mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
8cc92a6793
Address the additional feedback since4e76c8cc33
kasan: add atomic tests (""kasan: add atomic tests") by removing an explicit cast and fixing the size as well as the check of the allocation of `a2`. Link: https://lkml.kernel.org/r/20240224105414.211995-1-paul.heidekrueger@tum.de Link: https://lore.kernel.org/all/20240131210041.686657-1-paul.heidekrueger@tum.de/T/#u Fixes:4e76c8cc33
("kasan: add atomic tests") Signed-off-by: Paul Heidekrüger <paul.heidekrueger@tum.de> Closes: https://bugzilla.kernel.org/show_bug.cgi?id=214055 Reviewed-by: Marco Elver <elver@google.com> Tested-by: Marco Elver <elver@google.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
1988 lines
53 KiB
C
1988 lines
53 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <a.ryabinin@samsung.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kasan: test: " fmt
|
|
|
|
#include <kunit/test.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/module.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/random.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/tracepoint.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <trace/events/printk.h>
|
|
|
|
#include <asm/page.h>
|
|
|
|
#include "kasan.h"
|
|
|
|
#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)
|
|
|
|
static bool multishot;
|
|
|
|
/* Fields set based on lines observed in the console. */
|
|
static struct {
|
|
bool report_found;
|
|
bool async_fault;
|
|
} test_status;
|
|
|
|
/*
|
|
* Some tests use these global variables to store return values from function
|
|
* calls that could otherwise be eliminated by the compiler as dead code.
|
|
*/
|
|
void *kasan_ptr_result;
|
|
int kasan_int_result;
|
|
|
|
/* Probe for console output: obtains test_status lines of interest. */
|
|
static void probe_console(void *ignore, const char *buf, size_t len)
|
|
{
|
|
if (strnstr(buf, "BUG: KASAN: ", len))
|
|
WRITE_ONCE(test_status.report_found, true);
|
|
else if (strnstr(buf, "Asynchronous fault: ", len))
|
|
WRITE_ONCE(test_status.async_fault, true);
|
|
}
|
|
|
|
static int kasan_suite_init(struct kunit_suite *suite)
|
|
{
|
|
if (!kasan_enabled()) {
|
|
pr_err("Can't run KASAN tests with KASAN disabled");
|
|
return -1;
|
|
}
|
|
|
|
/* Stop failing KUnit tests on KASAN reports. */
|
|
kasan_kunit_test_suite_start();
|
|
|
|
/*
|
|
* Temporarily enable multi-shot mode. Otherwise, KASAN would only
|
|
* report the first detected bug and panic the kernel if panic_on_warn
|
|
* is enabled.
|
|
*/
|
|
multishot = kasan_save_enable_multi_shot();
|
|
|
|
register_trace_console(probe_console, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void kasan_suite_exit(struct kunit_suite *suite)
|
|
{
|
|
kasan_kunit_test_suite_end();
|
|
kasan_restore_multi_shot(multishot);
|
|
unregister_trace_console(probe_console, NULL);
|
|
tracepoint_synchronize_unregister();
|
|
}
|
|
|
|
static void kasan_test_exit(struct kunit *test)
|
|
{
|
|
KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));
|
|
}
|
|
|
|
/**
|
|
* KUNIT_EXPECT_KASAN_FAIL - check that the executed expression produces a
|
|
* KASAN report; causes a KUnit test failure otherwise.
|
|
*
|
|
* @test: Currently executing KUnit test.
|
|
* @expression: Expression that must produce a KASAN report.
|
|
*
|
|
* For hardware tag-based KASAN, when a synchronous tag fault happens, tag
|
|
* checking is auto-disabled. When this happens, this test handler reenables
|
|
* tag checking. As tag checking can be only disabled or enabled per CPU,
|
|
* this handler disables migration (preemption).
|
|
*
|
|
* Since the compiler doesn't see that the expression can change the test_status
|
|
* fields, it can reorder or optimize away the accesses to those fields.
|
|
* Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
|
|
* expression to prevent that.
|
|
*
|
|
* In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
|
|
* as false. This allows detecting KASAN reports that happen outside of the
|
|
* checks by asserting !test_status.report_found at the start of
|
|
* KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
|
|
*/
|
|
#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do { \
|
|
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
|
|
kasan_sync_fault_possible()) \
|
|
migrate_disable(); \
|
|
KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found)); \
|
|
barrier(); \
|
|
expression; \
|
|
barrier(); \
|
|
if (kasan_async_fault_possible()) \
|
|
kasan_force_async_fault(); \
|
|
if (!READ_ONCE(test_status.report_found)) { \
|
|
KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure " \
|
|
"expected in \"" #expression \
|
|
"\", but none occurred"); \
|
|
} \
|
|
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) && \
|
|
kasan_sync_fault_possible()) { \
|
|
if (READ_ONCE(test_status.report_found) && \
|
|
!READ_ONCE(test_status.async_fault)) \
|
|
kasan_enable_hw_tags(); \
|
|
migrate_enable(); \
|
|
} \
|
|
WRITE_ONCE(test_status.report_found, false); \
|
|
WRITE_ONCE(test_status.async_fault, false); \
|
|
} while (0)
|
|
|
|
#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do { \
|
|
if (!IS_ENABLED(config)) \
|
|
kunit_skip((test), "Test requires " #config "=y"); \
|
|
} while (0)
|
|
|
|
#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do { \
|
|
if (IS_ENABLED(config)) \
|
|
kunit_skip((test), "Test requires " #config "=n"); \
|
|
} while (0)
|
|
|
|
#define KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test) do { \
|
|
if (IS_ENABLED(CONFIG_KASAN_HW_TAGS)) \
|
|
break; /* No compiler instrumentation. */ \
|
|
if (IS_ENABLED(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX)) \
|
|
break; /* Should always be instrumented! */ \
|
|
if (IS_ENABLED(CONFIG_GENERIC_ENTRY)) \
|
|
kunit_skip((test), "Test requires checked mem*()"); \
|
|
} while (0)
|
|
|
|
static void kmalloc_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE - 5;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
/*
|
|
* An unaligned access past the requested kmalloc size.
|
|
* Only generic KASAN can precisely detect these.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');
|
|
|
|
/*
|
|
* An aligned access into the first out-of-bounds granule that falls
|
|
* within the aligned kmalloc object.
|
|
*/
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');
|
|
|
|
/* Out-of-bounds access past the aligned kmalloc object. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
|
|
ptr[size + KASAN_GRANULE_SIZE + 5]);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_left(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 15;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_node_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 4096;
|
|
|
|
ptr = kmalloc_node(size, GFP_KERNEL, 0);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
|
|
kfree(ptr);
|
|
}
|
|
|
|
/*
|
|
* Check that KASAN detects an out-of-bounds access for a big object allocated
|
|
* via kmalloc(). But not as big as to trigger the page_alloc fallback.
|
|
*/
|
|
static void kmalloc_big_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE - 256;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
|
|
kfree(ptr);
|
|
}
|
|
|
|
/*
|
|
* The kmalloc_large_* tests below use kmalloc() to allocate a memory chunk
|
|
* that does not fit into the largest slab cache and therefore is allocated via
|
|
* the page_alloc fallback.
|
|
*/
|
|
|
|
static void kmalloc_large_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_large_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
kfree(ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
}
|
|
|
|
static void kmalloc_large_invalid_free(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 10;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
|
|
}
|
|
|
|
static void page_alloc_oob_right(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
size_t order = 4;
|
|
size_t size = (1UL << (PAGE_SHIFT + order));
|
|
|
|
/*
|
|
* With generic KASAN page allocations have no redzones, thus
|
|
* out-of-bounds detection is not guaranteed.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
|
|
free_pages((unsigned long)ptr, order);
|
|
}
|
|
|
|
static void page_alloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
size_t order = 4;
|
|
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
free_pages((unsigned long)ptr, order);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
}
|
|
|
|
static void krealloc_more_oob_helper(struct kunit *test,
|
|
size_t size1, size_t size2)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t middle;
|
|
|
|
KUNIT_ASSERT_LT(test, size1, size2);
|
|
middle = size1 + (size2 - size1) / 2;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/* Suppress -Warray-bounds warnings. */
|
|
OPTIMIZER_HIDE_VAR(ptr2);
|
|
|
|
/* All offsets up to size2 must be accessible. */
|
|
ptr2[size1 - 1] = 'x';
|
|
ptr2[size1] = 'x';
|
|
ptr2[middle] = 'x';
|
|
ptr2[size2 - 1] = 'x';
|
|
|
|
/* Generic mode is precise, so unaligned size2 must be inaccessible. */
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
|
|
|
|
/* For all modes first aligned offset after size2 must be inaccessible. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void krealloc_less_oob_helper(struct kunit *test,
|
|
size_t size1, size_t size2)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t middle;
|
|
|
|
KUNIT_ASSERT_LT(test, size2, size1);
|
|
middle = size2 + (size1 - size2) / 2;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/* Suppress -Warray-bounds warnings. */
|
|
OPTIMIZER_HIDE_VAR(ptr2);
|
|
|
|
/* Must be accessible for all modes. */
|
|
ptr2[size2 - 1] = 'x';
|
|
|
|
/* Generic mode is precise, so unaligned size2 must be inaccessible. */
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');
|
|
|
|
/* For all modes first aligned offset after size2 must be inaccessible. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');
|
|
|
|
/*
|
|
* For all modes all size2, middle, and size1 should land in separate
|
|
* granules and thus the latter two offsets should be inaccessible.
|
|
*/
|
|
KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
|
|
round_down(middle, KASAN_GRANULE_SIZE));
|
|
KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
|
|
round_down(size1, KASAN_GRANULE_SIZE));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void krealloc_more_oob(struct kunit *test)
|
|
{
|
|
krealloc_more_oob_helper(test, 201, 235);
|
|
}
|
|
|
|
static void krealloc_less_oob(struct kunit *test)
|
|
{
|
|
krealloc_less_oob_helper(test, 235, 201);
|
|
}
|
|
|
|
static void krealloc_large_more_oob(struct kunit *test)
|
|
{
|
|
krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
|
|
KMALLOC_MAX_CACHE_SIZE + 235);
|
|
}
|
|
|
|
static void krealloc_large_less_oob(struct kunit *test)
|
|
{
|
|
krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
|
|
KMALLOC_MAX_CACHE_SIZE + 201);
|
|
}
|
|
|
|
/*
|
|
* Check that krealloc() detects a use-after-free, returns NULL,
|
|
* and doesn't unpoison the freed object.
|
|
*/
|
|
static void krealloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
int size1 = 201;
|
|
int size2 = 235;
|
|
|
|
ptr1 = kmalloc(size1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
kfree(ptr1);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
|
|
KUNIT_ASSERT_NULL(test, ptr2);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
|
|
}
|
|
|
|
static void kmalloc_oob_16(struct kunit *test)
|
|
{
|
|
struct {
|
|
u64 words[2];
|
|
} *ptr1, *ptr2;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
/* This test is specifically crafted for the generic mode. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
/* RELOC_HIDE to prevent gcc from warning about short alloc */
|
|
ptr1 = RELOC_HIDE(kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL), 0);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr1);
|
|
OPTIMIZER_HIDE_VAR(ptr2);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
|
|
kfree(ptr1);
|
|
kfree(ptr2);
|
|
}
|
|
|
|
static void kmalloc_uaf_16(struct kunit *test)
|
|
{
|
|
struct {
|
|
u64 words[2];
|
|
} *ptr1, *ptr2;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
kfree(ptr2);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
|
|
kfree(ptr1);
|
|
}
|
|
|
|
/*
|
|
* Note: in the memset tests below, the written range touches both valid and
|
|
* invalid memory. This makes sure that the instrumentation does not only check
|
|
* the starting address but the whole range.
|
|
*/
|
|
|
|
static void kmalloc_oob_memset_2(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
size_t memset_size = 2;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
OPTIMIZER_HIDE_VAR(memset_size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, memset_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_4(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
size_t memset_size = 4;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
OPTIMIZER_HIDE_VAR(memset_size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, memset_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_8(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
size_t memset_size = 8;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
OPTIMIZER_HIDE_VAR(memset_size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, memset_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_memset_16(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
size_t memset_size = 16;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
OPTIMIZER_HIDE_VAR(memset_size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, memset_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_oob_in_memset(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
memset(ptr, 0, size + KASAN_GRANULE_SIZE));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_memmove_negative_size(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 64;
|
|
size_t invalid_size = -2;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
/*
|
|
* Hardware tag-based mode doesn't check memmove for negative size.
|
|
* As a result, this test introduces a side-effect memory corruption,
|
|
* which can result in a crash.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
memset((char *)ptr, 0, 64);
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(invalid_size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
memmove((char *)ptr, (char *)ptr + 4, invalid_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_memmove_invalid_size(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 64;
|
|
size_t invalid_size = size;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
memset((char *)ptr, 0, 64);
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(invalid_size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
memmove((char *)ptr, (char *)ptr + 4, invalid_size));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kmalloc_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 10;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
|
|
}
|
|
|
|
static void kmalloc_uaf_memset(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 33;
|
|
|
|
KASAN_TEST_NEEDS_CHECKED_MEMINTRINSICS(test);
|
|
|
|
/*
|
|
* Only generic KASAN uses quarantine, which is required to avoid a
|
|
* kernel memory corruption this test causes.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
|
|
}
|
|
|
|
static void kmalloc_uaf2(struct kunit *test)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t size = 43;
|
|
int counter = 0;
|
|
|
|
again:
|
|
ptr1 = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
|
|
kfree(ptr1);
|
|
|
|
ptr2 = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
|
|
/*
|
|
* For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
|
|
* Allow up to 16 attempts at generating different tags.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
|
|
kfree(ptr2);
|
|
goto again;
|
|
}
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
|
|
KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);
|
|
|
|
kfree(ptr2);
|
|
}
|
|
|
|
/*
|
|
* Check that KASAN detects use-after-free when another object was allocated in
|
|
* the same slot. Relevant for the tag-based modes, which do not use quarantine.
|
|
*/
|
|
static void kmalloc_uaf3(struct kunit *test)
|
|
{
|
|
char *ptr1, *ptr2;
|
|
size_t size = 100;
|
|
|
|
/* This test is specifically crafted for tag-based modes. */
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr1 = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
|
|
kfree(ptr1);
|
|
|
|
ptr2 = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
|
|
kfree(ptr2);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[8]);
|
|
}
|
|
|
|
static void kasan_atomics_helper(struct kunit *test, void *unsafe, void *safe)
|
|
{
|
|
int *i_unsafe = unsafe;
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, READ_ONCE(*i_unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, WRITE_ONCE(*i_unsafe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, smp_load_acquire(i_unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, smp_store_release(i_unsafe, 42));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_read(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_set(unsafe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_add(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_and(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_andnot(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_or(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_xor(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_xchg(unsafe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_cmpxchg(unsafe, 21, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(unsafe, safe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_try_cmpxchg(safe, unsafe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_sub_and_test(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_and_test(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_and_test(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_negative(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_add_unless(unsafe, 21, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_not_zero(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_inc_unless_negative(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_unless_positive(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_dec_if_positive(unsafe));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_read(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_set(unsafe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_and(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_andnot(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_or(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xor(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_xchg(unsafe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_cmpxchg(unsafe, 21, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(unsafe, safe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_try_cmpxchg(safe, unsafe, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_sub_and_test(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_and_test(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_and_test(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_negative(42, unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_add_unless(unsafe, 21, 42));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_not_zero(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_inc_unless_negative(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_unless_positive(unsafe));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, atomic_long_dec_if_positive(unsafe));
|
|
}
|
|
|
|
static void kasan_atomics(struct kunit *test)
|
|
{
|
|
void *a1, *a2;
|
|
|
|
/*
|
|
* Just as with kasan_bitops_tags(), we allocate 48 bytes of memory such
|
|
* that the following 16 bytes will make up the redzone.
|
|
*/
|
|
a1 = kzalloc(48, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a1);
|
|
a2 = kzalloc(sizeof(atomic_long_t), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a2);
|
|
|
|
/* Use atomics to access the redzone. */
|
|
kasan_atomics_helper(test, a1 + 48, a2);
|
|
|
|
kfree(a1);
|
|
kfree(a2);
|
|
}
|
|
|
|
static void kmalloc_double_kzfree(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 16;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree_sensitive(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
|
|
}
|
|
|
|
/* Check that ksize() does NOT unpoison whole object. */
|
|
static void ksize_unpoisons_memory(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE - 5;
|
|
size_t real_size;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
real_size = ksize(ptr);
|
|
KUNIT_EXPECT_GT(test, real_size, size);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
|
|
/* These accesses shouldn't trigger a KASAN report. */
|
|
ptr[0] = 'x';
|
|
ptr[size - 1] = 'x';
|
|
|
|
/* These must trigger a KASAN report. */
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size + 5]);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size - 1]);
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
/*
|
|
* Check that a use-after-free is detected by ksize() and via normal accesses
|
|
* after it.
|
|
*/
|
|
static void ksize_uaf(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
int size = 128 - KASAN_GRANULE_SIZE;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
kfree(ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
|
|
}
|
|
|
|
/*
|
|
* The two tests below check that Generic KASAN prints auxiliary stack traces
|
|
* for RCU callbacks and workqueues. The reports need to be inspected manually.
|
|
*
|
|
* These tests are still enabled for other KASAN modes to make sure that all
|
|
* modes report bad accesses in tested scenarios.
|
|
*/
|
|
|
|
static struct kasan_rcu_info {
|
|
int i;
|
|
struct rcu_head rcu;
|
|
} *global_rcu_ptr;
|
|
|
|
static void rcu_uaf_reclaim(struct rcu_head *rp)
|
|
{
|
|
struct kasan_rcu_info *fp =
|
|
container_of(rp, struct kasan_rcu_info, rcu);
|
|
|
|
kfree(fp);
|
|
((volatile struct kasan_rcu_info *)fp)->i;
|
|
}
|
|
|
|
static void rcu_uaf(struct kunit *test)
|
|
{
|
|
struct kasan_rcu_info *ptr;
|
|
|
|
ptr = kmalloc(sizeof(struct kasan_rcu_info), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
global_rcu_ptr = rcu_dereference_protected(
|
|
(struct kasan_rcu_info __rcu *)ptr, NULL);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
call_rcu(&global_rcu_ptr->rcu, rcu_uaf_reclaim);
|
|
rcu_barrier());
|
|
}
|
|
|
|
static void workqueue_uaf_work(struct work_struct *work)
|
|
{
|
|
kfree(work);
|
|
}
|
|
|
|
static void workqueue_uaf(struct kunit *test)
|
|
{
|
|
struct workqueue_struct *workqueue;
|
|
struct work_struct *work;
|
|
|
|
workqueue = create_workqueue("kasan_workqueue_test");
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, workqueue);
|
|
|
|
work = kmalloc(sizeof(struct work_struct), GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, work);
|
|
|
|
INIT_WORK(work, workqueue_uaf_work);
|
|
queue_work(workqueue, work);
|
|
destroy_workqueue(workqueue);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
((volatile struct work_struct *)work)->data);
|
|
}
|
|
|
|
static void kfree_via_page(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
struct page *page;
|
|
unsigned long offset;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
page = virt_to_page(ptr);
|
|
offset = offset_in_page(ptr);
|
|
kfree(page_address(page) + offset);
|
|
}
|
|
|
|
static void kfree_via_phys(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 8;
|
|
phys_addr_t phys;
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
phys = virt_to_phys(ptr);
|
|
kfree(phys_to_virt(phys));
|
|
}
|
|
|
|
static void kmem_cache_oob(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);
|
|
|
|
kmem_cache_free(cache, p);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_double_free(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
kmem_cache_free(cache, p);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_invalid_free(struct kunit *test)
|
|
{
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
|
|
NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
/* Trigger invalid free, the object doesn't get freed. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));
|
|
|
|
/*
|
|
* Properly free the object to prevent the "Objects remaining in
|
|
* test_cache on __kmem_cache_shutdown" BUG failure.
|
|
*/
|
|
kmem_cache_free(cache, p);
|
|
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void empty_cache_ctor(void *object) { }
|
|
|
|
static void kmem_cache_double_destroy(struct kunit *test)
|
|
{
|
|
struct kmem_cache *cache;
|
|
|
|
/* Provide a constructor to prevent cache merging. */
|
|
cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
kmem_cache_destroy(cache);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
|
|
}
|
|
|
|
static void kmem_cache_accounted(struct kunit *test)
|
|
{
|
|
int i;
|
|
char *p;
|
|
size_t size = 200;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
/*
|
|
* Several allocations with a delay to allow for lazy per memcg kmem
|
|
* cache creation.
|
|
*/
|
|
for (i = 0; i < 5; i++) {
|
|
p = kmem_cache_alloc(cache, GFP_KERNEL);
|
|
if (!p)
|
|
goto free_cache;
|
|
|
|
kmem_cache_free(cache, p);
|
|
msleep(100);
|
|
}
|
|
|
|
free_cache:
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void kmem_cache_bulk(struct kunit *test)
|
|
{
|
|
struct kmem_cache *cache;
|
|
size_t size = 200;
|
|
char *p[10];
|
|
bool ret;
|
|
int i;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
|
|
if (!ret) {
|
|
kunit_err(test, "Allocation failed: %s\n", __func__);
|
|
kmem_cache_destroy(cache);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(p); i++)
|
|
p[i][0] = p[i][size - 1] = 42;
|
|
|
|
kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void *mempool_prepare_kmalloc(struct kunit *test, mempool_t *pool, size_t size)
|
|
{
|
|
int pool_size = 4;
|
|
int ret;
|
|
void *elem;
|
|
|
|
memset(pool, 0, sizeof(*pool));
|
|
ret = mempool_init_kmalloc_pool(pool, pool_size, size);
|
|
KUNIT_ASSERT_EQ(test, ret, 0);
|
|
|
|
/*
|
|
* Allocate one element to prevent mempool from freeing elements to the
|
|
* underlying allocator and instead make it add them to the element
|
|
* list when the tests trigger double-free and invalid-free bugs.
|
|
* This allows testing KASAN annotations in add_element().
|
|
*/
|
|
elem = mempool_alloc_preallocated(pool);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
|
|
|
|
return elem;
|
|
}
|
|
|
|
static struct kmem_cache *mempool_prepare_slab(struct kunit *test, mempool_t *pool, size_t size)
|
|
{
|
|
struct kmem_cache *cache;
|
|
int pool_size = 4;
|
|
int ret;
|
|
|
|
cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
|
|
|
|
memset(pool, 0, sizeof(*pool));
|
|
ret = mempool_init_slab_pool(pool, pool_size, cache);
|
|
KUNIT_ASSERT_EQ(test, ret, 0);
|
|
|
|
/*
|
|
* Do not allocate one preallocated element, as we skip the double-free
|
|
* and invalid-free tests for slab mempool for simplicity.
|
|
*/
|
|
|
|
return cache;
|
|
}
|
|
|
|
static void *mempool_prepare_page(struct kunit *test, mempool_t *pool, int order)
|
|
{
|
|
int pool_size = 4;
|
|
int ret;
|
|
void *elem;
|
|
|
|
memset(pool, 0, sizeof(*pool));
|
|
ret = mempool_init_page_pool(pool, pool_size, order);
|
|
KUNIT_ASSERT_EQ(test, ret, 0);
|
|
|
|
elem = mempool_alloc_preallocated(pool);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
|
|
|
|
return elem;
|
|
}
|
|
|
|
static void mempool_oob_right_helper(struct kunit *test, mempool_t *pool, size_t size)
|
|
{
|
|
char *elem;
|
|
|
|
elem = mempool_alloc_preallocated(pool);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
|
|
|
|
OPTIMIZER_HIDE_VAR(elem);
|
|
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
((volatile char *)&elem[size])[0]);
|
|
else
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
((volatile char *)&elem[round_up(size, KASAN_GRANULE_SIZE)])[0]);
|
|
|
|
mempool_free(elem, pool);
|
|
}
|
|
|
|
static void mempool_kmalloc_oob_right(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = 128 - KASAN_GRANULE_SIZE - 5;
|
|
void *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_kmalloc(test, &pool, size);
|
|
|
|
mempool_oob_right_helper(test, &pool, size);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_kmalloc_large_oob_right(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
|
|
void *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_kmalloc(test, &pool, size);
|
|
|
|
mempool_oob_right_helper(test, &pool, size);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_slab_oob_right(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = 123;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = mempool_prepare_slab(test, &pool, size);
|
|
|
|
mempool_oob_right_helper(test, &pool, size);
|
|
|
|
mempool_exit(&pool);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
/*
|
|
* Skip the out-of-bounds test for page mempool. With Generic KASAN, page
|
|
* allocations have no redzones, and thus the out-of-bounds detection is not
|
|
* guaranteed; see https://bugzilla.kernel.org/show_bug.cgi?id=210503. With
|
|
* the tag-based KASAN modes, the neighboring allocation might have the same
|
|
* tag; see https://bugzilla.kernel.org/show_bug.cgi?id=203505.
|
|
*/
|
|
|
|
static void mempool_uaf_helper(struct kunit *test, mempool_t *pool, bool page)
|
|
{
|
|
char *elem, *ptr;
|
|
|
|
elem = mempool_alloc_preallocated(pool);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
|
|
|
|
mempool_free(elem, pool);
|
|
|
|
ptr = page ? page_address((struct page *)elem) : elem;
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
|
|
}
|
|
|
|
static void mempool_kmalloc_uaf(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = 128;
|
|
void *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_kmalloc(test, &pool, size);
|
|
|
|
mempool_uaf_helper(test, &pool, false);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_kmalloc_large_uaf(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
|
|
void *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_kmalloc(test, &pool, size);
|
|
|
|
mempool_uaf_helper(test, &pool, false);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_slab_uaf(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = 123;
|
|
struct kmem_cache *cache;
|
|
|
|
cache = mempool_prepare_slab(test, &pool, size);
|
|
|
|
mempool_uaf_helper(test, &pool, false);
|
|
|
|
mempool_exit(&pool);
|
|
kmem_cache_destroy(cache);
|
|
}
|
|
|
|
static void mempool_page_alloc_uaf(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
int order = 2;
|
|
void *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_page(test, &pool, order);
|
|
|
|
mempool_uaf_helper(test, &pool, true);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_double_free_helper(struct kunit *test, mempool_t *pool)
|
|
{
|
|
char *elem;
|
|
|
|
elem = mempool_alloc_preallocated(pool);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
|
|
|
|
mempool_free(elem, pool);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem, pool));
|
|
}
|
|
|
|
static void mempool_kmalloc_double_free(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = 128;
|
|
char *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_kmalloc(test, &pool, size);
|
|
|
|
mempool_double_free_helper(test, &pool);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_kmalloc_large_double_free(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
|
|
char *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_kmalloc(test, &pool, size);
|
|
|
|
mempool_double_free_helper(test, &pool);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_page_alloc_double_free(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
int order = 2;
|
|
char *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_page(test, &pool, order);
|
|
|
|
mempool_double_free_helper(test, &pool);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_kmalloc_invalid_free_helper(struct kunit *test, mempool_t *pool)
|
|
{
|
|
char *elem;
|
|
|
|
elem = mempool_alloc_preallocated(pool);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, elem);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, mempool_free(elem + 1, pool));
|
|
|
|
mempool_free(elem, pool);
|
|
}
|
|
|
|
static void mempool_kmalloc_invalid_free(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = 128;
|
|
char *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_kmalloc(test, &pool, size);
|
|
|
|
mempool_kmalloc_invalid_free_helper(test, &pool);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
static void mempool_kmalloc_large_invalid_free(struct kunit *test)
|
|
{
|
|
mempool_t pool;
|
|
size_t size = KMALLOC_MAX_CACHE_SIZE + 1;
|
|
char *extra_elem;
|
|
|
|
extra_elem = mempool_prepare_kmalloc(test, &pool, size);
|
|
|
|
mempool_kmalloc_invalid_free_helper(test, &pool);
|
|
|
|
mempool_free(extra_elem, &pool);
|
|
mempool_exit(&pool);
|
|
}
|
|
|
|
/*
|
|
* Skip the invalid-free test for page mempool. The invalid-free detection only
|
|
* works for compound pages and mempool preallocates all page elements without
|
|
* the __GFP_COMP flag.
|
|
*/
|
|
|
|
static char global_array[10];
|
|
|
|
static void kasan_global_oob_right(struct kunit *test)
|
|
{
|
|
/*
|
|
* Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
|
|
* from failing here and panicking the kernel, access the array via a
|
|
* volatile pointer, which will prevent the compiler from being able to
|
|
* determine the array bounds.
|
|
*
|
|
* This access uses a volatile pointer to char (char *volatile) rather
|
|
* than the more conventional pointer to volatile char (volatile char *)
|
|
* because we want to prevent the compiler from making inferences about
|
|
* the pointer itself (i.e. its array bounds), not the data that it
|
|
* refers to.
|
|
*/
|
|
char *volatile array = global_array;
|
|
char *p = &array[ARRAY_SIZE(global_array) + 3];
|
|
|
|
/* Only generic mode instruments globals. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_global_oob_left(struct kunit *test)
|
|
{
|
|
char *volatile array = global_array;
|
|
char *p = array - 3;
|
|
|
|
/*
|
|
* GCC is known to fail this test, skip it.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_stack_oob(struct kunit *test)
|
|
{
|
|
char stack_array[10];
|
|
/* See comment in kasan_global_oob_right. */
|
|
char *volatile array = stack_array;
|
|
char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_alloca_oob_left(struct kunit *test)
|
|
{
|
|
volatile int i = 10;
|
|
char alloca_array[i];
|
|
/* See comment in kasan_global_oob_right. */
|
|
char *volatile array = alloca_array;
|
|
char *p = array - 1;
|
|
|
|
/* Only generic mode instruments dynamic allocas. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_alloca_oob_right(struct kunit *test)
|
|
{
|
|
volatile int i = 10;
|
|
char alloca_array[i];
|
|
/* See comment in kasan_global_oob_right. */
|
|
char *volatile array = alloca_array;
|
|
char *p = array + i;
|
|
|
|
/* Only generic mode instruments dynamic allocas. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
|
|
}
|
|
|
|
static void kasan_memchr(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
if (OOB_TAG_OFF)
|
|
size = round_up(size, OOB_TAG_OFF);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
kasan_ptr_result = memchr(ptr, '1', size + 1));
|
|
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kasan_memcmp(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
int arr[9];
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
if (OOB_TAG_OFF)
|
|
size = round_up(size, OOB_TAG_OFF);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
memset(arr, 0, sizeof(arr));
|
|
|
|
OPTIMIZER_HIDE_VAR(ptr);
|
|
OPTIMIZER_HIDE_VAR(size);
|
|
KUNIT_EXPECT_KASAN_FAIL(test,
|
|
kasan_int_result = memcmp(ptr, arr, size+1));
|
|
kfree(ptr);
|
|
}
|
|
|
|
static void kasan_strings(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
size_t size = 24;
|
|
|
|
/*
|
|
* str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
|
|
* See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);
|
|
|
|
ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
kfree(ptr);
|
|
|
|
/*
|
|
* Try to cause only 1 invalid access (less spam in dmesg).
|
|
* For that we need ptr to point to zeroed byte.
|
|
* Skip metadata that could be stored in freed object so ptr
|
|
* will likely point to zeroed byte.
|
|
*/
|
|
ptr += 16;
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));
|
|
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
|
|
}
|
|
|
|
static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
|
|
{
|
|
KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
|
|
}
|
|
|
|
static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
|
|
{
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));
|
|
if (nr < 7)
|
|
KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
|
|
xor_unlock_is_negative_byte(1 << nr, addr));
|
|
}
|
|
|
|
static void kasan_bitops_generic(struct kunit *test)
|
|
{
|
|
long *bits;
|
|
|
|
/* This test is specifically crafted for the generic mode. */
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
|
|
|
|
/*
|
|
* Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
|
|
* this way we do not actually corrupt other memory.
|
|
*/
|
|
bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
|
|
|
|
/*
|
|
* Below calls try to access bit within allocated memory; however, the
|
|
* below accesses are still out-of-bounds, since bitops are defined to
|
|
* operate on the whole long the bit is in.
|
|
*/
|
|
kasan_bitops_modify(test, BITS_PER_LONG, bits);
|
|
|
|
/*
|
|
* Below calls try to access bit beyond allocated memory.
|
|
*/
|
|
kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);
|
|
|
|
kfree(bits);
|
|
}
|
|
|
|
static void kasan_bitops_tags(struct kunit *test)
|
|
{
|
|
long *bits;
|
|
|
|
/* This test is specifically crafted for tag-based modes. */
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
|
|
bits = kzalloc(48, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);
|
|
|
|
/* Do the accesses past the 48 allocated bytes, but within the redone. */
|
|
kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
|
|
kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);
|
|
|
|
kfree(bits);
|
|
}
|
|
|
|
static void vmalloc_helpers_tags(struct kunit *test)
|
|
{
|
|
void *ptr;
|
|
|
|
/* This test is intended for tag-based modes. */
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
|
|
|
|
if (!kasan_vmalloc_enabled())
|
|
kunit_skip(test, "Test requires kasan.vmalloc=on");
|
|
|
|
ptr = vmalloc(PAGE_SIZE);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
/* Check that the returned pointer is tagged. */
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* Make sure exported vmalloc helpers handle tagged pointers. */
|
|
KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));
|
|
|
|
#if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
|
|
{
|
|
int rv;
|
|
|
|
/* Make sure vmalloc'ed memory permissions can be changed. */
|
|
rv = set_memory_ro((unsigned long)ptr, 1);
|
|
KUNIT_ASSERT_GE(test, rv, 0);
|
|
rv = set_memory_rw((unsigned long)ptr, 1);
|
|
KUNIT_ASSERT_GE(test, rv, 0);
|
|
}
|
|
#endif
|
|
|
|
vfree(ptr);
|
|
}
|
|
|
|
static void vmalloc_oob(struct kunit *test)
|
|
{
|
|
char *v_ptr, *p_ptr;
|
|
struct page *page;
|
|
size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
|
|
|
|
if (!kasan_vmalloc_enabled())
|
|
kunit_skip(test, "Test requires kasan.vmalloc=on");
|
|
|
|
v_ptr = vmalloc(size);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
|
|
|
|
OPTIMIZER_HIDE_VAR(v_ptr);
|
|
|
|
/*
|
|
* We have to be careful not to hit the guard page in vmalloc tests.
|
|
* The MMU will catch that and crash us.
|
|
*/
|
|
|
|
/* Make sure in-bounds accesses are valid. */
|
|
v_ptr[0] = 0;
|
|
v_ptr[size - 1] = 0;
|
|
|
|
/*
|
|
* An unaligned access past the requested vmalloc size.
|
|
* Only generic KASAN can precisely detect these.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);
|
|
|
|
/* An aligned access into the first out-of-bounds granule. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);
|
|
|
|
/* Check that in-bounds accesses to the physical page are valid. */
|
|
page = vmalloc_to_page(v_ptr);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
|
|
p_ptr = page_address(page);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
|
|
p_ptr[0] = 0;
|
|
|
|
vfree(v_ptr);
|
|
|
|
/*
|
|
* We can't check for use-after-unmap bugs in this nor in the following
|
|
* vmalloc tests, as the page might be fully unmapped and accessing it
|
|
* will crash the kernel.
|
|
*/
|
|
}
|
|
|
|
static void vmap_tags(struct kunit *test)
|
|
{
|
|
char *p_ptr, *v_ptr;
|
|
struct page *p_page, *v_page;
|
|
|
|
/*
|
|
* This test is specifically crafted for the software tag-based mode,
|
|
* the only tag-based mode that poisons vmap mappings.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);
|
|
|
|
if (!kasan_vmalloc_enabled())
|
|
kunit_skip(test, "Test requires kasan.vmalloc=on");
|
|
|
|
p_page = alloc_pages(GFP_KERNEL, 1);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
|
|
p_ptr = page_address(p_page);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
|
|
|
|
v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
|
|
|
|
/*
|
|
* We can't check for out-of-bounds bugs in this nor in the following
|
|
* vmalloc tests, as allocations have page granularity and accessing
|
|
* the guard page will crash the kernel.
|
|
*/
|
|
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* Make sure that in-bounds accesses through both pointers work. */
|
|
*p_ptr = 0;
|
|
*v_ptr = 0;
|
|
|
|
/* Make sure vmalloc_to_page() correctly recovers the page pointer. */
|
|
v_page = vmalloc_to_page(v_ptr);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
|
|
KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);
|
|
|
|
vunmap(v_ptr);
|
|
free_pages((unsigned long)p_ptr, 1);
|
|
}
|
|
|
|
static void vm_map_ram_tags(struct kunit *test)
|
|
{
|
|
char *p_ptr, *v_ptr;
|
|
struct page *page;
|
|
|
|
/*
|
|
* This test is specifically crafted for the software tag-based mode,
|
|
* the only tag-based mode that poisons vm_map_ram mappings.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
|
|
|
|
page = alloc_pages(GFP_KERNEL, 1);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
|
|
p_ptr = page_address(page);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
|
|
|
|
v_ptr = vm_map_ram(&page, 1, -1);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);
|
|
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* Make sure that in-bounds accesses through both pointers work. */
|
|
*p_ptr = 0;
|
|
*v_ptr = 0;
|
|
|
|
vm_unmap_ram(v_ptr, 1);
|
|
free_pages((unsigned long)p_ptr, 1);
|
|
}
|
|
|
|
static void vmalloc_percpu(struct kunit *test)
|
|
{
|
|
char __percpu *ptr;
|
|
int cpu;
|
|
|
|
/*
|
|
* This test is specifically crafted for the software tag-based mode,
|
|
* the only tag-based mode that poisons percpu mappings.
|
|
*/
|
|
KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);
|
|
|
|
ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
char *c_ptr = per_cpu_ptr(ptr, cpu);
|
|
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* Make sure that in-bounds accesses don't crash the kernel. */
|
|
*c_ptr = 0;
|
|
}
|
|
|
|
free_percpu(ptr);
|
|
}
|
|
|
|
/*
|
|
* Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
|
|
* KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
|
|
* modes.
|
|
*/
|
|
static void match_all_not_assigned(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
struct page *pages;
|
|
int i, size, order;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
size = get_random_u32_inclusive(1, 1024);
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
kfree(ptr);
|
|
}
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
order = get_random_u32_inclusive(1, 4);
|
|
pages = alloc_pages(GFP_KERNEL, order);
|
|
ptr = page_address(pages);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
free_pages((unsigned long)ptr, order);
|
|
}
|
|
|
|
if (!kasan_vmalloc_enabled())
|
|
return;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
size = get_random_u32_inclusive(1, 1024);
|
|
ptr = vmalloc(size);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
|
|
KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
vfree(ptr);
|
|
}
|
|
}
|
|
|
|
/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
|
|
static void match_all_ptr_tag(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
u8 tag;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(128, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
|
|
/* Backup the assigned tag. */
|
|
tag = get_tag(ptr);
|
|
KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* Reset the tag to 0xff.*/
|
|
ptr = set_tag(ptr, KASAN_TAG_KERNEL);
|
|
|
|
/* This access shouldn't trigger a KASAN report. */
|
|
*ptr = 0;
|
|
|
|
/* Recover the pointer tag and free. */
|
|
ptr = set_tag(ptr, tag);
|
|
kfree(ptr);
|
|
}
|
|
|
|
/* Check that there are no match-all memory tags for tag-based modes. */
|
|
static void match_all_mem_tag(struct kunit *test)
|
|
{
|
|
char *ptr;
|
|
int tag;
|
|
|
|
KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);
|
|
|
|
ptr = kmalloc(128, GFP_KERNEL);
|
|
KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
|
|
KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
|
|
|
|
/* For each possible tag value not matching the pointer tag. */
|
|
for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
|
|
/*
|
|
* For Software Tag-Based KASAN, skip the majority of tag
|
|
* values to avoid the test printing too many reports.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
|
|
tag >= KASAN_TAG_MIN + 8 && tag <= KASAN_TAG_KERNEL - 8)
|
|
continue;
|
|
|
|
if (tag == get_tag(ptr))
|
|
continue;
|
|
|
|
/* Mark the first memory granule with the chosen memory tag. */
|
|
kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);
|
|
|
|
/* This access must cause a KASAN report. */
|
|
KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
|
|
}
|
|
|
|
/* Recover the memory tag and free. */
|
|
kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
|
|
kfree(ptr);
|
|
}
|
|
|
|
static struct kunit_case kasan_kunit_test_cases[] = {
|
|
KUNIT_CASE(kmalloc_oob_right),
|
|
KUNIT_CASE(kmalloc_oob_left),
|
|
KUNIT_CASE(kmalloc_node_oob_right),
|
|
KUNIT_CASE(kmalloc_big_oob_right),
|
|
KUNIT_CASE(kmalloc_large_oob_right),
|
|
KUNIT_CASE(kmalloc_large_uaf),
|
|
KUNIT_CASE(kmalloc_large_invalid_free),
|
|
KUNIT_CASE(page_alloc_oob_right),
|
|
KUNIT_CASE(page_alloc_uaf),
|
|
KUNIT_CASE(krealloc_more_oob),
|
|
KUNIT_CASE(krealloc_less_oob),
|
|
KUNIT_CASE(krealloc_large_more_oob),
|
|
KUNIT_CASE(krealloc_large_less_oob),
|
|
KUNIT_CASE(krealloc_uaf),
|
|
KUNIT_CASE(kmalloc_oob_16),
|
|
KUNIT_CASE(kmalloc_uaf_16),
|
|
KUNIT_CASE(kmalloc_oob_in_memset),
|
|
KUNIT_CASE(kmalloc_oob_memset_2),
|
|
KUNIT_CASE(kmalloc_oob_memset_4),
|
|
KUNIT_CASE(kmalloc_oob_memset_8),
|
|
KUNIT_CASE(kmalloc_oob_memset_16),
|
|
KUNIT_CASE(kmalloc_memmove_negative_size),
|
|
KUNIT_CASE(kmalloc_memmove_invalid_size),
|
|
KUNIT_CASE(kmalloc_uaf),
|
|
KUNIT_CASE(kmalloc_uaf_memset),
|
|
KUNIT_CASE(kmalloc_uaf2),
|
|
KUNIT_CASE(kmalloc_uaf3),
|
|
KUNIT_CASE(kmalloc_double_kzfree),
|
|
KUNIT_CASE(ksize_unpoisons_memory),
|
|
KUNIT_CASE(ksize_uaf),
|
|
KUNIT_CASE(rcu_uaf),
|
|
KUNIT_CASE(workqueue_uaf),
|
|
KUNIT_CASE(kfree_via_page),
|
|
KUNIT_CASE(kfree_via_phys),
|
|
KUNIT_CASE(kmem_cache_oob),
|
|
KUNIT_CASE(kmem_cache_double_free),
|
|
KUNIT_CASE(kmem_cache_invalid_free),
|
|
KUNIT_CASE(kmem_cache_double_destroy),
|
|
KUNIT_CASE(kmem_cache_accounted),
|
|
KUNIT_CASE(kmem_cache_bulk),
|
|
KUNIT_CASE(mempool_kmalloc_oob_right),
|
|
KUNIT_CASE(mempool_kmalloc_large_oob_right),
|
|
KUNIT_CASE(mempool_slab_oob_right),
|
|
KUNIT_CASE(mempool_kmalloc_uaf),
|
|
KUNIT_CASE(mempool_kmalloc_large_uaf),
|
|
KUNIT_CASE(mempool_slab_uaf),
|
|
KUNIT_CASE(mempool_page_alloc_uaf),
|
|
KUNIT_CASE(mempool_kmalloc_double_free),
|
|
KUNIT_CASE(mempool_kmalloc_large_double_free),
|
|
KUNIT_CASE(mempool_page_alloc_double_free),
|
|
KUNIT_CASE(mempool_kmalloc_invalid_free),
|
|
KUNIT_CASE(mempool_kmalloc_large_invalid_free),
|
|
KUNIT_CASE(kasan_global_oob_right),
|
|
KUNIT_CASE(kasan_global_oob_left),
|
|
KUNIT_CASE(kasan_stack_oob),
|
|
KUNIT_CASE(kasan_alloca_oob_left),
|
|
KUNIT_CASE(kasan_alloca_oob_right),
|
|
KUNIT_CASE(kasan_memchr),
|
|
KUNIT_CASE(kasan_memcmp),
|
|
KUNIT_CASE(kasan_strings),
|
|
KUNIT_CASE(kasan_bitops_generic),
|
|
KUNIT_CASE(kasan_bitops_tags),
|
|
KUNIT_CASE(kasan_atomics),
|
|
KUNIT_CASE(vmalloc_helpers_tags),
|
|
KUNIT_CASE(vmalloc_oob),
|
|
KUNIT_CASE(vmap_tags),
|
|
KUNIT_CASE(vm_map_ram_tags),
|
|
KUNIT_CASE(vmalloc_percpu),
|
|
KUNIT_CASE(match_all_not_assigned),
|
|
KUNIT_CASE(match_all_ptr_tag),
|
|
KUNIT_CASE(match_all_mem_tag),
|
|
{}
|
|
};
|
|
|
|
static struct kunit_suite kasan_kunit_test_suite = {
|
|
.name = "kasan",
|
|
.test_cases = kasan_kunit_test_cases,
|
|
.exit = kasan_test_exit,
|
|
.suite_init = kasan_suite_init,
|
|
.suite_exit = kasan_suite_exit,
|
|
};
|
|
|
|
kunit_test_suite(kasan_kunit_test_suite);
|
|
|
|
MODULE_LICENSE("GPL");
|