linux/drivers/media/platform/ti-vpe/cal.c
Laurent Pinchart 8af2741a17 media: ti-vpe: cal: Hardcode virtual channel to 0
Using the endpoint reg value to pass the CSI-2 source virtual channel ID
in DT is a hack, isn't documented in the DT bindings, and isn't used in
neither upstream DT nor TI official overlays. Hardcode the virtual
channel to 0 to simplify reworking the code, proper virtual channel
support will be implemented later.

Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Reviewed-by: Benoit Parrot <bparrot@ti.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-07-19 09:28:26 +02:00

2445 lines
63 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* TI CAL camera interface driver
*
* Copyright (c) 2015 Texas Instruments Inc.
* Benoit Parrot, <bparrot@ti.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioctl.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <media/v4l2-async.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-core.h>
#include <media/videobuf2-dma-contig.h>
#include "cal_regs.h"
#define CAL_MODULE_NAME "cal"
MODULE_DESCRIPTION("TI CAL driver");
MODULE_AUTHOR("Benoit Parrot, <bparrot@ti.com>");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.1.0");
static unsigned video_nr = -1;
module_param(video_nr, uint, 0644);
MODULE_PARM_DESC(video_nr, "videoX start number, -1 is autodetect");
static unsigned debug;
module_param(debug, uint, 0644);
MODULE_PARM_DESC(debug, "activates debug info");
#define cal_dbg(level, cal, fmt, arg...) \
do { \
if (debug >= (level)) \
dev_printk(KERN_DEBUG, &(cal)->pdev->dev, \
fmt, ##arg); \
} while (0)
#define cal_info(cal, fmt, arg...) \
dev_info(&(cal)->pdev->dev, fmt, ##arg)
#define cal_err(cal, fmt, arg...) \
dev_err(&(cal)->pdev->dev, fmt, ##arg)
#define ctx_dbg(level, ctx, fmt, arg...) \
cal_dbg(level, (ctx)->cal, "ctx%u: " fmt, (ctx)->index, ##arg)
#define ctx_info(ctx, fmt, arg...) \
cal_info((ctx)->cal, "ctx%u: " fmt, (ctx)->index, ##arg)
#define ctx_err(ctx, fmt, arg...) \
cal_err((ctx)->cal, "ctx%u: " fmt, (ctx)->index, ##arg)
#define phy_dbg(level, phy, fmt, arg...) \
cal_dbg(level, (phy)->cal, "phy%u: " fmt, (phy)->instance, ##arg)
#define phy_info(phy, fmt, arg...) \
cal_info((phy)->cal, "phy%u: " fmt, (phy)->instance, ##arg)
#define phy_err(phy, fmt, arg...) \
cal_err((phy)->cal, "phy%u: " fmt, (phy)->instance, ##arg)
#define CAL_NUM_CONTEXT 2
#define MAX_WIDTH_BYTES (8192 * 8)
#define MAX_HEIGHT_LINES 16383
/* ------------------------------------------------------------------
* Format Handling
* ------------------------------------------------------------------
*/
struct cal_fmt {
u32 fourcc;
u32 code;
/* Bits per pixel */
u8 bpp;
};
static const struct cal_fmt cal_formats[] = {
{
.fourcc = V4L2_PIX_FMT_YUYV,
.code = MEDIA_BUS_FMT_YUYV8_2X8,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.code = MEDIA_BUS_FMT_UYVY8_2X8,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_YVYU,
.code = MEDIA_BUS_FMT_YVYU8_2X8,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_VYUY,
.code = MEDIA_BUS_FMT_VYUY8_2X8,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
.code = MEDIA_BUS_FMT_RGB565_2X8_LE,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */
.code = MEDIA_BUS_FMT_RGB565_2X8_BE,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */
.code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */
.code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB24, /* rgb */
.code = MEDIA_BUS_FMT_RGB888_2X12_LE,
.bpp = 24,
}, {
.fourcc = V4L2_PIX_FMT_BGR24, /* bgr */
.code = MEDIA_BUS_FMT_RGB888_2X12_BE,
.bpp = 24,
}, {
.fourcc = V4L2_PIX_FMT_RGB32, /* argb */
.code = MEDIA_BUS_FMT_ARGB8888_1X32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR8,
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.code = MEDIA_BUS_FMT_SGBRG8_1X8,
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.code = MEDIA_BUS_FMT_SRGGB8_1X8,
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10,
.code = MEDIA_BUS_FMT_SBGGR10_1X10,
.bpp = 10,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10,
.code = MEDIA_BUS_FMT_SGBRG10_1X10,
.bpp = 10,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10,
.code = MEDIA_BUS_FMT_SGRBG10_1X10,
.bpp = 10,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10,
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.bpp = 10,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12,
.code = MEDIA_BUS_FMT_SBGGR12_1X12,
.bpp = 12,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12,
.code = MEDIA_BUS_FMT_SGBRG12_1X12,
.bpp = 12,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12,
.code = MEDIA_BUS_FMT_SGRBG12_1X12,
.bpp = 12,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12,
.code = MEDIA_BUS_FMT_SRGGB12_1X12,
.bpp = 12,
},
};
/* Print Four-character-code (FOURCC) */
static char *fourcc_to_str(u32 fmt)
{
static char code[5];
code[0] = (unsigned char)(fmt & 0xff);
code[1] = (unsigned char)((fmt >> 8) & 0xff);
code[2] = (unsigned char)((fmt >> 16) & 0xff);
code[3] = (unsigned char)((fmt >> 24) & 0xff);
code[4] = '\0';
return code;
}
/* ------------------------------------------------------------------
* Driver Structures
* ------------------------------------------------------------------
*/
/* buffer for one video frame */
struct cal_buffer {
/* common v4l buffer stuff -- must be first */
struct vb2_v4l2_buffer vb;
struct list_head list;
};
struct cal_dmaqueue {
struct list_head active;
};
/* CTRL_CORE_CAMERRX_CONTROL register field id */
enum cal_camerarx_field {
F_CTRLCLKEN,
F_CAMMODE,
F_LANEENABLE,
F_CSI_MODE,
F_MAX_FIELDS,
};
struct cal_camerarx_data {
struct {
unsigned int lsb;
unsigned int msb;
} fields[F_MAX_FIELDS];
unsigned int num_lanes;
};
struct cal_data {
const struct cal_camerarx_data *camerarx;
unsigned int num_csi2_phy;
unsigned int flags;
};
/*
* The Camera Adaptation Layer (CAL) module is paired with one or more complex
* I/O PHYs (CAMERARX). It contains multiple instances of CSI-2, processing and
* DMA contexts.
*
* The cal_dev structure represents the whole subsystem, including the CAL and
* the CAMERARX instances. Instances of struct cal_dev are named cal through the
* driver.
*
* The cal_camerarx structure represents one CAMERARX instance. Instances of
* cal_camerarx are named phy through the driver.
*
* The cal_ctx structure represents the combination of one CSI-2 context, one
* processing context and one DMA context. Instance of struct cal_ctx are named
* ctx through the driver.
*/
struct cal_camerarx {
void __iomem *base;
struct resource *res;
struct platform_device *pdev;
struct regmap_field *fields[F_MAX_FIELDS];
struct cal_dev *cal;
unsigned int instance;
struct v4l2_fwnode_endpoint endpoint;
struct v4l2_subdev *sensor;
unsigned int external_rate;
};
struct cal_dev {
struct clk *fclk;
int irq;
void __iomem *base;
struct resource *res;
struct platform_device *pdev;
const struct cal_data *data;
/* Control Module handle */
struct regmap *syscon_camerrx;
u32 syscon_camerrx_offset;
/* Camera Core Module handle */
struct cal_camerarx *phy[CAL_NUM_CSI2_PORTS];
struct cal_ctx *ctx[CAL_NUM_CONTEXT];
};
/*
* There is one cal_ctx structure for each camera core context.
*/
struct cal_ctx {
struct v4l2_device v4l2_dev;
struct v4l2_ctrl_handler ctrl_handler;
struct video_device vdev;
struct v4l2_async_notifier notifier;
struct cal_dev *cal;
struct cal_camerarx *phy;
/* v4l2_ioctl mutex */
struct mutex mutex;
/* v4l2 buffers lock */
spinlock_t slock;
struct cal_dmaqueue vidq;
/* video capture */
const struct cal_fmt *fmt;
/* Used to store current pixel format */
struct v4l2_format v_fmt;
/* Used to store current mbus frame format */
struct v4l2_mbus_framefmt m_fmt;
/* Current subdev enumerated format */
const struct cal_fmt *active_fmt[ARRAY_SIZE(cal_formats)];
unsigned int num_active_fmt;
unsigned int sequence;
struct vb2_queue vb_vidq;
unsigned int index;
unsigned int cport;
/* Pointer pointing to current v4l2_buffer */
struct cal_buffer *cur_frm;
/* Pointer pointing to next v4l2_buffer */
struct cal_buffer *next_frm;
bool dma_act;
};
static inline struct cal_ctx *notifier_to_ctx(struct v4l2_async_notifier *n)
{
return container_of(n, struct cal_ctx, notifier);
}
/* ------------------------------------------------------------------
* Platform Data
* ------------------------------------------------------------------
*/
static const struct cal_camerarx_data dra72x_cal_camerarx[] = {
{
.fields = {
[F_CTRLCLKEN] = { 10, 10 },
[F_CAMMODE] = { 11, 12 },
[F_LANEENABLE] = { 13, 16 },
[F_CSI_MODE] = { 17, 17 },
},
.num_lanes = 4,
},
{
.fields = {
[F_CTRLCLKEN] = { 0, 0 },
[F_CAMMODE] = { 1, 2 },
[F_LANEENABLE] = { 3, 4 },
[F_CSI_MODE] = { 5, 5 },
},
.num_lanes = 2,
},
};
static const struct cal_data dra72x_cal_data = {
.camerarx = dra72x_cal_camerarx,
.num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx),
};
static const struct cal_data dra72x_es1_cal_data = {
.camerarx = dra72x_cal_camerarx,
.num_csi2_phy = ARRAY_SIZE(dra72x_cal_camerarx),
.flags = DRA72_CAL_PRE_ES2_LDO_DISABLE,
};
static const struct cal_camerarx_data dra76x_cal_csi_phy[] = {
{
.fields = {
[F_CTRLCLKEN] = { 8, 8 },
[F_CAMMODE] = { 9, 10 },
[F_CSI_MODE] = { 11, 11 },
[F_LANEENABLE] = { 27, 31 },
},
.num_lanes = 5,
},
{
.fields = {
[F_CTRLCLKEN] = { 0, 0 },
[F_CAMMODE] = { 1, 2 },
[F_CSI_MODE] = { 3, 3 },
[F_LANEENABLE] = { 24, 26 },
},
.num_lanes = 3,
},
};
static const struct cal_data dra76x_cal_data = {
.camerarx = dra76x_cal_csi_phy,
.num_csi2_phy = ARRAY_SIZE(dra76x_cal_csi_phy),
};
static const struct cal_camerarx_data am654_cal_csi_phy[] = {
{
.fields = {
[F_CTRLCLKEN] = { 15, 15 },
[F_CAMMODE] = { 24, 25 },
[F_LANEENABLE] = { 0, 4 },
},
.num_lanes = 5,
},
};
static const struct cal_data am654_cal_data = {
.camerarx = am654_cal_csi_phy,
.num_csi2_phy = ARRAY_SIZE(am654_cal_csi_phy),
};
/* ------------------------------------------------------------------
* I/O Register Accessors
* ------------------------------------------------------------------
*/
#define reg_read(dev, offset) ioread32(dev->base + offset)
#define reg_write(dev, offset, val) iowrite32(val, dev->base + offset)
static inline u32 reg_read_field(struct cal_dev *cal, u32 offset, u32 mask)
{
return FIELD_GET(mask, reg_read(cal, offset));
}
static inline void reg_write_field(struct cal_dev *cal, u32 offset, u32 value,
u32 mask)
{
u32 val = reg_read(cal, offset);
val &= ~mask;
val |= FIELD_PREP(mask, value);
reg_write(cal, offset, val);
}
static inline void set_field(u32 *valp, u32 field, u32 mask)
{
u32 val = *valp;
val &= ~mask;
val |= (field << __ffs(mask)) & mask;
*valp = val;
}
static void cal_quickdump_regs(struct cal_dev *cal)
{
cal_info(cal, "CAL Registers @ 0x%pa:\n", &cal->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)cal->base,
resource_size(cal->res), false);
if (cal->ctx[0]) {
cal_info(cal, "CSI2 Core 0 Registers @ %pa:\n",
&cal->ctx[0]->phy->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)cal->ctx[0]->phy->base,
resource_size(cal->ctx[0]->phy->res),
false);
}
if (cal->ctx[1]) {
cal_info(cal, "CSI2 Core 1 Registers @ %pa:\n",
&cal->ctx[1]->phy->res->start);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
(__force const void *)cal->ctx[1]->phy->base,
resource_size(cal->ctx[1]->phy->res),
false);
}
}
/* ------------------------------------------------------------------
* CAMERARX Management
* ------------------------------------------------------------------
*/
static u32 cal_camerarx_max_lanes(struct cal_camerarx *phy)
{
return phy->cal->data->camerarx[phy->instance].num_lanes;
}
static void cal_camerarx_enable(struct cal_camerarx *phy)
{
u32 max_lanes;
regmap_field_write(phy->fields[F_CAMMODE], 0);
/* Always enable all lanes at the phy control level */
max_lanes = (1 << cal_camerarx_max_lanes(phy)) - 1;
regmap_field_write(phy->fields[F_LANEENABLE], max_lanes);
/* F_CSI_MODE is not present on every architecture */
if (phy->fields[F_CSI_MODE])
regmap_field_write(phy->fields[F_CSI_MODE], 1);
regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
}
static void cal_camerarx_disable(struct cal_camerarx *phy)
{
regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
}
/*
* Errata i913: CSI2 LDO Needs to be disabled when module is powered on
*
* Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
* LDOs on the device are disabled if CSI-2 module is powered on
* (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
* | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
* current draw on the module supply in active mode.
*
* Errata does not apply when CSI-2 module is powered off
* (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
*
* SW Workaround:
* Set the following register bits to disable the LDO,
* which is essentially CSI2 REG10 bit 6:
*
* Core 0: 0x4845 B828 = 0x0000 0040
* Core 1: 0x4845 B928 = 0x0000 0040
*/
static void cal_camerarx_i913_errata(struct cal_camerarx *phy)
{
u32 reg10 = reg_read(phy, CAL_CSI2_PHY_REG10);
set_field(&reg10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
reg_write(phy, CAL_CSI2_PHY_REG10, reg10);
}
/*
* Enable the expected IRQ sources
*/
static void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
{
u32 val;
const u32 cio_err_mask =
CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
/* Enable CIO error irqs */
reg_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
CAL_HL_IRQ_CIO_MASK(phy->instance));
reg_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
cio_err_mask);
/* Always enable OCPO error */
reg_write(phy->cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_OCPO_ERR_MASK);
/* Enable IRQ_WDMA_END 0/1 */
val = 0;
set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
reg_write(phy->cal, CAL_HL_IRQENABLE_SET(1), val);
/* Enable IRQ_WDMA_START 0/1 */
val = 0;
set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
reg_write(phy->cal, CAL_HL_IRQENABLE_SET(2), val);
/* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
reg_write(phy->cal, CAL_CSI2_VC_IRQENABLE(0), 0xFF000000);
}
static void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
{
u32 val;
/* Disable CIO error irqs */
reg_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
CAL_HL_IRQ_CIO_MASK(phy->instance));
reg_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
0);
/* Disable IRQ_WDMA_END 0/1 */
val = 0;
set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
reg_write(phy->cal, CAL_HL_IRQENABLE_CLR(1), val);
/* Disable IRQ_WDMA_START 0/1 */
val = 0;
set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
reg_write(phy->cal, CAL_HL_IRQENABLE_CLR(2), val);
/* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
reg_write(phy->cal, CAL_CSI2_VC_IRQENABLE(0), 0);
}
static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
{
u32 target_state;
unsigned int i;
target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
reg_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
for (i = 0; i < 10; i++) {
u32 current_state;
current_state = reg_read_field(phy->cal,
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
if (current_state == target_state)
break;
usleep_range(1000, 1100);
}
if (i == 10)
phy_err(phy, "Failed to power %s complexio\n",
enable ? "up" : "down");
}
/*
* TCLK values are OK at their reset values
*/
#define TCLK_TERM 0
#define TCLK_MISS 1
#define TCLK_SETTLE 14
static void cal_camerarx_config(struct cal_camerarx *phy,
const struct cal_fmt *fmt)
{
unsigned int reg0, reg1;
unsigned int ths_term, ths_settle;
unsigned int csi2_ddrclk_khz;
struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
&phy->endpoint.bus.mipi_csi2;
u32 num_lanes = mipi_csi2->num_data_lanes;
/* DPHY timing configuration */
/* CSI-2 is DDR and we only count used lanes. */
csi2_ddrclk_khz = phy->external_rate / 1000
/ (2 * num_lanes) * fmt->bpp;
phy_dbg(1, phy, "csi2_ddrclk_khz: %d\n", csi2_ddrclk_khz);
/* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
ths_term = 20 * csi2_ddrclk_khz / 1000000;
phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
/* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
ths_settle = (105 * csi2_ddrclk_khz / 1000000) + 4;
phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
reg0 = reg_read(phy, CAL_CSI2_PHY_REG0);
set_field(&reg0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
set_field(&reg0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
set_field(&reg0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
reg_write(phy, CAL_CSI2_PHY_REG0, reg0);
reg1 = reg_read(phy, CAL_CSI2_PHY_REG1);
set_field(&reg1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
set_field(&reg1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
set_field(&reg1, TCLK_MISS, CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
set_field(&reg1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
reg_write(phy, CAL_CSI2_PHY_REG1, reg1);
}
static void cal_camerarx_init(struct cal_camerarx *phy,
const struct cal_fmt *fmt)
{
u32 val;
u32 sscounter;
/* Steps
* 1. Configure D-PHY mode and enable required lanes
* 2. Reset complex IO - Wait for completion of reset
* Note if the external sensor is not sending byte clock,
* the reset will timeout
* 3 Program Stop States
* A. Program THS_TERM, THS_SETTLE, etc... Timings parameters
* in terms of DDR clock periods
* B. Enable stop state transition timeouts
* 4.Force FORCERXMODE
* D. Enable pull down using pad control
* E. Power up PHY
* F. Wait for power up completion
* G. Wait for all enabled lane to reach stop state
* H. Disable pull down using pad control
*/
/* 1. Configure D-PHY mode and enable required lanes */
cal_camerarx_enable(phy);
/* 2. Reset complex IO - Do not wait for reset completion */
reg_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
phy->instance,
reg_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
/* Dummy read to allow SCP reset to complete */
reg_read(phy, CAL_CSI2_PHY_REG0);
/* 3.A. Program Phy Timing Parameters */
cal_camerarx_config(phy, fmt);
/* 3.B. Program Stop States */
/*
* The stop-state-counter is based on fclk cycles, and we always use
* the x16 and x4 settings, so stop-state-timeout =
* fclk-cycle * 16 * 4 * counter.
*
* Stop-state-timeout must be more than 100us as per CSI2 spec, so we
* calculate a timeout that's 100us (rounding up).
*/
sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4);
val = reg_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
set_field(&val, sscounter, CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
reg_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
phy->instance,
reg_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
/* 4. Force FORCERXMODE */
reg_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
phy->instance,
reg_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
/* E. Power up the PHY using the complex IO */
cal_camerarx_power(phy, true);
}
static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(750);
while (time_before(jiffies, timeout)) {
if (reg_read_field(phy->cal,
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
break;
usleep_range(500, 5000);
}
if (reg_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
phy_err(phy, "Timeout waiting for Complex IO reset done\n");
}
static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(750);
while (time_before(jiffies, timeout)) {
if (reg_read_field(phy->cal,
CAL_CSI2_TIMING(phy->instance),
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
break;
usleep_range(500, 5000);
}
if (reg_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
phy_err(phy, "Timeout waiting for stop state\n");
}
static void cal_camerarx_wait_ready(struct cal_camerarx *phy)
{
/* Steps
* 2. Wait for completion of reset
* Note if the external sensor is not sending byte clock,
* the reset will timeout
* 4.Force FORCERXMODE
* G. Wait for all enabled lane to reach stop state
* H. Disable pull down using pad control
*/
/* 2. Wait for reset completion */
cal_camerarx_wait_reset(phy);
/* 4. G. Wait for all enabled lane to reach stop state */
cal_camerarx_wait_stop_state(phy);
phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x (Bit(31,28) should be set!)\n",
phy->instance, reg_read(phy, CAL_CSI2_PHY_REG1));
}
static void cal_camerarx_deinit(struct cal_camerarx *phy)
{
unsigned int i;
cal_camerarx_power(phy, false);
/* Assert Comple IO Reset */
reg_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
/* Wait for power down completion */
for (i = 0; i < 10; i++) {
if (reg_read_field(phy->cal,
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETONGOING)
break;
usleep_range(1000, 1100);
}
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset (%d) %s\n",
phy->instance,
reg_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)), i,
(i >= 10) ? "(timeout)" : "");
/* Disable the phy */
cal_camerarx_disable(phy);
}
static void cal_camerarx_lane_config(struct cal_camerarx *phy)
{
u32 val = reg_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
&phy->endpoint.bus.mipi_csi2;
int lane;
set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
/*
* Every lane are one nibble apart starting with the
* clock followed by the data lanes so shift masks by 4.
*/
lane_mask <<= 4;
polarity_mask <<= 4;
set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
set_field(&val, mipi_csi2->lane_polarities[lane + 1],
polarity_mask);
}
reg_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
phy->instance, val);
}
static void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
{
reg_write(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), BIT(3));
reg_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
}
static void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
{
reg_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
}
static int cal_camerarx_get_external_info(struct cal_camerarx *phy)
{
struct v4l2_ctrl *ctrl;
if (!phy->sensor)
return -ENODEV;
ctrl = v4l2_ctrl_find(phy->sensor->ctrl_handler, V4L2_CID_PIXEL_RATE);
if (!ctrl) {
phy_err(phy, "no pixel rate control in subdev: %s\n",
phy->sensor->name);
return -EPIPE;
}
phy->external_rate = v4l2_ctrl_g_ctrl_int64(ctrl);
phy_dbg(3, phy, "sensor Pixel Rate: %u\n", phy->external_rate);
return 0;
}
static int cal_camerarx_regmap_init(struct cal_dev *cal,
struct cal_camerarx *phy)
{
const struct cal_camerarx_data *phy_data;
unsigned int i;
if (!cal->data)
return -EINVAL;
phy_data = &cal->data->camerarx[phy->instance];
for (i = 0; i < F_MAX_FIELDS; i++) {
struct reg_field field = {
.reg = cal->syscon_camerrx_offset,
.lsb = phy_data->fields[i].lsb,
.msb = phy_data->fields[i].msb,
};
/*
* Here we update the reg offset with the
* value found in DT
*/
phy->fields[i] = devm_regmap_field_alloc(&cal->pdev->dev,
cal->syscon_camerrx,
field);
if (IS_ERR(phy->fields[i])) {
cal_err(cal, "Unable to allocate regmap fields\n");
return PTR_ERR(phy->fields[i]);
}
}
return 0;
}
static struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
unsigned int instance)
{
struct platform_device *pdev = cal->pdev;
struct cal_camerarx *phy;
int ret;
phy = devm_kzalloc(&pdev->dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return ERR_PTR(-ENOMEM);
phy->cal = cal;
phy->instance = instance;
phy->external_rate = 192000000;
phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
(instance == 0) ?
"cal_rx_core0" :
"cal_rx_core1");
phy->base = devm_ioremap_resource(&pdev->dev, phy->res);
if (IS_ERR(phy->base)) {
cal_err(cal, "failed to ioremap\n");
return ERR_CAST(phy->base);
}
cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
phy->res->name, &phy->res->start, &phy->res->end);
ret = cal_camerarx_regmap_init(cal, phy);
if (ret)
return ERR_PTR(ret);
return phy;
}
static int cal_camerarx_init_regmap(struct cal_dev *cal)
{
struct device_node *np = cal->pdev->dev.of_node;
struct regmap_config config = { };
struct regmap *syscon;
struct resource *res;
unsigned int offset;
void __iomem *base;
syscon = syscon_regmap_lookup_by_phandle_args(np, "ti,camerrx-control",
1, &offset);
if (!IS_ERR(syscon)) {
cal->syscon_camerrx = syscon;
cal->syscon_camerrx_offset = offset;
return 0;
}
dev_warn(&cal->pdev->dev, "failed to get ti,camerrx-control: %ld\n",
PTR_ERR(syscon));
/*
* Backward DTS compatibility. If syscon entry is not present then
* check if the camerrx_control resource is present.
*/
res = platform_get_resource_byname(cal->pdev, IORESOURCE_MEM,
"camerrx_control");
base = devm_ioremap_resource(&cal->pdev->dev, res);
if (IS_ERR(base)) {
cal_err(cal, "failed to ioremap camerrx_control\n");
return PTR_ERR(base);
}
cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
res->name, &res->start, &res->end);
config.reg_bits = 32;
config.reg_stride = 4;
config.val_bits = 32;
config.max_register = resource_size(res) - 4;
syscon = regmap_init_mmio(NULL, base, &config);
if (IS_ERR(syscon)) {
pr_err("regmap init failed\n");
return PTR_ERR(syscon);
}
/*
* In this case the base already point to the direct CM register so no
* need for an offset.
*/
cal->syscon_camerrx = syscon;
cal->syscon_camerrx_offset = 0;
return 0;
}
/* ------------------------------------------------------------------
* Context Management
* ------------------------------------------------------------------
*/
static void cal_ctx_csi2_config(struct cal_ctx *ctx)
{
u32 val;
val = reg_read(ctx->cal, CAL_CSI2_CTX0(ctx->index));
set_field(&val, ctx->cport, CAL_CSI2_CTX_CPORT_MASK);
/*
* DT type: MIPI CSI-2 Specs
* 0x1: All - DT filter is disabled
* 0x24: RGB888 1 pixel = 3 bytes
* 0x2B: RAW10 4 pixels = 5 bytes
* 0x2A: RAW8 1 pixel = 1 byte
* 0x1E: YUV422 2 pixels = 4 bytes
*/
set_field(&val, 0x1, CAL_CSI2_CTX_DT_MASK);
set_field(&val, 0, CAL_CSI2_CTX_VC_MASK);
set_field(&val, ctx->v_fmt.fmt.pix.height, CAL_CSI2_CTX_LINES_MASK);
set_field(&val, CAL_CSI2_CTX_ATT_PIX, CAL_CSI2_CTX_ATT_MASK);
set_field(&val, CAL_CSI2_CTX_PACK_MODE_LINE,
CAL_CSI2_CTX_PACK_MODE_MASK);
reg_write(ctx->cal, CAL_CSI2_CTX0(ctx->index), val);
ctx_dbg(3, ctx, "CAL_CSI2_CTX0(%d) = 0x%08x\n", ctx->index,
reg_read(ctx->cal, CAL_CSI2_CTX0(ctx->index)));
}
static void cal_ctx_pix_proc_config(struct cal_ctx *ctx)
{
u32 val, extract, pack;
switch (ctx->fmt->bpp) {
case 8:
extract = CAL_PIX_PROC_EXTRACT_B8;
pack = CAL_PIX_PROC_PACK_B8;
break;
case 10:
extract = CAL_PIX_PROC_EXTRACT_B10_MIPI;
pack = CAL_PIX_PROC_PACK_B16;
break;
case 12:
extract = CAL_PIX_PROC_EXTRACT_B12_MIPI;
pack = CAL_PIX_PROC_PACK_B16;
break;
case 16:
extract = CAL_PIX_PROC_EXTRACT_B16_LE;
pack = CAL_PIX_PROC_PACK_B16;
break;
default:
/*
* If you see this warning then it means that you added
* some new entry in the cal_formats[] array with a different
* bit per pixel values then the one supported below.
* Either add support for the new bpp value below or adjust
* the new entry to use one of the value below.
*
* Instead of failing here just use 8 bpp as a default.
*/
dev_warn_once(&ctx->cal->pdev->dev,
"%s:%d:%s: bpp:%d unsupported! Overwritten with 8.\n",
__FILE__, __LINE__, __func__, ctx->fmt->bpp);
extract = CAL_PIX_PROC_EXTRACT_B8;
pack = CAL_PIX_PROC_PACK_B8;
break;
}
val = reg_read(ctx->cal, CAL_PIX_PROC(ctx->index));
set_field(&val, extract, CAL_PIX_PROC_EXTRACT_MASK);
set_field(&val, CAL_PIX_PROC_DPCMD_BYPASS, CAL_PIX_PROC_DPCMD_MASK);
set_field(&val, CAL_PIX_PROC_DPCME_BYPASS, CAL_PIX_PROC_DPCME_MASK);
set_field(&val, pack, CAL_PIX_PROC_PACK_MASK);
set_field(&val, ctx->cport, CAL_PIX_PROC_CPORT_MASK);
set_field(&val, 1, CAL_PIX_PROC_EN_MASK);
reg_write(ctx->cal, CAL_PIX_PROC(ctx->index), val);
ctx_dbg(3, ctx, "CAL_PIX_PROC(%d) = 0x%08x\n", ctx->index,
reg_read(ctx->cal, CAL_PIX_PROC(ctx->index)));
}
static void cal_ctx_wr_dma_config(struct cal_ctx *ctx,
unsigned int width, unsigned int height)
{
u32 val;
val = reg_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->index));
set_field(&val, ctx->cport, CAL_WR_DMA_CTRL_CPORT_MASK);
set_field(&val, height, CAL_WR_DMA_CTRL_YSIZE_MASK);
set_field(&val, CAL_WR_DMA_CTRL_DTAG_PIX_DAT,
CAL_WR_DMA_CTRL_DTAG_MASK);
set_field(&val, CAL_WR_DMA_CTRL_MODE_CONST,
CAL_WR_DMA_CTRL_MODE_MASK);
set_field(&val, CAL_WR_DMA_CTRL_PATTERN_LINEAR,
CAL_WR_DMA_CTRL_PATTERN_MASK);
set_field(&val, 1, CAL_WR_DMA_CTRL_STALL_RD_MASK);
reg_write(ctx->cal, CAL_WR_DMA_CTRL(ctx->index), val);
ctx_dbg(3, ctx, "CAL_WR_DMA_CTRL(%d) = 0x%08x\n", ctx->index,
reg_read(ctx->cal, CAL_WR_DMA_CTRL(ctx->index)));
/*
* width/16 not sure but giving it a whirl.
* zero does not work right
*/
reg_write_field(ctx->cal,
CAL_WR_DMA_OFST(ctx->index),
(width / 16),
CAL_WR_DMA_OFST_MASK);
ctx_dbg(3, ctx, "CAL_WR_DMA_OFST(%d) = 0x%08x\n", ctx->index,
reg_read(ctx->cal, CAL_WR_DMA_OFST(ctx->index)));
val = reg_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->index));
/* 64 bit word means no skipping */
set_field(&val, 0, CAL_WR_DMA_XSIZE_XSKIP_MASK);
/*
* (width*8)/64 this should be size of an entire line
* in 64bit word but 0 means all data until the end
* is detected automagically
*/
set_field(&val, (width / 8), CAL_WR_DMA_XSIZE_MASK);
reg_write(ctx->cal, CAL_WR_DMA_XSIZE(ctx->index), val);
ctx_dbg(3, ctx, "CAL_WR_DMA_XSIZE(%d) = 0x%08x\n", ctx->index,
reg_read(ctx->cal, CAL_WR_DMA_XSIZE(ctx->index)));
val = reg_read(ctx->cal, CAL_CTRL);
set_field(&val, CAL_CTRL_BURSTSIZE_BURST128, CAL_CTRL_BURSTSIZE_MASK);
set_field(&val, 0xF, CAL_CTRL_TAGCNT_MASK);
set_field(&val, CAL_CTRL_POSTED_WRITES_NONPOSTED,
CAL_CTRL_POSTED_WRITES_MASK);
set_field(&val, 0xFF, CAL_CTRL_MFLAGL_MASK);
set_field(&val, 0xFF, CAL_CTRL_MFLAGH_MASK);
reg_write(ctx->cal, CAL_CTRL, val);
ctx_dbg(3, ctx, "CAL_CTRL = 0x%08x\n", reg_read(ctx->cal, CAL_CTRL));
}
static void cal_ctx_wr_dma_addr(struct cal_ctx *ctx, unsigned int dmaaddr)
{
reg_write(ctx->cal, CAL_WR_DMA_ADDR(ctx->index), dmaaddr);
}
/* ------------------------------------------------------------------
* IRQ Handling
* ------------------------------------------------------------------
*/
static inline void cal_schedule_next_buffer(struct cal_ctx *ctx)
{
struct cal_dmaqueue *dma_q = &ctx->vidq;
struct cal_buffer *buf;
unsigned long addr;
buf = list_entry(dma_q->active.next, struct cal_buffer, list);
ctx->next_frm = buf;
list_del(&buf->list);
addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
cal_ctx_wr_dma_addr(ctx, addr);
}
static inline void cal_process_buffer_complete(struct cal_ctx *ctx)
{
ctx->cur_frm->vb.vb2_buf.timestamp = ktime_get_ns();
ctx->cur_frm->vb.field = ctx->m_fmt.field;
ctx->cur_frm->vb.sequence = ctx->sequence++;
vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_DONE);
ctx->cur_frm = ctx->next_frm;
}
#define isvcirqset(irq, vc, ff) (irq & \
(CAL_CSI2_VC_IRQENABLE_ ##ff ##_IRQ_##vc ##_MASK))
#define isportirqset(irq, port) (irq & CAL_HL_IRQ_MASK(port))
static irqreturn_t cal_irq(int irq_cal, void *data)
{
struct cal_dev *cal = data;
struct cal_ctx *ctx;
struct cal_dmaqueue *dma_q;
u32 status;
status = reg_read(cal, CAL_HL_IRQSTATUS(0));
if (status) {
unsigned int i;
reg_write(cal, CAL_HL_IRQSTATUS(0), status);
if (status & CAL_HL_IRQ_OCPO_ERR_MASK)
dev_err_ratelimited(&cal->pdev->dev, "OCPO ERROR\n");
for (i = 0; i < 2; ++i) {
if (status & CAL_HL_IRQ_CIO_MASK(i)) {
u32 cio_stat = reg_read(cal,
CAL_CSI2_COMPLEXIO_IRQSTATUS(i));
dev_err_ratelimited(&cal->pdev->dev,
"CIO%u error: %#08x\n", i, cio_stat);
reg_write(cal, CAL_CSI2_COMPLEXIO_IRQSTATUS(i),
cio_stat);
}
}
}
/* Check which DMA just finished */
status = reg_read(cal, CAL_HL_IRQSTATUS(1));
if (status) {
unsigned int i;
/* Clear Interrupt status */
reg_write(cal, CAL_HL_IRQSTATUS(1), status);
for (i = 0; i < 2; ++i) {
if (isportirqset(status, i)) {
ctx = cal->ctx[i];
spin_lock(&ctx->slock);
ctx->dma_act = false;
if (ctx->cur_frm != ctx->next_frm)
cal_process_buffer_complete(ctx);
spin_unlock(&ctx->slock);
}
}
}
/* Check which DMA just started */
status = reg_read(cal, CAL_HL_IRQSTATUS(2));
if (status) {
unsigned int i;
/* Clear Interrupt status */
reg_write(cal, CAL_HL_IRQSTATUS(2), status);
for (i = 0; i < 2; ++i) {
if (isportirqset(status, i)) {
ctx = cal->ctx[i];
dma_q = &ctx->vidq;
spin_lock(&ctx->slock);
ctx->dma_act = true;
if (!list_empty(&dma_q->active) &&
ctx->cur_frm == ctx->next_frm)
cal_schedule_next_buffer(ctx);
spin_unlock(&ctx->slock);
}
}
}
return IRQ_HANDLED;
}
/* ------------------------------------------------------------------
* V4L2 Video IOCTLs
* ------------------------------------------------------------------
*/
static const struct cal_fmt *find_format_by_pix(struct cal_ctx *ctx,
u32 pixelformat)
{
const struct cal_fmt *fmt;
unsigned int k;
for (k = 0; k < ctx->num_active_fmt; k++) {
fmt = ctx->active_fmt[k];
if (fmt->fourcc == pixelformat)
return fmt;
}
return NULL;
}
static const struct cal_fmt *find_format_by_code(struct cal_ctx *ctx,
u32 code)
{
const struct cal_fmt *fmt;
unsigned int k;
for (k = 0; k < ctx->num_active_fmt; k++) {
fmt = ctx->active_fmt[k];
if (fmt->code == code)
return fmt;
}
return NULL;
}
static int cal_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
struct cal_ctx *ctx = video_drvdata(file);
strscpy(cap->driver, CAL_MODULE_NAME, sizeof(cap->driver));
strscpy(cap->card, CAL_MODULE_NAME, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", dev_name(&ctx->cal->pdev->dev));
return 0;
}
static int cal_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct cal_ctx *ctx = video_drvdata(file);
const struct cal_fmt *fmt;
if (f->index >= ctx->num_active_fmt)
return -EINVAL;
fmt = ctx->active_fmt[f->index];
f->pixelformat = fmt->fourcc;
f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
return 0;
}
static int __subdev_get_format(struct cal_ctx *ctx,
struct v4l2_mbus_framefmt *fmt)
{
struct v4l2_subdev_format sd_fmt;
struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format;
int ret;
sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
sd_fmt.pad = 0;
ret = v4l2_subdev_call(ctx->phy->sensor, pad, get_fmt, NULL, &sd_fmt);
if (ret)
return ret;
*fmt = *mbus_fmt;
ctx_dbg(1, ctx, "%s %dx%d code:%04X\n", __func__,
fmt->width, fmt->height, fmt->code);
return 0;
}
static int __subdev_set_format(struct cal_ctx *ctx,
struct v4l2_mbus_framefmt *fmt)
{
struct v4l2_subdev_format sd_fmt;
struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format;
int ret;
sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
sd_fmt.pad = 0;
*mbus_fmt = *fmt;
ret = v4l2_subdev_call(ctx->phy->sensor, pad, set_fmt, NULL, &sd_fmt);
if (ret)
return ret;
ctx_dbg(1, ctx, "%s %dx%d code:%04X\n", __func__,
fmt->width, fmt->height, fmt->code);
return 0;
}
static int cal_calc_format_size(struct cal_ctx *ctx,
const struct cal_fmt *fmt,
struct v4l2_format *f)
{
u32 bpl, max_width;
if (!fmt) {
ctx_dbg(3, ctx, "No cal_fmt provided!\n");
return -EINVAL;
}
/*
* Maximum width is bound by the DMA max width in bytes.
* We need to recalculate the actual maxi width depending on the
* number of bytes per pixels required.
*/
max_width = MAX_WIDTH_BYTES / (ALIGN(fmt->bpp, 8) >> 3);
v4l_bound_align_image(&f->fmt.pix.width, 48, max_width, 2,
&f->fmt.pix.height, 32, MAX_HEIGHT_LINES, 0, 0);
bpl = (f->fmt.pix.width * ALIGN(fmt->bpp, 8)) >> 3;
f->fmt.pix.bytesperline = ALIGN(bpl, 16);
f->fmt.pix.sizeimage = f->fmt.pix.height *
f->fmt.pix.bytesperline;
ctx_dbg(3, ctx, "%s: fourcc: %s size: %dx%d bpl:%d img_size:%d\n",
__func__, fourcc_to_str(f->fmt.pix.pixelformat),
f->fmt.pix.width, f->fmt.pix.height,
f->fmt.pix.bytesperline, f->fmt.pix.sizeimage);
return 0;
}
static int cal_g_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cal_ctx *ctx = video_drvdata(file);
*f = ctx->v_fmt;
return 0;
}
static int cal_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cal_ctx *ctx = video_drvdata(file);
const struct cal_fmt *fmt;
struct v4l2_subdev_frame_size_enum fse;
int ret, found;
fmt = find_format_by_pix(ctx, f->fmt.pix.pixelformat);
if (!fmt) {
ctx_dbg(3, ctx, "Fourcc format (0x%08x) not found.\n",
f->fmt.pix.pixelformat);
/* Just get the first one enumerated */
fmt = ctx->active_fmt[0];
f->fmt.pix.pixelformat = fmt->fourcc;
}
f->fmt.pix.field = ctx->v_fmt.fmt.pix.field;
/* check for/find a valid width/height */
ret = 0;
found = false;
fse.pad = 0;
fse.code = fmt->code;
fse.which = V4L2_SUBDEV_FORMAT_ACTIVE;
for (fse.index = 0; ; fse.index++) {
ret = v4l2_subdev_call(ctx->phy->sensor, pad, enum_frame_size,
NULL, &fse);
if (ret)
break;
if ((f->fmt.pix.width == fse.max_width) &&
(f->fmt.pix.height == fse.max_height)) {
found = true;
break;
} else if ((f->fmt.pix.width >= fse.min_width) &&
(f->fmt.pix.width <= fse.max_width) &&
(f->fmt.pix.height >= fse.min_height) &&
(f->fmt.pix.height <= fse.max_height)) {
found = true;
break;
}
}
if (!found) {
/* use existing values as default */
f->fmt.pix.width = ctx->v_fmt.fmt.pix.width;
f->fmt.pix.height = ctx->v_fmt.fmt.pix.height;
}
/*
* Use current colorspace for now, it will get
* updated properly during s_fmt
*/
f->fmt.pix.colorspace = ctx->v_fmt.fmt.pix.colorspace;
return cal_calc_format_size(ctx, fmt, f);
}
static int cal_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cal_ctx *ctx = video_drvdata(file);
struct vb2_queue *q = &ctx->vb_vidq;
const struct cal_fmt *fmt;
struct v4l2_mbus_framefmt mbus_fmt;
int ret;
if (vb2_is_busy(q)) {
ctx_dbg(3, ctx, "%s device busy\n", __func__);
return -EBUSY;
}
ret = cal_try_fmt_vid_cap(file, priv, f);
if (ret < 0)
return ret;
fmt = find_format_by_pix(ctx, f->fmt.pix.pixelformat);
v4l2_fill_mbus_format(&mbus_fmt, &f->fmt.pix, fmt->code);
ret = __subdev_set_format(ctx, &mbus_fmt);
if (ret)
return ret;
/* Just double check nothing has gone wrong */
if (mbus_fmt.code != fmt->code) {
ctx_dbg(3, ctx,
"%s subdev changed format on us, this should not happen\n",
__func__);
return -EINVAL;
}
v4l2_fill_pix_format(&ctx->v_fmt.fmt.pix, &mbus_fmt);
ctx->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ctx->v_fmt.fmt.pix.pixelformat = fmt->fourcc;
cal_calc_format_size(ctx, fmt, &ctx->v_fmt);
ctx->fmt = fmt;
ctx->m_fmt = mbus_fmt;
*f = ctx->v_fmt;
return 0;
}
static int cal_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
struct cal_ctx *ctx = video_drvdata(file);
const struct cal_fmt *fmt;
struct v4l2_subdev_frame_size_enum fse;
int ret;
/* check for valid format */
fmt = find_format_by_pix(ctx, fsize->pixel_format);
if (!fmt) {
ctx_dbg(3, ctx, "Invalid pixel code: %x\n",
fsize->pixel_format);
return -EINVAL;
}
fse.index = fsize->index;
fse.pad = 0;
fse.code = fmt->code;
fse.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(ctx->phy->sensor, pad, enum_frame_size, NULL,
&fse);
if (ret)
return ret;
ctx_dbg(1, ctx, "%s: index: %d code: %x W:[%d,%d] H:[%d,%d]\n",
__func__, fse.index, fse.code, fse.min_width, fse.max_width,
fse.min_height, fse.max_height);
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = fse.max_width;
fsize->discrete.height = fse.max_height;
return 0;
}
static int cal_enum_input(struct file *file, void *priv,
struct v4l2_input *inp)
{
if (inp->index > 0)
return -EINVAL;
inp->type = V4L2_INPUT_TYPE_CAMERA;
sprintf(inp->name, "Camera %u", inp->index);
return 0;
}
static int cal_g_input(struct file *file, void *priv, unsigned int *i)
{
*i = 0;
return 0;
}
static int cal_s_input(struct file *file, void *priv, unsigned int i)
{
return i > 0 ? -EINVAL : 0;
}
/* timeperframe is arbitrary and continuous */
static int cal_enum_frameintervals(struct file *file, void *priv,
struct v4l2_frmivalenum *fival)
{
struct cal_ctx *ctx = video_drvdata(file);
const struct cal_fmt *fmt;
struct v4l2_subdev_frame_interval_enum fie = {
.index = fival->index,
.width = fival->width,
.height = fival->height,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
int ret;
fmt = find_format_by_pix(ctx, fival->pixel_format);
if (!fmt)
return -EINVAL;
fie.code = fmt->code;
ret = v4l2_subdev_call(ctx->phy->sensor, pad, enum_frame_interval,
NULL, &fie);
if (ret)
return ret;
fival->type = V4L2_FRMIVAL_TYPE_DISCRETE;
fival->discrete = fie.interval;
return 0;
}
static const struct v4l2_file_operations cal_fops = {
.owner = THIS_MODULE,
.open = v4l2_fh_open,
.release = vb2_fop_release,
.read = vb2_fop_read,
.poll = vb2_fop_poll,
.unlocked_ioctl = video_ioctl2, /* V4L2 ioctl handler */
.mmap = vb2_fop_mmap,
};
static const struct v4l2_ioctl_ops cal_ioctl_ops = {
.vidioc_querycap = cal_querycap,
.vidioc_enum_fmt_vid_cap = cal_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = cal_g_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = cal_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = cal_s_fmt_vid_cap,
.vidioc_enum_framesizes = cal_enum_framesizes,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_enum_input = cal_enum_input,
.vidioc_g_input = cal_g_input,
.vidioc_s_input = cal_s_input,
.vidioc_enum_frameintervals = cal_enum_frameintervals,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_log_status = v4l2_ctrl_log_status,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
/* ------------------------------------------------------------------
* videobuf2 Operations
* ------------------------------------------------------------------
*/
static int cal_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers, unsigned int *nplanes,
unsigned int sizes[], struct device *alloc_devs[])
{
struct cal_ctx *ctx = vb2_get_drv_priv(vq);
unsigned size = ctx->v_fmt.fmt.pix.sizeimage;
if (vq->num_buffers + *nbuffers < 3)
*nbuffers = 3 - vq->num_buffers;
if (*nplanes) {
if (sizes[0] < size)
return -EINVAL;
size = sizes[0];
}
*nplanes = 1;
sizes[0] = size;
ctx_dbg(3, ctx, "nbuffers=%d, size=%d\n", *nbuffers, sizes[0]);
return 0;
}
static int cal_buffer_prepare(struct vb2_buffer *vb)
{
struct cal_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct cal_buffer *buf = container_of(vb, struct cal_buffer,
vb.vb2_buf);
unsigned long size;
if (WARN_ON(!ctx->fmt))
return -EINVAL;
size = ctx->v_fmt.fmt.pix.sizeimage;
if (vb2_plane_size(vb, 0) < size) {
ctx_err(ctx,
"data will not fit into plane (%lu < %lu)\n",
vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size);
return 0;
}
static void cal_buffer_queue(struct vb2_buffer *vb)
{
struct cal_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
struct cal_buffer *buf = container_of(vb, struct cal_buffer,
vb.vb2_buf);
struct cal_dmaqueue *vidq = &ctx->vidq;
unsigned long flags;
/* recheck locking */
spin_lock_irqsave(&ctx->slock, flags);
list_add_tail(&buf->list, &vidq->active);
spin_unlock_irqrestore(&ctx->slock, flags);
}
static int cal_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct cal_ctx *ctx = vb2_get_drv_priv(vq);
struct cal_dmaqueue *dma_q = &ctx->vidq;
struct cal_buffer *buf, *tmp;
unsigned long addr;
unsigned long flags;
int ret;
spin_lock_irqsave(&ctx->slock, flags);
if (list_empty(&dma_q->active)) {
spin_unlock_irqrestore(&ctx->slock, flags);
ctx_dbg(3, ctx, "buffer queue is empty\n");
return -EIO;
}
buf = list_entry(dma_q->active.next, struct cal_buffer, list);
ctx->cur_frm = buf;
ctx->next_frm = buf;
list_del(&buf->list);
spin_unlock_irqrestore(&ctx->slock, flags);
addr = vb2_dma_contig_plane_dma_addr(&ctx->cur_frm->vb.vb2_buf, 0);
ctx->sequence = 0;
ret = cal_camerarx_get_external_info(ctx->phy);
if (ret < 0)
goto err;
ret = v4l2_subdev_call(ctx->phy->sensor, core, s_power, 1);
if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
ctx_err(ctx, "power on failed in subdev\n");
goto err;
}
pm_runtime_get_sync(&ctx->cal->pdev->dev);
cal_ctx_csi2_config(ctx);
cal_ctx_pix_proc_config(ctx);
cal_ctx_wr_dma_config(ctx, ctx->v_fmt.fmt.pix.bytesperline,
ctx->v_fmt.fmt.pix.height);
cal_camerarx_lane_config(ctx->phy);
cal_camerarx_enable_irqs(ctx->phy);
cal_camerarx_init(ctx->phy, ctx->fmt);
ret = v4l2_subdev_call(ctx->phy->sensor, video, s_stream, 1);
if (ret) {
v4l2_subdev_call(ctx->phy->sensor, core, s_power, 0);
ctx_err(ctx, "stream on failed in subdev\n");
pm_runtime_put_sync(&ctx->cal->pdev->dev);
goto err;
}
cal_camerarx_wait_ready(ctx->phy);
cal_ctx_wr_dma_addr(ctx, addr);
cal_camerarx_ppi_enable(ctx->phy);
if (debug >= 4)
cal_quickdump_regs(ctx->cal);
return 0;
err:
spin_lock_irqsave(&ctx->slock, flags);
vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
ctx->cur_frm = NULL;
ctx->next_frm = NULL;
list_for_each_entry_safe(buf, tmp, &dma_q->active, list) {
list_del(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED);
}
spin_unlock_irqrestore(&ctx->slock, flags);
return ret;
}
static void cal_stop_streaming(struct vb2_queue *vq)
{
struct cal_ctx *ctx = vb2_get_drv_priv(vq);
struct cal_dmaqueue *dma_q = &ctx->vidq;
struct cal_buffer *buf, *tmp;
unsigned long timeout;
unsigned long flags;
int ret;
bool dma_act;
cal_camerarx_ppi_disable(ctx->phy);
/* wait for stream and dma to finish */
dma_act = true;
timeout = jiffies + msecs_to_jiffies(500);
while (dma_act && time_before(jiffies, timeout)) {
msleep(50);
spin_lock_irqsave(&ctx->slock, flags);
dma_act = ctx->dma_act;
spin_unlock_irqrestore(&ctx->slock, flags);
}
if (dma_act)
ctx_err(ctx, "failed to disable dma cleanly\n");
cal_camerarx_disable_irqs(ctx->phy);
cal_camerarx_deinit(ctx->phy);
if (v4l2_subdev_call(ctx->phy->sensor, video, s_stream, 0))
ctx_err(ctx, "stream off failed in subdev\n");
ret = v4l2_subdev_call(ctx->phy->sensor, core, s_power, 0);
if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
ctx_err(ctx, "power off failed in subdev\n");
/* Release all active buffers */
spin_lock_irqsave(&ctx->slock, flags);
list_for_each_entry_safe(buf, tmp, &dma_q->active, list) {
list_del(&buf->list);
vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
}
if (ctx->cur_frm == ctx->next_frm) {
vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR);
} else {
vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR);
vb2_buffer_done(&ctx->next_frm->vb.vb2_buf,
VB2_BUF_STATE_ERROR);
}
ctx->cur_frm = NULL;
ctx->next_frm = NULL;
spin_unlock_irqrestore(&ctx->slock, flags);
pm_runtime_put_sync(&ctx->cal->pdev->dev);
}
static const struct vb2_ops cal_video_qops = {
.queue_setup = cal_queue_setup,
.buf_prepare = cal_buffer_prepare,
.buf_queue = cal_buffer_queue,
.start_streaming = cal_start_streaming,
.stop_streaming = cal_stop_streaming,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
};
/* ------------------------------------------------------------------
* Initialization and module stuff
* ------------------------------------------------------------------
*/
static const struct video_device cal_videodev = {
.name = CAL_MODULE_NAME,
.fops = &cal_fops,
.ioctl_ops = &cal_ioctl_ops,
.minor = -1,
.release = video_device_release_empty,
.device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING |
V4L2_CAP_READWRITE,
};
static int cal_complete_ctx(struct cal_ctx *ctx)
{
struct video_device *vfd;
struct vb2_queue *q;
int ret;
/* initialize locks */
spin_lock_init(&ctx->slock);
mutex_init(&ctx->mutex);
/* initialize queue */
q = &ctx->vb_vidq;
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ;
q->drv_priv = ctx;
q->buf_struct_size = sizeof(struct cal_buffer);
q->ops = &cal_video_qops;
q->mem_ops = &vb2_dma_contig_memops;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &ctx->mutex;
q->min_buffers_needed = 3;
q->dev = &ctx->cal->pdev->dev;
ret = vb2_queue_init(q);
if (ret)
return ret;
/* init video dma queues */
INIT_LIST_HEAD(&ctx->vidq.active);
vfd = &ctx->vdev;
*vfd = cal_videodev;
vfd->v4l2_dev = &ctx->v4l2_dev;
vfd->queue = q;
/*
* Provide a mutex to v4l2 core. It will be used to protect
* all fops and v4l2 ioctls.
*/
vfd->lock = &ctx->mutex;
video_set_drvdata(vfd, ctx);
ret = video_register_device(vfd, VFL_TYPE_VIDEO, video_nr);
if (ret < 0)
return ret;
ctx_info(ctx, "V4L2 device registered as %s\n",
video_device_node_name(vfd));
return 0;
}
static int cal_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct cal_ctx *ctx = notifier_to_ctx(notifier);
struct v4l2_subdev_mbus_code_enum mbus_code;
unsigned int i, j, k;
int ret = 0;
if (ctx->phy->sensor) {
ctx_info(ctx, "Rejecting subdev %s (Already set!!)",
subdev->name);
return 0;
}
ctx->phy->sensor = subdev;
ctx_dbg(1, ctx, "Using sensor %s for capture\n", subdev->name);
/* Enumerate sub device formats and enable all matching local formats */
ctx->num_active_fmt = 0;
for (j = 0, i = 0; ret != -EINVAL; ++j) {
memset(&mbus_code, 0, sizeof(mbus_code));
mbus_code.index = j;
mbus_code.which = V4L2_SUBDEV_FORMAT_ACTIVE;
ret = v4l2_subdev_call(subdev, pad, enum_mbus_code,
NULL, &mbus_code);
if (ret)
continue;
ctx_dbg(2, ctx,
"subdev %s: code: %04x idx: %u\n",
subdev->name, mbus_code.code, j);
for (k = 0; k < ARRAY_SIZE(cal_formats); k++) {
const struct cal_fmt *fmt = &cal_formats[k];
if (mbus_code.code == fmt->code) {
ctx->active_fmt[i] = fmt;
ctx_dbg(2, ctx,
"matched fourcc: %s: code: %04x idx: %u\n",
fourcc_to_str(fmt->fourcc),
fmt->code, i);
ctx->num_active_fmt = ++i;
}
}
}
if (i == 0) {
ctx_err(ctx, "No suitable format reported by subdev %s\n",
subdev->name);
return -EINVAL;
}
cal_complete_ctx(ctx);
return 0;
}
static int cal_async_complete(struct v4l2_async_notifier *notifier)
{
struct cal_ctx *ctx = notifier_to_ctx(notifier);
const struct cal_fmt *fmt;
struct v4l2_mbus_framefmt mbus_fmt;
int ret;
ret = __subdev_get_format(ctx, &mbus_fmt);
if (ret)
return ret;
fmt = find_format_by_code(ctx, mbus_fmt.code);
if (!fmt) {
ctx_dbg(3, ctx, "mbus code format (0x%08x) not found.\n",
mbus_fmt.code);
return -EINVAL;
}
/* Save current subdev format */
v4l2_fill_pix_format(&ctx->v_fmt.fmt.pix, &mbus_fmt);
ctx->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
ctx->v_fmt.fmt.pix.pixelformat = fmt->fourcc;
cal_calc_format_size(ctx, fmt, &ctx->v_fmt);
ctx->fmt = fmt;
ctx->m_fmt = mbus_fmt;
return 0;
}
static const struct v4l2_async_notifier_operations cal_async_ops = {
.bound = cal_async_bound,
.complete = cal_async_complete,
};
static struct device_node *
of_get_next_port(const struct device_node *parent,
struct device_node *prev)
{
struct device_node *port;
if (!parent)
return NULL;
if (!prev) {
struct device_node *ports;
/*
* It's the first call, we have to find a port subnode
* within this node or within an optional 'ports' node.
*/
ports = of_get_child_by_name(parent, "ports");
if (ports)
parent = ports;
port = of_get_child_by_name(parent, "port");
/* release the 'ports' node */
of_node_put(ports);
} else {
struct device_node *ports;
ports = of_get_parent(prev);
if (!ports)
return NULL;
do {
port = of_get_next_child(ports, prev);
if (!port) {
of_node_put(ports);
return NULL;
}
prev = port;
} while (!of_node_name_eq(port, "port"));
of_node_put(ports);
}
return port;
}
static struct device_node *
of_get_next_endpoint(const struct device_node *parent,
struct device_node *prev)
{
struct device_node *ep;
if (!parent)
return NULL;
do {
ep = of_get_next_child(parent, prev);
if (!ep)
return NULL;
prev = ep;
} while (!of_node_name_eq(ep, "endpoint"));
return ep;
}
static int of_cal_create_instance(struct cal_ctx *ctx, int inst)
{
struct platform_device *pdev = ctx->cal->pdev;
struct device_node *ep_node, *port, *sensor_node, *parent;
struct v4l2_fwnode_endpoint *endpoint;
struct v4l2_async_subdev *asd;
u32 regval = 0;
int ret, index, lane;
bool found_port = false;
parent = pdev->dev.of_node;
endpoint = &ctx->phy->endpoint;
ep_node = NULL;
port = NULL;
sensor_node = NULL;
ret = -EINVAL;
ctx_dbg(3, ctx, "Scanning Port node for csi2 port: %d\n", inst);
for (index = 0; index < CAL_NUM_CSI2_PORTS; index++) {
port = of_get_next_port(parent, port);
if (!port) {
ctx_dbg(1, ctx, "No port node found for csi2 port:%d\n",
index);
goto cleanup_exit;
}
/* Match the slice number with <REG> */
of_property_read_u32(port, "reg", &regval);
ctx_dbg(3, ctx, "port:%d inst:%d <reg>:%d\n",
index, inst, regval);
if ((regval == inst) && (index == inst)) {
found_port = true;
break;
}
}
if (!found_port) {
ctx_dbg(1, ctx, "No port node matches csi2 port:%d\n",
inst);
goto cleanup_exit;
}
ctx_dbg(3, ctx, "Scanning sub-device for csi2 port: %d\n",
inst);
ep_node = of_get_next_endpoint(port, ep_node);
if (!ep_node) {
ctx_dbg(3, ctx, "can't get next endpoint\n");
goto cleanup_exit;
}
sensor_node = of_graph_get_remote_port_parent(ep_node);
if (!sensor_node) {
ctx_dbg(3, ctx, "can't get remote parent\n");
goto cleanup_exit;
}
v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
if (endpoint->bus_type != V4L2_MBUS_CSI2_DPHY) {
ctx_err(ctx, "Port:%d sub-device %pOFn is not a CSI2 device\n",
inst, sensor_node);
goto cleanup_exit;
}
ctx_dbg(3, ctx, "Port:%d v4l2-endpoint: CSI2\n", inst);
ctx_dbg(3, ctx, "flags=0x%08x\n", endpoint->bus.mipi_csi2.flags);
ctx_dbg(3, ctx, "clock_lane=%d\n", endpoint->bus.mipi_csi2.clock_lane);
ctx_dbg(3, ctx, "num_data_lanes=%d\n",
endpoint->bus.mipi_csi2.num_data_lanes);
ctx_dbg(3, ctx, "data_lanes= <\n");
for (lane = 0; lane < endpoint->bus.mipi_csi2.num_data_lanes; lane++)
ctx_dbg(3, ctx, "\t%d\n",
endpoint->bus.mipi_csi2.data_lanes[lane]);
ctx_dbg(3, ctx, "\t>\n");
ctx_dbg(1, ctx, "Port: %d found sub-device %pOFn\n",
inst, sensor_node);
v4l2_async_notifier_init(&ctx->notifier);
asd = kzalloc(sizeof(*asd), GFP_KERNEL);
if (!asd)
goto cleanup_exit;
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
asd->match.fwnode = of_fwnode_handle(sensor_node);
ret = v4l2_async_notifier_add_subdev(&ctx->notifier, asd);
if (ret) {
ctx_err(ctx, "Error adding asd\n");
kfree(asd);
goto cleanup_exit;
}
ctx->notifier.ops = &cal_async_ops;
ret = v4l2_async_notifier_register(&ctx->v4l2_dev,
&ctx->notifier);
if (ret) {
ctx_err(ctx, "Error registering async notifier\n");
v4l2_async_notifier_cleanup(&ctx->notifier);
ret = -EINVAL;
}
/*
* On success we need to keep reference on sensor_node, or
* if notifier_cleanup was called above, sensor_node was
* already put.
*/
sensor_node = NULL;
cleanup_exit:
of_node_put(sensor_node);
of_node_put(ep_node);
of_node_put(port);
return ret;
}
static struct cal_ctx *cal_ctx_create(struct cal_dev *cal, int inst)
{
struct cal_ctx *ctx;
struct v4l2_ctrl_handler *hdl;
int ret;
ctx = devm_kzalloc(&cal->pdev->dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return NULL;
/* save the cal_dev * for future ref */
ctx->cal = cal;
snprintf(ctx->v4l2_dev.name, sizeof(ctx->v4l2_dev.name),
"%s-%03d", CAL_MODULE_NAME, inst);
ret = v4l2_device_register(&cal->pdev->dev, &ctx->v4l2_dev);
if (ret)
goto err_exit;
hdl = &ctx->ctrl_handler;
ret = v4l2_ctrl_handler_init(hdl, 11);
if (ret) {
ctx_err(ctx, "Failed to init ctrl handler\n");
goto unreg_dev;
}
ctx->v4l2_dev.ctrl_handler = hdl;
/* Make sure Camera Core H/W register area is available */
ctx->phy = cal->phy[inst];
/* Store the instance id */
ctx->index = inst;
ctx->cport = inst;
ret = of_cal_create_instance(ctx, inst);
if (ret) {
ret = -EINVAL;
goto free_hdl;
}
return ctx;
free_hdl:
v4l2_ctrl_handler_free(hdl);
unreg_dev:
v4l2_device_unregister(&ctx->v4l2_dev);
err_exit:
return NULL;
}
static const struct of_device_id cal_of_match[] = {
{
.compatible = "ti,dra72-cal",
.data = (void *)&dra72x_cal_data,
},
{
.compatible = "ti,dra72-pre-es2-cal",
.data = (void *)&dra72x_es1_cal_data,
},
{
.compatible = "ti,dra76-cal",
.data = (void *)&dra76x_cal_data,
},
{
.compatible = "ti,am654-cal",
.data = (void *)&am654_cal_data,
},
{},
};
MODULE_DEVICE_TABLE(of, cal_of_match);
/*
* Get Revision and HW info
*/
static void cal_get_hwinfo(struct cal_dev *cal)
{
u32 revision;
u32 hwinfo;
revision = reg_read(cal, CAL_HL_REVISION);
cal_dbg(3, cal, "CAL_HL_REVISION = 0x%08x (expecting 0x40000200)\n",
revision);
hwinfo = reg_read(cal, CAL_HL_HWINFO);
cal_dbg(3, cal, "CAL_HL_HWINFO = 0x%08x (expecting 0xA3C90469)\n",
hwinfo);
}
static int cal_probe(struct platform_device *pdev)
{
struct cal_dev *cal;
struct cal_ctx *ctx;
unsigned int i;
int ret;
int irq;
cal = devm_kzalloc(&pdev->dev, sizeof(*cal), GFP_KERNEL);
if (!cal)
return -ENOMEM;
cal->data = of_device_get_match_data(&pdev->dev);
if (!cal->data) {
dev_err(&pdev->dev, "Could not get feature data based on compatible version\n");
return -ENODEV;
}
cal->pdev = pdev;
platform_set_drvdata(pdev, cal);
/* Acquire resources: clocks, CAMERARX regmap, I/O memory and IRQ. */
cal->fclk = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(cal->fclk)) {
dev_err(&pdev->dev, "cannot get CAL fclk\n");
return PTR_ERR(cal->fclk);
}
ret = cal_camerarx_init_regmap(cal);
if (ret < 0)
return ret;
cal->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"cal_top");
cal->base = devm_ioremap_resource(&pdev->dev, cal->res);
if (IS_ERR(cal->base))
return PTR_ERR(cal->base);
cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
cal->res->name, &cal->res->start, &cal->res->end);
irq = platform_get_irq(pdev, 0);
cal_dbg(1, cal, "got irq# %d\n", irq);
ret = devm_request_irq(&pdev->dev, irq, cal_irq, 0, CAL_MODULE_NAME,
cal);
if (ret)
return ret;
/* Create CAMERARX PHYs. */
for (i = 0; i < cal->data->num_csi2_phy; ++i) {
cal->phy[i] = cal_camerarx_create(cal, i);
if (IS_ERR(cal->phy[i]))
return PTR_ERR(cal->phy[i]);
}
/* Create contexts. */
for (i = 0; i < cal->data->num_csi2_phy; ++i)
cal->ctx[i] = cal_ctx_create(cal, i);
if (!cal->ctx[0] && !cal->ctx[1]) {
cal_err(cal, "Neither port is configured, no point in staying up\n");
return -ENODEV;
}
vb2_dma_contig_set_max_seg_size(&pdev->dev, DMA_BIT_MASK(32));
/* Read the revision and hardware info to verify hardware access. */
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret)
goto runtime_disable;
cal_get_hwinfo(cal);
pm_runtime_put_sync(&pdev->dev);
return 0;
runtime_disable:
vb2_dma_contig_clear_max_seg_size(&pdev->dev);
pm_runtime_disable(&pdev->dev);
for (i = 0; i < CAL_NUM_CONTEXT; i++) {
ctx = cal->ctx[i];
if (ctx) {
v4l2_async_notifier_unregister(&ctx->notifier);
v4l2_async_notifier_cleanup(&ctx->notifier);
v4l2_ctrl_handler_free(&ctx->ctrl_handler);
v4l2_device_unregister(&ctx->v4l2_dev);
}
}
return ret;
}
static int cal_remove(struct platform_device *pdev)
{
struct cal_dev *cal = platform_get_drvdata(pdev);
struct cal_ctx *ctx;
unsigned int i;
cal_dbg(1, cal, "Removing %s\n", CAL_MODULE_NAME);
pm_runtime_get_sync(&pdev->dev);
for (i = 0; i < CAL_NUM_CONTEXT; i++) {
ctx = cal->ctx[i];
if (ctx) {
ctx_dbg(1, ctx, "unregistering %s\n",
video_device_node_name(&ctx->vdev));
cal_camerarx_disable(ctx->phy);
v4l2_async_notifier_unregister(&ctx->notifier);
v4l2_async_notifier_cleanup(&ctx->notifier);
v4l2_ctrl_handler_free(&ctx->ctrl_handler);
v4l2_device_unregister(&ctx->v4l2_dev);
video_unregister_device(&ctx->vdev);
}
}
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
vb2_dma_contig_clear_max_seg_size(&pdev->dev);
return 0;
}
static int cal_runtime_resume(struct device *dev)
{
struct cal_dev *cal = dev_get_drvdata(dev);
if (cal->data->flags & DRA72_CAL_PRE_ES2_LDO_DISABLE) {
/*
* Apply errata on both port everytime we (re-)enable
* the clock
*/
cal_camerarx_i913_errata(cal->phy[0]);
cal_camerarx_i913_errata(cal->phy[1]);
}
return 0;
}
static const struct dev_pm_ops cal_pm_ops = {
.runtime_resume = cal_runtime_resume,
};
static struct platform_driver cal_pdrv = {
.probe = cal_probe,
.remove = cal_remove,
.driver = {
.name = CAL_MODULE_NAME,
.pm = &cal_pm_ops,
.of_match_table = cal_of_match,
},
};
module_platform_driver(cal_pdrv);