mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
33c83cb3c1
Now that the maintenance interrupt handling is actually out of the handler itself, the code becomes quite racy as we can get preempted while we process the state. Wrapping this code around the distributor lock ensures that we're not preempted and relatively race-free. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
1500 lines
37 KiB
C
1500 lines
37 KiB
C
/*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
|
|
#include <linux/irqchip/arm-gic.h>
|
|
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
/*
|
|
* How the whole thing works (courtesy of Christoffer Dall):
|
|
*
|
|
* - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
|
|
* something is pending
|
|
* - VGIC pending interrupts are stored on the vgic.irq_state vgic
|
|
* bitmap (this bitmap is updated by both user land ioctls and guest
|
|
* mmio ops, and other in-kernel peripherals such as the
|
|
* arch. timers) and indicate the 'wire' state.
|
|
* - Every time the bitmap changes, the irq_pending_on_cpu oracle is
|
|
* recalculated
|
|
* - To calculate the oracle, we need info for each cpu from
|
|
* compute_pending_for_cpu, which considers:
|
|
* - PPI: dist->irq_state & dist->irq_enable
|
|
* - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
|
|
* - irq_spi_target is a 'formatted' version of the GICD_ICFGR
|
|
* registers, stored on each vcpu. We only keep one bit of
|
|
* information per interrupt, making sure that only one vcpu can
|
|
* accept the interrupt.
|
|
* - The same is true when injecting an interrupt, except that we only
|
|
* consider a single interrupt at a time. The irq_spi_cpu array
|
|
* contains the target CPU for each SPI.
|
|
*
|
|
* The handling of level interrupts adds some extra complexity. We
|
|
* need to track when the interrupt has been EOIed, so we can sample
|
|
* the 'line' again. This is achieved as such:
|
|
*
|
|
* - When a level interrupt is moved onto a vcpu, the corresponding
|
|
* bit in irq_active is set. As long as this bit is set, the line
|
|
* will be ignored for further interrupts. The interrupt is injected
|
|
* into the vcpu with the GICH_LR_EOI bit set (generate a
|
|
* maintenance interrupt on EOI).
|
|
* - When the interrupt is EOIed, the maintenance interrupt fires,
|
|
* and clears the corresponding bit in irq_active. This allow the
|
|
* interrupt line to be sampled again.
|
|
*/
|
|
|
|
#define VGIC_ADDR_UNDEF (-1)
|
|
#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
|
|
|
|
/* Physical address of vgic virtual cpu interface */
|
|
static phys_addr_t vgic_vcpu_base;
|
|
|
|
/* Virtual control interface base address */
|
|
static void __iomem *vgic_vctrl_base;
|
|
|
|
static struct device_node *vgic_node;
|
|
|
|
#define ACCESS_READ_VALUE (1 << 0)
|
|
#define ACCESS_READ_RAZ (0 << 0)
|
|
#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
|
|
#define ACCESS_WRITE_IGNORED (0 << 1)
|
|
#define ACCESS_WRITE_SETBIT (1 << 1)
|
|
#define ACCESS_WRITE_CLEARBIT (2 << 1)
|
|
#define ACCESS_WRITE_VALUE (3 << 1)
|
|
#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
|
|
|
|
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
|
|
static void vgic_update_state(struct kvm *kvm);
|
|
static void vgic_kick_vcpus(struct kvm *kvm);
|
|
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
|
|
static u32 vgic_nr_lr;
|
|
|
|
static unsigned int vgic_maint_irq;
|
|
|
|
static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
|
|
int cpuid, u32 offset)
|
|
{
|
|
offset >>= 2;
|
|
if (!offset)
|
|
return x->percpu[cpuid].reg;
|
|
else
|
|
return x->shared.reg + offset - 1;
|
|
}
|
|
|
|
static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
|
|
int cpuid, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
return test_bit(irq, x->percpu[cpuid].reg_ul);
|
|
|
|
return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
|
|
}
|
|
|
|
static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
|
|
int irq, int val)
|
|
{
|
|
unsigned long *reg;
|
|
|
|
if (irq < VGIC_NR_PRIVATE_IRQS) {
|
|
reg = x->percpu[cpuid].reg_ul;
|
|
} else {
|
|
reg = x->shared.reg_ul;
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
}
|
|
|
|
if (val)
|
|
set_bit(irq, reg);
|
|
else
|
|
clear_bit(irq, reg);
|
|
}
|
|
|
|
static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
|
|
{
|
|
if (unlikely(cpuid >= VGIC_MAX_CPUS))
|
|
return NULL;
|
|
return x->percpu[cpuid].reg_ul;
|
|
}
|
|
|
|
static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
|
|
{
|
|
return x->shared.reg_ul;
|
|
}
|
|
|
|
static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
|
|
{
|
|
offset >>= 2;
|
|
BUG_ON(offset > (VGIC_NR_IRQS / 4));
|
|
if (offset < 4)
|
|
return x->percpu[cpuid] + offset;
|
|
else
|
|
return x->shared + offset - 8;
|
|
}
|
|
|
|
#define VGIC_CFG_LEVEL 0
|
|
#define VGIC_CFG_EDGE 1
|
|
|
|
static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int irq_val;
|
|
|
|
irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
|
|
return irq_val == VGIC_CFG_EDGE;
|
|
}
|
|
|
|
static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
|
|
}
|
|
|
|
static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
|
|
}
|
|
|
|
static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
|
|
}
|
|
|
|
static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
else
|
|
set_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
vcpu->arch.vgic_cpu.pending_shared);
|
|
}
|
|
|
|
static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (irq < VGIC_NR_PRIVATE_IRQS)
|
|
clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
|
|
else
|
|
clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
|
|
vcpu->arch.vgic_cpu.pending_shared);
|
|
}
|
|
|
|
static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
|
|
{
|
|
return *((u32 *)mmio->data) & mask;
|
|
}
|
|
|
|
static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
|
|
{
|
|
*((u32 *)mmio->data) = value & mask;
|
|
}
|
|
|
|
/**
|
|
* vgic_reg_access - access vgic register
|
|
* @mmio: pointer to the data describing the mmio access
|
|
* @reg: pointer to the virtual backing of vgic distributor data
|
|
* @offset: least significant 2 bits used for word offset
|
|
* @mode: ACCESS_ mode (see defines above)
|
|
*
|
|
* Helper to make vgic register access easier using one of the access
|
|
* modes defined for vgic register access
|
|
* (read,raz,write-ignored,setbit,clearbit,write)
|
|
*/
|
|
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
|
|
phys_addr_t offset, int mode)
|
|
{
|
|
int word_offset = (offset & 3) * 8;
|
|
u32 mask = (1UL << (mmio->len * 8)) - 1;
|
|
u32 regval;
|
|
|
|
/*
|
|
* Any alignment fault should have been delivered to the guest
|
|
* directly (ARM ARM B3.12.7 "Prioritization of aborts").
|
|
*/
|
|
|
|
if (reg) {
|
|
regval = *reg;
|
|
} else {
|
|
BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
|
|
regval = 0;
|
|
}
|
|
|
|
if (mmio->is_write) {
|
|
u32 data = mmio_data_read(mmio, mask) << word_offset;
|
|
switch (ACCESS_WRITE_MASK(mode)) {
|
|
case ACCESS_WRITE_IGNORED:
|
|
return;
|
|
|
|
case ACCESS_WRITE_SETBIT:
|
|
regval |= data;
|
|
break;
|
|
|
|
case ACCESS_WRITE_CLEARBIT:
|
|
regval &= ~data;
|
|
break;
|
|
|
|
case ACCESS_WRITE_VALUE:
|
|
regval = (regval & ~(mask << word_offset)) | data;
|
|
break;
|
|
}
|
|
*reg = regval;
|
|
} else {
|
|
switch (ACCESS_READ_MASK(mode)) {
|
|
case ACCESS_READ_RAZ:
|
|
regval = 0;
|
|
/* fall through */
|
|
|
|
case ACCESS_READ_VALUE:
|
|
mmio_data_write(mmio, mask, regval >> word_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
u32 word_offset = offset & 3;
|
|
|
|
switch (offset & ~3) {
|
|
case 0: /* CTLR */
|
|
reg = vcpu->kvm->arch.vgic.enabled;
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vcpu->kvm->arch.vgic.enabled = reg & 1;
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case 4: /* TYPER */
|
|
reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
|
|
reg |= (VGIC_NR_IRQS >> 5) - 1;
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
break;
|
|
|
|
case 8: /* IIDR */
|
|
reg = 0x4B00043B;
|
|
vgic_reg_access(mmio, ®, word_offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
vgic_reg_access(mmio, NULL, offset,
|
|
ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
|
|
if (mmio->is_write) {
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
|
|
if (mmio->is_write) {
|
|
if (offset < 4) /* Force SGI enabled */
|
|
*reg |= 0xffff;
|
|
vgic_retire_disabled_irqs(vcpu);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
|
|
if (mmio->is_write) {
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
|
|
if (mmio->is_write) {
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
|
|
vcpu->vcpu_id, offset);
|
|
vgic_reg_access(mmio, reg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
return false;
|
|
}
|
|
|
|
#define GICD_ITARGETSR_SIZE 32
|
|
#define GICD_CPUTARGETS_BITS 8
|
|
#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
|
|
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, c;
|
|
unsigned long *bmap;
|
|
u32 val = 0;
|
|
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
|
|
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
|
|
if (test_bit(irq + i, bmap))
|
|
val |= 1 << (c + i * 8);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, c;
|
|
unsigned long *bmap;
|
|
u32 target;
|
|
|
|
irq -= VGIC_NR_PRIVATE_IRQS;
|
|
|
|
/*
|
|
* Pick the LSB in each byte. This ensures we target exactly
|
|
* one vcpu per IRQ. If the byte is null, assume we target
|
|
* CPU0.
|
|
*/
|
|
for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
|
|
int shift = i * GICD_CPUTARGETS_BITS;
|
|
target = ffs((val >> shift) & 0xffU);
|
|
target = target ? (target - 1) : 0;
|
|
dist->irq_spi_cpu[irq + i] = target;
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
|
|
if (c == target)
|
|
set_bit(irq + i, bmap);
|
|
else
|
|
clear_bit(irq + i, bmap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
|
|
/* We treat the banked interrupts targets as read-only */
|
|
if (offset < 32) {
|
|
u32 roreg = 1 << vcpu->vcpu_id;
|
|
roreg |= roreg << 8;
|
|
roreg |= roreg << 16;
|
|
|
|
vgic_reg_access(mmio, &roreg, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
|
|
return false;
|
|
}
|
|
|
|
reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
|
|
vgic_reg_access(mmio, ®, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static u32 vgic_cfg_expand(u16 val)
|
|
{
|
|
u32 res = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Turn a 16bit value like abcd...mnop into a 32bit word
|
|
* a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
|
|
|
|
return res;
|
|
}
|
|
|
|
static u16 vgic_cfg_compress(u32 val)
|
|
{
|
|
u16 res = 0;
|
|
int i;
|
|
|
|
/*
|
|
* Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
|
|
* abcd...mnop which is what we really care about.
|
|
*/
|
|
for (i = 0; i < 16; i++)
|
|
res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* The distributor uses 2 bits per IRQ for the CFG register, but the
|
|
* LSB is always 0. As such, we only keep the upper bit, and use the
|
|
* two above functions to compress/expand the bits
|
|
*/
|
|
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 val;
|
|
u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
|
|
vcpu->vcpu_id, offset >> 1);
|
|
if (offset & 2)
|
|
val = *reg >> 16;
|
|
else
|
|
val = *reg & 0xffff;
|
|
|
|
val = vgic_cfg_expand(val);
|
|
vgic_reg_access(mmio, &val, offset,
|
|
ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
if (offset < 4) {
|
|
*reg = ~0U; /* Force PPIs/SGIs to 1 */
|
|
return false;
|
|
}
|
|
|
|
val = vgic_cfg_compress(val);
|
|
if (offset & 2) {
|
|
*reg &= 0xffff;
|
|
*reg |= val << 16;
|
|
} else {
|
|
*reg &= 0xffff << 16;
|
|
*reg |= val;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
|
|
struct kvm_exit_mmio *mmio, phys_addr_t offset)
|
|
{
|
|
u32 reg;
|
|
vgic_reg_access(mmio, ®, offset,
|
|
ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
|
|
if (mmio->is_write) {
|
|
vgic_dispatch_sgi(vcpu, reg);
|
|
vgic_update_state(vcpu->kvm);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* I would have liked to use the kvm_bus_io_*() API instead, but it
|
|
* cannot cope with banked registers (only the VM pointer is passed
|
|
* around, and we need the vcpu). One of these days, someone please
|
|
* fix it!
|
|
*/
|
|
struct mmio_range {
|
|
phys_addr_t base;
|
|
unsigned long len;
|
|
bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
|
|
phys_addr_t offset);
|
|
};
|
|
|
|
static const struct mmio_range vgic_ranges[] = {
|
|
{
|
|
.base = GIC_DIST_CTRL,
|
|
.len = 12,
|
|
.handle_mmio = handle_mmio_misc,
|
|
},
|
|
{
|
|
.base = GIC_DIST_IGROUP,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ENABLE_SET,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_set_enable_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ENABLE_CLEAR,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_clear_enable_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PENDING_SET,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_set_pending_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PENDING_CLEAR,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_clear_pending_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ACTIVE_SET,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_ACTIVE_CLEAR,
|
|
.len = VGIC_NR_IRQS / 8,
|
|
.handle_mmio = handle_mmio_raz_wi,
|
|
},
|
|
{
|
|
.base = GIC_DIST_PRI,
|
|
.len = VGIC_NR_IRQS,
|
|
.handle_mmio = handle_mmio_priority_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_TARGET,
|
|
.len = VGIC_NR_IRQS,
|
|
.handle_mmio = handle_mmio_target_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_CONFIG,
|
|
.len = VGIC_NR_IRQS / 4,
|
|
.handle_mmio = handle_mmio_cfg_reg,
|
|
},
|
|
{
|
|
.base = GIC_DIST_SOFTINT,
|
|
.len = 4,
|
|
.handle_mmio = handle_mmio_sgi_reg,
|
|
},
|
|
{}
|
|
};
|
|
|
|
static const
|
|
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
|
|
struct kvm_exit_mmio *mmio,
|
|
phys_addr_t base)
|
|
{
|
|
const struct mmio_range *r = ranges;
|
|
phys_addr_t addr = mmio->phys_addr - base;
|
|
|
|
while (r->len) {
|
|
if (addr >= r->base &&
|
|
(addr + mmio->len) <= (r->base + r->len))
|
|
return r;
|
|
r++;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* vgic_handle_mmio - handle an in-kernel MMIO access
|
|
* @vcpu: pointer to the vcpu performing the access
|
|
* @run: pointer to the kvm_run structure
|
|
* @mmio: pointer to the data describing the access
|
|
*
|
|
* returns true if the MMIO access has been performed in kernel space,
|
|
* and false if it needs to be emulated in user space.
|
|
*/
|
|
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
|
|
struct kvm_exit_mmio *mmio)
|
|
{
|
|
const struct mmio_range *range;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long base = dist->vgic_dist_base;
|
|
bool updated_state;
|
|
unsigned long offset;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm) ||
|
|
mmio->phys_addr < base ||
|
|
(mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
|
|
return false;
|
|
|
|
/* We don't support ldrd / strd or ldm / stm to the emulated vgic */
|
|
if (mmio->len > 4) {
|
|
kvm_inject_dabt(vcpu, mmio->phys_addr);
|
|
return true;
|
|
}
|
|
|
|
range = find_matching_range(vgic_ranges, mmio, base);
|
|
if (unlikely(!range || !range->handle_mmio)) {
|
|
pr_warn("Unhandled access %d %08llx %d\n",
|
|
mmio->is_write, mmio->phys_addr, mmio->len);
|
|
return false;
|
|
}
|
|
|
|
spin_lock(&vcpu->kvm->arch.vgic.lock);
|
|
offset = mmio->phys_addr - range->base - base;
|
|
updated_state = range->handle_mmio(vcpu, mmio, offset);
|
|
spin_unlock(&vcpu->kvm->arch.vgic.lock);
|
|
kvm_prepare_mmio(run, mmio);
|
|
kvm_handle_mmio_return(vcpu, run);
|
|
|
|
if (updated_state)
|
|
vgic_kick_vcpus(vcpu->kvm);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
int nrcpus = atomic_read(&kvm->online_vcpus);
|
|
u8 target_cpus;
|
|
int sgi, mode, c, vcpu_id;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
|
|
sgi = reg & 0xf;
|
|
target_cpus = (reg >> 16) & 0xff;
|
|
mode = (reg >> 24) & 3;
|
|
|
|
switch (mode) {
|
|
case 0:
|
|
if (!target_cpus)
|
|
return;
|
|
|
|
case 1:
|
|
target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
|
|
break;
|
|
|
|
case 2:
|
|
target_cpus = 1 << vcpu_id;
|
|
break;
|
|
}
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (target_cpus & 1) {
|
|
/* Flag the SGI as pending */
|
|
vgic_dist_irq_set(vcpu, sgi);
|
|
dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
|
|
kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
|
|
}
|
|
|
|
target_cpus >>= 1;
|
|
}
|
|
}
|
|
|
|
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
|
|
unsigned long pending_private, pending_shared;
|
|
int vcpu_id;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
|
|
pend_shared = vcpu->arch.vgic_cpu.pending_shared;
|
|
|
|
pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
|
|
enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
|
|
bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
|
|
|
|
pending = vgic_bitmap_get_shared_map(&dist->irq_state);
|
|
enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
|
|
bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
|
|
bitmap_and(pend_shared, pend_shared,
|
|
vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
|
|
VGIC_NR_SHARED_IRQS);
|
|
|
|
pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
|
|
pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
|
|
return (pending_private < VGIC_NR_PRIVATE_IRQS ||
|
|
pending_shared < VGIC_NR_SHARED_IRQS);
|
|
}
|
|
|
|
/*
|
|
* Update the interrupt state and determine which CPUs have pending
|
|
* interrupts. Must be called with distributor lock held.
|
|
*/
|
|
static void vgic_update_state(struct kvm *kvm)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int c;
|
|
|
|
if (!dist->enabled) {
|
|
set_bit(0, &dist->irq_pending_on_cpu);
|
|
return;
|
|
}
|
|
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (compute_pending_for_cpu(vcpu)) {
|
|
pr_debug("CPU%d has pending interrupts\n", c);
|
|
set_bit(c, &dist->irq_pending_on_cpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define LR_CPUID(lr) \
|
|
(((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
|
|
#define MK_LR_PEND(src, irq) \
|
|
(GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
|
|
|
|
/*
|
|
* An interrupt may have been disabled after being made pending on the
|
|
* CPU interface (the classic case is a timer running while we're
|
|
* rebooting the guest - the interrupt would kick as soon as the CPU
|
|
* interface gets enabled, with deadly consequences).
|
|
*
|
|
* The solution is to examine already active LRs, and check the
|
|
* interrupt is still enabled. If not, just retire it.
|
|
*/
|
|
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
int lr;
|
|
|
|
for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
|
|
int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
|
|
|
|
if (!vgic_irq_is_enabled(vcpu, irq)) {
|
|
vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
|
|
clear_bit(lr, vgic_cpu->lr_used);
|
|
vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE;
|
|
if (vgic_irq_is_active(vcpu, irq))
|
|
vgic_irq_clear_active(vcpu, irq);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue an interrupt to a CPU virtual interface. Return true on success,
|
|
* or false if it wasn't possible to queue it.
|
|
*/
|
|
static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
int lr;
|
|
|
|
/* Sanitize the input... */
|
|
BUG_ON(sgi_source_id & ~7);
|
|
BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
|
|
BUG_ON(irq >= VGIC_NR_IRQS);
|
|
|
|
kvm_debug("Queue IRQ%d\n", irq);
|
|
|
|
lr = vgic_cpu->vgic_irq_lr_map[irq];
|
|
|
|
/* Do we have an active interrupt for the same CPUID? */
|
|
if (lr != LR_EMPTY &&
|
|
(LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
|
|
kvm_debug("LR%d piggyback for IRQ%d %x\n",
|
|
lr, irq, vgic_cpu->vgic_lr[lr]);
|
|
BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
|
|
vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
|
|
return true;
|
|
}
|
|
|
|
/* Try to use another LR for this interrupt */
|
|
lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
|
|
vgic_cpu->nr_lr);
|
|
if (lr >= vgic_cpu->nr_lr)
|
|
return false;
|
|
|
|
kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
|
|
vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
|
|
vgic_cpu->vgic_irq_lr_map[irq] = lr;
|
|
set_bit(lr, vgic_cpu->lr_used);
|
|
|
|
if (!vgic_irq_is_edge(vcpu, irq))
|
|
vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
unsigned long sources;
|
|
int vcpu_id = vcpu->vcpu_id;
|
|
int c;
|
|
|
|
sources = dist->irq_sgi_sources[vcpu_id][irq];
|
|
|
|
for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
|
|
if (vgic_queue_irq(vcpu, c, irq))
|
|
clear_bit(c, &sources);
|
|
}
|
|
|
|
dist->irq_sgi_sources[vcpu_id][irq] = sources;
|
|
|
|
/*
|
|
* If the sources bitmap has been cleared it means that we
|
|
* could queue all the SGIs onto link registers (see the
|
|
* clear_bit above), and therefore we are done with them in
|
|
* our emulated gic and can get rid of them.
|
|
*/
|
|
if (!sources) {
|
|
vgic_dist_irq_clear(vcpu, irq);
|
|
vgic_cpu_irq_clear(vcpu, irq);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
if (vgic_irq_is_active(vcpu, irq))
|
|
return true; /* level interrupt, already queued */
|
|
|
|
if (vgic_queue_irq(vcpu, 0, irq)) {
|
|
if (vgic_irq_is_edge(vcpu, irq)) {
|
|
vgic_dist_irq_clear(vcpu, irq);
|
|
vgic_cpu_irq_clear(vcpu, irq);
|
|
} else {
|
|
vgic_irq_set_active(vcpu, irq);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Fill the list registers with pending interrupts before running the
|
|
* guest.
|
|
*/
|
|
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int i, vcpu_id;
|
|
int overflow = 0;
|
|
|
|
vcpu_id = vcpu->vcpu_id;
|
|
|
|
/*
|
|
* We may not have any pending interrupt, or the interrupts
|
|
* may have been serviced from another vcpu. In all cases,
|
|
* move along.
|
|
*/
|
|
if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
|
|
pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
|
|
goto epilog;
|
|
}
|
|
|
|
/* SGIs */
|
|
for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
|
|
if (!vgic_queue_sgi(vcpu, i))
|
|
overflow = 1;
|
|
}
|
|
|
|
/* PPIs */
|
|
for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
|
|
if (!vgic_queue_hwirq(vcpu, i))
|
|
overflow = 1;
|
|
}
|
|
|
|
/* SPIs */
|
|
for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
|
|
if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
|
|
overflow = 1;
|
|
}
|
|
|
|
epilog:
|
|
if (overflow) {
|
|
vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
|
|
} else {
|
|
vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
|
|
/*
|
|
* We're about to run this VCPU, and we've consumed
|
|
* everything the distributor had in store for
|
|
* us. Claim we don't have anything pending. We'll
|
|
* adjust that if needed while exiting.
|
|
*/
|
|
clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
|
|
}
|
|
}
|
|
|
|
static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
bool level_pending = false;
|
|
|
|
kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
|
|
|
|
if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
|
|
/*
|
|
* Some level interrupts have been EOIed. Clear their
|
|
* active bit.
|
|
*/
|
|
int lr, irq;
|
|
|
|
for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
|
|
vgic_cpu->nr_lr) {
|
|
irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
|
|
|
|
vgic_irq_clear_active(vcpu, irq);
|
|
vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
|
|
|
|
/* Any additional pending interrupt? */
|
|
if (vgic_dist_irq_is_pending(vcpu, irq)) {
|
|
vgic_cpu_irq_set(vcpu, irq);
|
|
level_pending = true;
|
|
} else {
|
|
vgic_cpu_irq_clear(vcpu, irq);
|
|
}
|
|
|
|
/*
|
|
* Despite being EOIed, the LR may not have
|
|
* been marked as empty.
|
|
*/
|
|
set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
|
|
vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
|
|
}
|
|
}
|
|
|
|
if (vgic_cpu->vgic_misr & GICH_MISR_U)
|
|
vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
|
|
|
|
return level_pending;
|
|
}
|
|
|
|
/*
|
|
* Sync back the VGIC state after a guest run. The distributor lock is
|
|
* needed so we don't get preempted in the middle of the state processing.
|
|
*/
|
|
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int lr, pending;
|
|
bool level_pending;
|
|
|
|
level_pending = vgic_process_maintenance(vcpu);
|
|
|
|
/* Clear mappings for empty LRs */
|
|
for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
|
|
vgic_cpu->nr_lr) {
|
|
int irq;
|
|
|
|
if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
|
|
continue;
|
|
|
|
irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
|
|
|
|
BUG_ON(irq >= VGIC_NR_IRQS);
|
|
vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
|
|
}
|
|
|
|
/* Check if we still have something up our sleeve... */
|
|
pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
|
|
vgic_cpu->nr_lr);
|
|
if (level_pending || pending < vgic_cpu->nr_lr)
|
|
set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
spin_lock(&dist->lock);
|
|
__kvm_vgic_flush_hwstate(vcpu);
|
|
spin_unlock(&dist->lock);
|
|
}
|
|
|
|
void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return;
|
|
|
|
spin_lock(&dist->lock);
|
|
__kvm_vgic_sync_hwstate(vcpu);
|
|
spin_unlock(&dist->lock);
|
|
}
|
|
|
|
int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return 0;
|
|
|
|
return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
static void vgic_kick_vcpus(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int c;
|
|
|
|
/*
|
|
* We've injected an interrupt, time to find out who deserves
|
|
* a good kick...
|
|
*/
|
|
kvm_for_each_vcpu(c, vcpu, kvm) {
|
|
if (kvm_vgic_vcpu_pending_irq(vcpu))
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
}
|
|
|
|
static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
|
|
{
|
|
int is_edge = vgic_irq_is_edge(vcpu, irq);
|
|
int state = vgic_dist_irq_is_pending(vcpu, irq);
|
|
|
|
/*
|
|
* Only inject an interrupt if:
|
|
* - edge triggered and we have a rising edge
|
|
* - level triggered and we change level
|
|
*/
|
|
if (is_edge)
|
|
return level > state;
|
|
else
|
|
return level != state;
|
|
}
|
|
|
|
static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
|
|
unsigned int irq_num, bool level)
|
|
{
|
|
struct vgic_dist *dist = &kvm->arch.vgic;
|
|
struct kvm_vcpu *vcpu;
|
|
int is_edge, is_level;
|
|
int enabled;
|
|
bool ret = true;
|
|
|
|
spin_lock(&dist->lock);
|
|
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
is_edge = vgic_irq_is_edge(vcpu, irq_num);
|
|
is_level = !is_edge;
|
|
|
|
if (!vgic_validate_injection(vcpu, irq_num, level)) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
|
|
cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
|
|
vcpu = kvm_get_vcpu(kvm, cpuid);
|
|
}
|
|
|
|
kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
|
|
|
|
if (level)
|
|
vgic_dist_irq_set(vcpu, irq_num);
|
|
else
|
|
vgic_dist_irq_clear(vcpu, irq_num);
|
|
|
|
enabled = vgic_irq_is_enabled(vcpu, irq_num);
|
|
|
|
if (!enabled) {
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
|
|
/*
|
|
* Level interrupt in progress, will be picked up
|
|
* when EOId.
|
|
*/
|
|
ret = false;
|
|
goto out;
|
|
}
|
|
|
|
if (level) {
|
|
vgic_cpu_irq_set(vcpu, irq_num);
|
|
set_bit(cpuid, &dist->irq_pending_on_cpu);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(&dist->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
|
|
* @kvm: The VM structure pointer
|
|
* @cpuid: The CPU for PPIs
|
|
* @irq_num: The IRQ number that is assigned to the device
|
|
* @level: Edge-triggered: true: to trigger the interrupt
|
|
* false: to ignore the call
|
|
* Level-sensitive true: activates an interrupt
|
|
* false: deactivates an interrupt
|
|
*
|
|
* The GIC is not concerned with devices being active-LOW or active-HIGH for
|
|
* level-sensitive interrupts. You can think of the level parameter as 1
|
|
* being HIGH and 0 being LOW and all devices being active-HIGH.
|
|
*/
|
|
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
|
|
bool level)
|
|
{
|
|
if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
|
|
vgic_kick_vcpus(kvm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
|
|
{
|
|
/*
|
|
* We cannot rely on the vgic maintenance interrupt to be
|
|
* delivered synchronously. This means we can only use it to
|
|
* exit the VM, and we perform the handling of EOIed
|
|
* interrupts on the exit path (see vgic_process_maintenance).
|
|
*/
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
|
|
struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
|
|
int i;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return 0;
|
|
|
|
if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
|
|
return -EBUSY;
|
|
|
|
for (i = 0; i < VGIC_NR_IRQS; i++) {
|
|
if (i < VGIC_NR_PPIS)
|
|
vgic_bitmap_set_irq_val(&dist->irq_enabled,
|
|
vcpu->vcpu_id, i, 1);
|
|
if (i < VGIC_NR_PRIVATE_IRQS)
|
|
vgic_bitmap_set_irq_val(&dist->irq_cfg,
|
|
vcpu->vcpu_id, i, VGIC_CFG_EDGE);
|
|
|
|
vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* By forcing VMCR to zero, the GIC will restore the binary
|
|
* points to their reset values. Anything else resets to zero
|
|
* anyway.
|
|
*/
|
|
vgic_cpu->vgic_vmcr = 0;
|
|
|
|
vgic_cpu->nr_lr = vgic_nr_lr;
|
|
vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vgic_init_maintenance_interrupt(void *info)
|
|
{
|
|
enable_percpu_irq(vgic_maint_irq, 0);
|
|
}
|
|
|
|
static int vgic_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *cpu)
|
|
{
|
|
switch (action) {
|
|
case CPU_STARTING:
|
|
case CPU_STARTING_FROZEN:
|
|
vgic_init_maintenance_interrupt(NULL);
|
|
break;
|
|
case CPU_DYING:
|
|
case CPU_DYING_FROZEN:
|
|
disable_percpu_irq(vgic_maint_irq);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block vgic_cpu_nb = {
|
|
.notifier_call = vgic_cpu_notify,
|
|
};
|
|
|
|
int kvm_vgic_hyp_init(void)
|
|
{
|
|
int ret;
|
|
struct resource vctrl_res;
|
|
struct resource vcpu_res;
|
|
|
|
vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
|
|
if (!vgic_node) {
|
|
kvm_err("error: no compatible vgic node in DT\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
|
|
if (!vgic_maint_irq) {
|
|
kvm_err("error getting vgic maintenance irq from DT\n");
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
|
|
"vgic", kvm_get_running_vcpus());
|
|
if (ret) {
|
|
kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
|
|
goto out;
|
|
}
|
|
|
|
ret = register_cpu_notifier(&vgic_cpu_nb);
|
|
if (ret) {
|
|
kvm_err("Cannot register vgic CPU notifier\n");
|
|
goto out_free_irq;
|
|
}
|
|
|
|
ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
|
|
if (ret) {
|
|
kvm_err("Cannot obtain VCTRL resource\n");
|
|
goto out_free_irq;
|
|
}
|
|
|
|
vgic_vctrl_base = of_iomap(vgic_node, 2);
|
|
if (!vgic_vctrl_base) {
|
|
kvm_err("Cannot ioremap VCTRL\n");
|
|
ret = -ENOMEM;
|
|
goto out_free_irq;
|
|
}
|
|
|
|
vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
|
|
vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
|
|
|
|
ret = create_hyp_io_mappings(vgic_vctrl_base,
|
|
vgic_vctrl_base + resource_size(&vctrl_res),
|
|
vctrl_res.start);
|
|
if (ret) {
|
|
kvm_err("Cannot map VCTRL into hyp\n");
|
|
goto out_unmap;
|
|
}
|
|
|
|
kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
|
|
vctrl_res.start, vgic_maint_irq);
|
|
on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
|
|
|
|
if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
|
|
kvm_err("Cannot obtain VCPU resource\n");
|
|
ret = -ENXIO;
|
|
goto out_unmap;
|
|
}
|
|
vgic_vcpu_base = vcpu_res.start;
|
|
|
|
goto out;
|
|
|
|
out_unmap:
|
|
iounmap(vgic_vctrl_base);
|
|
out_free_irq:
|
|
free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
|
|
out:
|
|
of_node_put(vgic_node);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vgic_init(struct kvm *kvm)
|
|
{
|
|
int ret = 0, i;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (vgic_initialized(kvm))
|
|
goto out;
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
|
|
IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
|
|
kvm_err("Need to set vgic cpu and dist addresses first\n");
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
|
|
vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
|
|
if (ret) {
|
|
kvm_err("Unable to remap VGIC CPU to VCPU\n");
|
|
goto out;
|
|
}
|
|
|
|
for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
|
|
vgic_set_target_reg(kvm, 0, i);
|
|
|
|
kvm_timer_init(kvm);
|
|
kvm->arch.vgic.ready = true;
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vgic_create(struct kvm *kvm)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
|
|
if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
spin_lock_init(&kvm->arch.vgic.lock);
|
|
kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
|
|
kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
|
|
kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
|
|
|
|
out:
|
|
mutex_unlock(&kvm->lock);
|
|
return ret;
|
|
}
|
|
|
|
static bool vgic_ioaddr_overlap(struct kvm *kvm)
|
|
{
|
|
phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
|
|
phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
|
|
|
|
if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
|
|
return 0;
|
|
if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
|
|
(cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
|
|
phys_addr_t addr, phys_addr_t size)
|
|
{
|
|
int ret;
|
|
|
|
if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
|
|
return -EEXIST;
|
|
if (addr + size < addr)
|
|
return -EINVAL;
|
|
|
|
ret = vgic_ioaddr_overlap(kvm);
|
|
if (ret)
|
|
return ret;
|
|
*ioaddr = addr;
|
|
return ret;
|
|
}
|
|
|
|
int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
|
|
{
|
|
int r = 0;
|
|
struct vgic_dist *vgic = &kvm->arch.vgic;
|
|
|
|
if (addr & ~KVM_PHYS_MASK)
|
|
return -E2BIG;
|
|
|
|
if (addr & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
switch (type) {
|
|
case KVM_VGIC_V2_ADDR_TYPE_DIST:
|
|
r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
|
|
addr, KVM_VGIC_V2_DIST_SIZE);
|
|
break;
|
|
case KVM_VGIC_V2_ADDR_TYPE_CPU:
|
|
r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
|
|
addr, KVM_VGIC_V2_CPU_SIZE);
|
|
break;
|
|
default:
|
|
r = -ENODEV;
|
|
}
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
return r;
|
|
}
|