for our btree is that no node, except the
|
|
* root, may have fewer than a certain number of entries.
|
|
* (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
|
|
*
|
|
* Ensuring this is complicated by the way we want to only ever hold the
|
|
* locks on 2 nodes concurrently, and only change nodes in a top to bottom
|
|
* fashion.
|
|
*
|
|
* Each node may have a left or right sibling. When decending the spine,
|
|
* if a node contains only MIN_ENTRIES then we try and increase this to at
|
|
* least MIN_ENTRIES + 1. We do this in the following ways:
|
|
*
|
|
* [A] No siblings => this can only happen if the node is the root, in which
|
|
* case we copy the childs contents over the root.
|
|
*
|
|
* [B] No left sibling
|
|
* ==> rebalance(node, right sibling)
|
|
*
|
|
* [C] No right sibling
|
|
* ==> rebalance(left sibling, node)
|
|
*
|
|
* [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
|
|
* ==> delete node adding it's contents to left and right
|
|
*
|
|
* [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
|
|
* ==> rebalance(left, node, right)
|
|
*
|
|
* After these operations it's possible that the our original node no
|
|
* longer contains the desired sub tree. For this reason this rebalancing
|
|
* is performed on the children of the current node. This also avoids
|
|
* having a special case for the root.
|
|
*
|
|
* Once this rebalancing has occurred we can then step into the child node
|
|
* for internal nodes. Or delete the entry for leaf nodes.
|
|
*/
|
|
|
|
/*
|
|
* Some little utilities for moving node data around.
|
|
*/
|
|
static void node_shift(struct btree_node *n, int shift)
|
|
{
|
|
uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
|
|
uint32_t value_size = le32_to_cpu(n->header.value_size);
|
|
|
|
if (shift < 0) {
|
|
shift = -shift;
|
|
BUG_ON(shift > nr_entries);
|
|
BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
|
|
memmove(key_ptr(n, 0),
|
|
key_ptr(n, shift),
|
|
(nr_entries - shift) * sizeof(__le64));
|
|
memmove(value_ptr(n, 0),
|
|
value_ptr(n, shift),
|
|
(nr_entries - shift) * value_size);
|
|
} else {
|
|
BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
|
|
memmove(key_ptr(n, shift),
|
|
key_ptr(n, 0),
|
|
nr_entries * sizeof(__le64));
|
|
memmove(value_ptr(n, shift),
|
|
value_ptr(n, 0),
|
|
nr_entries * value_size);
|
|
}
|
|
}
|
|
|
|
static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
|
|
{
|
|
uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
|
|
uint32_t value_size = le32_to_cpu(left->header.value_size);
|
|
BUG_ON(value_size != le32_to_cpu(right->header.value_size));
|
|
|
|
if (shift < 0) {
|
|
shift = -shift;
|
|
BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
|
|
memcpy(key_ptr(left, nr_left),
|
|
key_ptr(right, 0),
|
|
shift * sizeof(__le64));
|
|
memcpy(value_ptr(left, nr_left),
|
|
value_ptr(right, 0),
|
|
shift * value_size);
|
|
} else {
|
|
BUG_ON(shift > le32_to_cpu(right->header.max_entries));
|
|
memcpy(key_ptr(right, 0),
|
|
key_ptr(left, nr_left - shift),
|
|
shift * sizeof(__le64));
|
|
memcpy(value_ptr(right, 0),
|
|
value_ptr(left, nr_left - shift),
|
|
shift * value_size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete a specific entry from a leaf node.
|
|
*/
|
|
static void delete_at(struct btree_node *n, unsigned index)
|
|
{
|
|
unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
|
|
unsigned nr_to_copy = nr_entries - (index + 1);
|
|
uint32_t value_size = le32_to_cpu(n->header.value_size);
|
|
BUG_ON(index >= nr_entries);
|
|
|
|
if (nr_to_copy) {
|
|
memmove(key_ptr(n, index),
|
|
key_ptr(n, index + 1),
|
|
nr_to_copy * sizeof(__le64));
|
|
|
|
memmove(value_ptr(n, index),
|
|
value_ptr(n, index + 1),
|
|
nr_to_copy * value_size);
|
|
}
|
|
|
|
n->header.nr_entries = cpu_to_le32(nr_entries - 1);
|
|
}
|
|
|
|
static unsigned merge_threshold(struct btree_node *n)
|
|
{
|
|
return le32_to_cpu(n->header.max_entries) / 3;
|
|
}
|
|
|
|
struct child {
|
|
unsigned index;
|
|
struct dm_block *block;
|
|
struct btree_node *n;
|
|
};
|
|
|
|
static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
|
|
struct btree_node *parent,
|
|
unsigned index, struct child *result)
|
|
{
|
|
int r, inc;
|
|
dm_block_t root;
|
|
|
|
result->index = index;
|
|
root = value64(parent, index);
|
|
|
|
r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
|
|
&result->block, &inc);
|
|
if (r)
|
|
return r;
|
|
|
|
result->n = dm_block_data(result->block);
|
|
|
|
if (inc)
|
|
inc_children(info->tm, result->n, vt);
|
|
|
|
*((__le64 *) value_ptr(parent, index)) =
|
|
cpu_to_le64(dm_block_location(result->block));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int exit_child(struct dm_btree_info *info, struct child *c)
|
|
{
|
|
return dm_tm_unlock(info->tm, c->block);
|
|
}
|
|
|
|
static void shift(struct btree_node *left, struct btree_node *right, int count)
|
|
{
|
|
uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
|
|
uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
|
|
uint32_t max_entries = le32_to_cpu(left->header.max_entries);
|
|
uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
|
|
|
|
BUG_ON(max_entries != r_max_entries);
|
|
BUG_ON(nr_left - count > max_entries);
|
|
BUG_ON(nr_right + count > max_entries);
|
|
|
|
if (!count)
|
|
return;
|
|
|
|
if (count > 0) {
|
|
node_shift(right, count);
|
|
node_copy(left, right, count);
|
|
} else {
|
|
node_copy(left, right, count);
|
|
node_shift(right, count);
|
|
}
|
|
|
|
left->header.nr_entries = cpu_to_le32(nr_left - count);
|
|
right->header.nr_entries = cpu_to_le32(nr_right + count);
|
|
}
|
|
|
|
static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
|
|
struct child *l, struct child *r)
|
|
{
|
|
struct btree_node *left = l->n;
|
|
struct btree_node *right = r->n;
|
|
uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
|
|
uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
|
|
unsigned threshold = 2 * merge_threshold(left) + 1;
|
|
|
|
if (nr_left + nr_right < threshold) {
|
|
/*
|
|
* Merge
|
|
*/
|
|
node_copy(left, right, -nr_right);
|
|
left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
|
|
delete_at(parent, r->index);
|
|
|
|
/*
|
|
* We need to decrement the right block, but not it's
|
|
* children, since they're still referenced by left.
|
|
*/
|
|
dm_tm_dec(info->tm, dm_block_location(r->block));
|
|
} else {
|
|
/*
|
|
* Rebalance.
|
|
*/
|
|
unsigned target_left = (nr_left + nr_right) / 2;
|
|
shift(left, right, nr_left - target_left);
|
|
*key_ptr(parent, r->index) = right->keys[0];
|
|
}
|
|
}
|
|
|
|
static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
|
|
struct dm_btree_value_type *vt, unsigned left_index)
|
|
{
|
|
int r;
|
|
struct btree_node *parent;
|
|
struct child left, right;
|
|
|
|
parent = dm_block_data(shadow_current(s));
|
|
|
|
r = init_child(info, vt, parent, left_index, &left);
|
|
if (r)
|
|
return r;
|
|
|
|
r = init_child(info, vt, parent, left_index + 1, &right);
|
|
if (r) {
|
|
exit_child(info, &left);
|
|
return r;
|
|
}
|
|
|
|
__rebalance2(info, parent, &left, &right);
|
|
|
|
r = exit_child(info, &left);
|
|
if (r) {
|
|
exit_child(info, &right);
|
|
return r;
|
|
}
|
|
|
|
return exit_child(info, &right);
|
|
}
|
|
|
|
/*
|
|
* We dump as many entries from center as possible into left, then the rest
|
|
* in right, then rebalance2. This wastes some cpu, but I want something
|
|
* simple atm.
|
|
*/
|
|
static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
|
|
struct child *l, struct child *c, struct child *r,
|
|
struct btree_node *left, struct btree_node *center, struct btree_node *right,
|
|
uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
|
|
{
|
|
uint32_t max_entries = le32_to_cpu(left->header.max_entries);
|
|
unsigned shift = min(max_entries - nr_left, nr_center);
|
|
|
|
BUG_ON(nr_left + shift > max_entries);
|
|
node_copy(left, center, -shift);
|
|
left->header.nr_entries = cpu_to_le32(nr_left + shift);
|
|
|
|
if (shift != nr_center) {
|
|
shift = nr_center - shift;
|
|
BUG_ON((nr_right + shift) > max_entries);
|
|
node_shift(right, shift);
|
|
node_copy(center, right, shift);
|
|
right->header.nr_entries = cpu_to_le32(nr_right + shift);
|
|
}
|
|
*key_ptr(parent, r->index) = right->keys[0];
|
|
|
|
delete_at(parent, c->index);
|
|
r->index--;
|
|
|
|
dm_tm_dec(info->tm, dm_block_location(c->block));
|
|
__rebalance2(info, parent, l, r);
|
|
}
|
|
|
|
/*
|
|
* Redistributes entries among 3 sibling nodes.
|
|
*/
|
|
static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
|
|
struct child *l, struct child *c, struct child *r,
|
|
struct btree_node *left, struct btree_node *center, struct btree_node *right,
|
|
uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
|
|
{
|
|
int s;
|
|
uint32_t max_entries = le32_to_cpu(left->header.max_entries);
|
|
unsigned target = (nr_left + nr_center + nr_right) / 3;
|
|
BUG_ON(target > max_entries);
|
|
|
|
if (nr_left < nr_right) {
|
|
s = nr_left - target;
|
|
|
|
if (s < 0 && nr_center < -s) {
|
|
/* not enough in central node */
|
|
shift(left, center, nr_center);
|
|
s = nr_center - target;
|
|
shift(left, right, s);
|
|
nr_right += s;
|
|
} else
|
|
shift(left, center, s);
|
|
|
|
shift(center, right, target - nr_right);
|
|
|
|
} else {
|
|
s = target - nr_right;
|
|
if (s > 0 && nr_center < s) {
|
|
/* not enough in central node */
|
|
shift(center, right, nr_center);
|
|
s = target - nr_center;
|
|
shift(left, right, s);
|
|
nr_left -= s;
|
|
} else
|
|
shift(center, right, s);
|
|
|
|
shift(left, center, nr_left - target);
|
|
}
|
|
|
|
*key_ptr(parent, c->index) = center->keys[0];
|
|
*key_ptr(parent, r->index) = right->keys[0];
|
|
}
|
|
|
|
static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
|
|
struct child *l, struct child *c, struct child *r)
|
|
{
|
|
struct btree_node *left = l->n;
|
|
struct btree_node *center = c->n;
|
|
struct btree_node *right = r->n;
|
|
|
|
uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
|
|
uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
|
|
uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
|
|
|
|
unsigned threshold = merge_threshold(left) * 4 + 1;
|
|
|
|
BUG_ON(left->header.max_entries != center->header.max_entries);
|
|
BUG_ON(center->header.max_entries != right->header.max_entries);
|
|
|
|
if ((nr_left + nr_center + nr_right) < threshold)
|
|
delete_center_node(info, parent, l, c, r, left, center, right,
|
|
nr_left, nr_center, nr_right);
|
|
else
|
|
redistribute3(info, parent, l, c, r, left, center, right,
|
|
nr_left, nr_center, nr_right);
|
|
}
|
|
|
|
static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
|
|
struct dm_btree_value_type *vt, unsigned left_index)
|
|
{
|
|
int r;
|
|
struct btree_node *parent = dm_block_data(shadow_current(s));
|
|
struct child left, center, right;
|
|
|
|
/*
|
|
* FIXME: fill out an array?
|
|
*/
|
|
r = init_child(info, vt, parent, left_index, &left);
|
|
if (r)
|
|
return r;
|
|
|
|
r = init_child(info, vt, parent, left_index + 1, ¢er);
|
|
if (r) {
|
|
exit_child(info, &left);
|
|
return r;
|
|
}
|
|
|
|
r = init_child(info, vt, parent, left_index + 2, &right);
|
|
if (r) {
|
|
exit_child(info, &left);
|
|
exit_child(info, ¢er);
|
|
return r;
|
|
}
|
|
|
|
__rebalance3(info, parent, &left, ¢er, &right);
|
|
|
|
r = exit_child(info, &left);
|
|
if (r) {
|
|
exit_child(info, ¢er);
|
|
exit_child(info, &right);
|
|
return r;
|
|
}
|
|
|
|
r = exit_child(info, ¢er);
|
|
if (r) {
|
|
exit_child(info, &right);
|
|
return r;
|
|
}
|
|
|
|
r = exit_child(info, &right);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_nr_entries(struct dm_transaction_manager *tm,
|
|
dm_block_t b, uint32_t *result)
|
|
{
|
|
int r;
|
|
struct dm_block *block;
|
|
struct btree_node *n;
|
|
|
|
r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
|
|
if (r)
|
|
return r;
|
|
|
|
n = dm_block_data(block);
|
|
*result = le32_to_cpu(n->header.nr_entries);
|
|
|
|
return dm_tm_unlock(tm, block);
|
|
}
|
|
|
|
static int rebalance_children(struct shadow_spine *s,
|
|
struct dm_btree_info *info,
|
|
struct dm_btree_value_type *vt, uint64_t key)
|
|
{
|
|
int i, r, has_left_sibling, has_right_sibling;
|
|
uint32_t child_entries;
|
|
struct btree_node *n;
|
|
|
|
n = dm_block_data(shadow_current(s));
|
|
|
|
if (le32_to_cpu(n->header.nr_entries) == 1) {
|
|
struct dm_block *child;
|
|
dm_block_t b = value64(n, 0);
|
|
|
|
r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
|
|
if (r)
|
|
return r;
|
|
|
|
memcpy(n, dm_block_data(child),
|
|
dm_bm_block_size(dm_tm_get_bm(info->tm)));
|
|
r = dm_tm_unlock(info->tm, child);
|
|
if (r)
|
|
return r;
|
|
|
|
dm_tm_dec(info->tm, dm_block_location(child));
|
|
return 0;
|
|
}
|
|
|
|
i = lower_bound(n, key);
|
|
if (i < 0)
|
|
return -ENODATA;
|
|
|
|
r = get_nr_entries(info->tm, value64(n, i), &child_entries);
|
|
if (r)
|
|
return r;
|
|
|
|
has_left_sibling = i > 0;
|
|
has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
|
|
|
|
if (!has_left_sibling)
|
|
r = rebalance2(s, info, vt, i);
|
|
|
|
else if (!has_right_sibling)
|
|
r = rebalance2(s, info, vt, i - 1);
|
|
|
|
else
|
|
r = rebalance3(s, info, vt, i - 1);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
|
|
{
|
|
int i = lower_bound(n, key);
|
|
|
|
if ((i < 0) ||
|
|
(i >= le32_to_cpu(n->header.nr_entries)) ||
|
|
(le64_to_cpu(n->keys[i]) != key))
|
|
return -ENODATA;
|
|
|
|
*index = i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Prepares for removal from one level of the hierarchy. The caller must
|
|
* call delete_at() to remove the entry at index.
|
|
*/
|
|
static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
|
|
struct dm_btree_value_type *vt, dm_block_t root,
|
|
uint64_t key, unsigned *index)
|
|
{
|
|
int i = *index, r;
|
|
struct btree_node *n;
|
|
|
|
for (;;) {
|
|
r = shadow_step(s, root, vt);
|
|
if (r < 0)
|
|
break;
|
|
|
|
/*
|
|
* We have to patch up the parent node, ugly, but I don't
|
|
* see a way to do this automatically as part of the spine
|
|
* op.
|
|
*/
|
|
if (shadow_has_parent(s)) {
|
|
__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
|
|
memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
|
|
&location, sizeof(__le64));
|
|
}
|
|
|
|
n = dm_block_data(shadow_current(s));
|
|
|
|
if (le32_to_cpu(n->header.flags) & LEAF_NODE)
|
|
return do_leaf(n, key, index);
|
|
|
|
r = rebalance_children(s, info, vt, key);
|
|
if (r)
|
|
break;
|
|
|
|
n = dm_block_data(shadow_current(s));
|
|
if (le32_to_cpu(n->header.flags) & LEAF_NODE)
|
|
return do_leaf(n, key, index);
|
|
|
|
i = lower_bound(n, key);
|
|
|
|
/*
|
|
* We know the key is present, or else
|
|
* rebalance_children would have returned
|
|
* -ENODATA
|
|
*/
|
|
root = value64(n, i);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static struct dm_btree_value_type le64_type = {
|
|
.context = NULL,
|
|
.size = sizeof(__le64),
|
|
.inc = NULL,
|
|
.dec = NULL,
|
|
.equal = NULL
|
|
};
|
|
|
|
int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
|
|
uint64_t *keys, dm_block_t *new_root)
|
|
{
|
|
unsigned level, last_level = info->levels - 1;
|
|
int index = 0, r = 0;
|
|
struct shadow_spine spine;
|
|
struct btree_node *n;
|
|
|
|
init_shadow_spine(&spine, info);
|
|
for (level = 0; level < info->levels; level++) {
|
|
r = remove_raw(&spine, info,
|
|
(level == last_level ?
|
|
&info->value_type : &le64_type),
|
|
root, keys[level], (unsigned *)&index);
|
|
if (r < 0)
|
|
break;
|
|
|
|
n = dm_block_data(shadow_current(&spine));
|
|
if (level != last_level) {
|
|
root = value64(n, index);
|
|
continue;
|
|
}
|
|
|
|
BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
|
|
|
|
if (info->value_type.dec)
|
|
info->value_type.dec(info->value_type.context,
|
|
value_ptr(n, index));
|
|
|
|
delete_at(n, index);
|
|
}
|
|
|
|
*new_root = shadow_root(&spine);
|
|
exit_shadow_spine(&spine);
|
|
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_btree_remove);
|