mirror of
https://github.com/torvalds/linux.git
synced 2024-12-29 22:31:32 +00:00
885f46d87f
When doing an fsync we flush all delalloc, lock the inode (VFS lock), flush
any new delalloc that might have been created before taking the lock and
then wait either for the ordered extents to complete or just for the
writeback to complete (depending on whether the full sync flag is set or
not). We then start logging the inode and assume that while we are doing it
no one else is touching the inode's file extent items (or adding new ones).
That is generally true because all operations that modify an inode acquire
the inode's lock first, including buffered and direct IO writes. However
there is one exception: memory mapped writes, which do not and can not
acquire the inode's lock.
This can cause two types of issues: ending up logging file extent items
with overlapping ranges, which is detected by the tree checker and will
result in aborting the transaction when starting writeback for a log
tree's extent buffers, or a silent corruption where we log a version of
the file that never existed.
Scenario 1 - logging overlapping extents
The following steps explain how we can end up with file extents items with
overlapping ranges in a log tree due to a race between a fsync and memory
mapped writes:
1) Task A starts an fsync on inode X, which has the full sync runtime flag
set. First it starts by flushing all delalloc for the inode;
2) Task A then locks the inode and flushes any other delalloc that might
have been created after the previous flush and waits for all ordered
extents to complete;
3) In the inode's root we have the following leaf:
Leaf N, generation == current transaction id:
---------------------------------------------------------
| (...) [ file extent item, offset 640K, length 128K ] |
---------------------------------------------------------
The last file extent item in leaf N covers the file range from 640K to
768K;
4) Task B does a memory mapped write for the page corresponding to the
file range from 764K to 768K;
5) Task A starts logging the inode. At copy_inode_items_to_log() it uses
btrfs_search_forward() to search for leafs modified in the current
transaction that contain items for the inode. It finds leaf N and copies
all the inode items from that leaf into the log tree.
Now the log tree has a copy of the last file extent item from leaf N.
At the end of the while loop at copy_inode_items_to_log(), we have the
minimum key set to:
min_key.objectid = <inode X number>
min_key.type = BTRFS_EXTENT_DATA_KEY
min_key.offset = 640K
Then we increment the key's offset by 1 so that the next call to
btrfs_search_forward() leaves us at the first key greater than the key
we just processed.
But before btrfs_search_forward() is called again...
6) Dellaloc for the page at offset 764K, dirtied by task B, is started.
It can be started for several reasons:
- The async reclaim task is attempting to satisfy metadata or data
reservation requests, and it has reached a point where it decided
to flush delalloc;
- Due to memory pressure the VMM triggers writeback of dirty pages;
- The system call sync_file_range(2) is called from user space.
7) When the respective ordered extent completes, it trims the length of
the existing file extent item for file offset 640K from 128K to 124K,
and a new file extent item is added with a key offset of 764K and a
length of 4K;
8) Task A calls btrfs_search_forward(), which returns us a path pointing
to the leaf (can be leaf N or some other) containing the new file extent
item for file offset 764K.
We end up copying this item to the log tree, which overlaps with the
last copied file extent item, which covers the file range from 640K to
768K.
When writeback is triggered for log tree's extent buffers, the issue
will be detected by the tree checker which will dump a trace and an
error message on dmesg/syslog. If the writeback is triggered when
syncing the log, which typically is, then we also end up aborting the
current transaction.
This is the same type of problem fixed in
|
||
---|---|---|
.. | ||
tests | ||
acl.c | ||
async-thread.c | ||
async-thread.h | ||
backref.c | ||
backref.h | ||
block-group.c | ||
block-group.h | ||
block-rsv.c | ||
block-rsv.h | ||
btrfs_inode.h | ||
check-integrity.c | ||
check-integrity.h | ||
compression.c | ||
compression.h | ||
ctree.c | ||
ctree.h | ||
delalloc-space.c | ||
delalloc-space.h | ||
delayed-inode.c | ||
delayed-inode.h | ||
delayed-ref.c | ||
delayed-ref.h | ||
dev-replace.c | ||
dev-replace.h | ||
dir-item.c | ||
discard.c | ||
discard.h | ||
disk-io.c | ||
disk-io.h | ||
export.c | ||
export.h | ||
extent_io.c | ||
extent_io.h | ||
extent_map.c | ||
extent_map.h | ||
extent-io-tree.h | ||
extent-tree.c | ||
file-item.c | ||
file.c | ||
free-space-cache.c | ||
free-space-cache.h | ||
free-space-tree.c | ||
free-space-tree.h | ||
inode-item.c | ||
inode.c | ||
ioctl.c | ||
Kconfig | ||
locking.c | ||
locking.h | ||
lzo.c | ||
Makefile | ||
misc.h | ||
ordered-data.c | ||
ordered-data.h | ||
orphan.c | ||
print-tree.c | ||
print-tree.h | ||
props.c | ||
props.h | ||
qgroup.c | ||
qgroup.h | ||
raid56.c | ||
raid56.h | ||
rcu-string.h | ||
reada.c | ||
ref-verify.c | ||
ref-verify.h | ||
reflink.c | ||
reflink.h | ||
relocation.c | ||
root-tree.c | ||
scrub.c | ||
send.c | ||
send.h | ||
space-info.c | ||
space-info.h | ||
struct-funcs.c | ||
subpage.c | ||
subpage.h | ||
super.c | ||
sysfs.c | ||
sysfs.h | ||
transaction.c | ||
transaction.h | ||
tree-checker.c | ||
tree-checker.h | ||
tree-defrag.c | ||
tree-log.c | ||
tree-log.h | ||
ulist.c | ||
ulist.h | ||
uuid-tree.c | ||
volumes.c | ||
volumes.h | ||
xattr.c | ||
xattr.h | ||
zlib.c | ||
zoned.c | ||
zoned.h | ||
zstd.c |