mirror of
https://github.com/torvalds/linux.git
synced 2024-12-22 10:56:40 +00:00
225b9596cb
A static key is used to select between SBI and Sstc timer usage in
riscv_clock_next_event(), but currently the direction is resolved
after cpuhp_setup_state() is called (which sets the next event). The
first event will therefore fall through the sbi_set_timer() path; this
breaks Sstc-only systems. So, apply the jump patching before first
use.
Fixes: 9f7a8ff639
("RISC-V: Prefer sstc extension if available")
Signed-off-by: Matt Evans <mev@rivosinc.com>
Reviewed-by: Palmer Dabbelt <palmer@rivosinc.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/CDDAB2D0-264E-42F3-8E31-BA210BEB8EC1@rivosinc.com
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
211 lines
5.5 KiB
C
211 lines
5.5 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2012 Regents of the University of California
|
|
* Copyright (C) 2017 SiFive
|
|
*
|
|
* All RISC-V systems have a timer attached to every hart. These timers can
|
|
* either be read from the "time" and "timeh" CSRs, and can use the SBI to
|
|
* setup events, or directly accessed using MMIO registers.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "riscv-timer: " fmt
|
|
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/of_irq.h>
|
|
#include <clocksource/timer-riscv.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/hwcap.h>
|
|
#include <asm/sbi.h>
|
|
#include <asm/timex.h>
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(riscv_sstc_available);
|
|
static bool riscv_timer_cannot_wake_cpu;
|
|
|
|
static int riscv_clock_next_event(unsigned long delta,
|
|
struct clock_event_device *ce)
|
|
{
|
|
u64 next_tval = get_cycles64() + delta;
|
|
|
|
csr_set(CSR_IE, IE_TIE);
|
|
if (static_branch_likely(&riscv_sstc_available)) {
|
|
#if defined(CONFIG_32BIT)
|
|
csr_write(CSR_STIMECMP, next_tval & 0xFFFFFFFF);
|
|
csr_write(CSR_STIMECMPH, next_tval >> 32);
|
|
#else
|
|
csr_write(CSR_STIMECMP, next_tval);
|
|
#endif
|
|
} else
|
|
sbi_set_timer(next_tval);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int riscv_clock_event_irq;
|
|
static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
|
|
.name = "riscv_timer_clockevent",
|
|
.features = CLOCK_EVT_FEAT_ONESHOT,
|
|
.rating = 100,
|
|
.set_next_event = riscv_clock_next_event,
|
|
};
|
|
|
|
/*
|
|
* It is guaranteed that all the timers across all the harts are synchronized
|
|
* within one tick of each other, so while this could technically go
|
|
* backwards when hopping between CPUs, practically it won't happen.
|
|
*/
|
|
static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
|
|
{
|
|
return get_cycles64();
|
|
}
|
|
|
|
static u64 notrace riscv_sched_clock(void)
|
|
{
|
|
return get_cycles64();
|
|
}
|
|
|
|
static struct clocksource riscv_clocksource = {
|
|
.name = "riscv_clocksource",
|
|
.rating = 400,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
.read = riscv_clocksource_rdtime,
|
|
#if IS_ENABLED(CONFIG_GENERIC_GETTIMEOFDAY)
|
|
.vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER,
|
|
#else
|
|
.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
|
|
#endif
|
|
};
|
|
|
|
static int riscv_timer_starting_cpu(unsigned int cpu)
|
|
{
|
|
struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);
|
|
|
|
ce->cpumask = cpumask_of(cpu);
|
|
ce->irq = riscv_clock_event_irq;
|
|
if (riscv_timer_cannot_wake_cpu)
|
|
ce->features |= CLOCK_EVT_FEAT_C3STOP;
|
|
clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);
|
|
|
|
enable_percpu_irq(riscv_clock_event_irq,
|
|
irq_get_trigger_type(riscv_clock_event_irq));
|
|
return 0;
|
|
}
|
|
|
|
static int riscv_timer_dying_cpu(unsigned int cpu)
|
|
{
|
|
disable_percpu_irq(riscv_clock_event_irq);
|
|
return 0;
|
|
}
|
|
|
|
void riscv_cs_get_mult_shift(u32 *mult, u32 *shift)
|
|
{
|
|
*mult = riscv_clocksource.mult;
|
|
*shift = riscv_clocksource.shift;
|
|
}
|
|
EXPORT_SYMBOL_GPL(riscv_cs_get_mult_shift);
|
|
|
|
/* called directly from the low-level interrupt handler */
|
|
static irqreturn_t riscv_timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);
|
|
|
|
csr_clear(CSR_IE, IE_TIE);
|
|
evdev->event_handler(evdev);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int __init riscv_timer_init_dt(struct device_node *n)
|
|
{
|
|
int cpuid, error;
|
|
unsigned long hartid;
|
|
struct device_node *child;
|
|
struct irq_domain *domain;
|
|
|
|
error = riscv_of_processor_hartid(n, &hartid);
|
|
if (error < 0) {
|
|
pr_warn("Not valid hartid for node [%pOF] error = [%lu]\n",
|
|
n, hartid);
|
|
return error;
|
|
}
|
|
|
|
cpuid = riscv_hartid_to_cpuid(hartid);
|
|
if (cpuid < 0) {
|
|
pr_warn("Invalid cpuid for hartid [%lu]\n", hartid);
|
|
return cpuid;
|
|
}
|
|
|
|
if (cpuid != smp_processor_id())
|
|
return 0;
|
|
|
|
child = of_find_compatible_node(NULL, NULL, "riscv,timer");
|
|
if (child) {
|
|
riscv_timer_cannot_wake_cpu = of_property_read_bool(child,
|
|
"riscv,timer-cannot-wake-cpu");
|
|
of_node_put(child);
|
|
}
|
|
|
|
domain = NULL;
|
|
child = of_get_compatible_child(n, "riscv,cpu-intc");
|
|
if (!child) {
|
|
pr_err("Failed to find INTC node [%pOF]\n", n);
|
|
return -ENODEV;
|
|
}
|
|
domain = irq_find_host(child);
|
|
of_node_put(child);
|
|
if (!domain) {
|
|
pr_err("Failed to find IRQ domain for node [%pOF]\n", n);
|
|
return -ENODEV;
|
|
}
|
|
|
|
riscv_clock_event_irq = irq_create_mapping(domain, RV_IRQ_TIMER);
|
|
if (!riscv_clock_event_irq) {
|
|
pr_err("Failed to map timer interrupt for node [%pOF]\n", n);
|
|
return -ENODEV;
|
|
}
|
|
|
|
pr_info("%s: Registering clocksource cpuid [%d] hartid [%lu]\n",
|
|
__func__, cpuid, hartid);
|
|
error = clocksource_register_hz(&riscv_clocksource, riscv_timebase);
|
|
if (error) {
|
|
pr_err("RISCV timer register failed [%d] for cpu = [%d]\n",
|
|
error, cpuid);
|
|
return error;
|
|
}
|
|
|
|
sched_clock_register(riscv_sched_clock, 64, riscv_timebase);
|
|
|
|
error = request_percpu_irq(riscv_clock_event_irq,
|
|
riscv_timer_interrupt,
|
|
"riscv-timer", &riscv_clock_event);
|
|
if (error) {
|
|
pr_err("registering percpu irq failed [%d]\n", error);
|
|
return error;
|
|
}
|
|
|
|
if (riscv_isa_extension_available(NULL, SSTC)) {
|
|
pr_info("Timer interrupt in S-mode is available via sstc extension\n");
|
|
static_branch_enable(&riscv_sstc_available);
|
|
}
|
|
|
|
error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
|
|
"clockevents/riscv/timer:starting",
|
|
riscv_timer_starting_cpu, riscv_timer_dying_cpu);
|
|
if (error)
|
|
pr_err("cpu hp setup state failed for RISCV timer [%d]\n",
|
|
error);
|
|
|
|
return error;
|
|
}
|
|
|
|
TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);
|