linux/arch/x86/kvm/mmu/mmu.c
Sean Christopherson 8d20bd6381 KVM: x86: Unify pr_fmt to use module name for all KVM modules
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code.  In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.

Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.

Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.

Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl().  But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29 15:47:35 -05:00

7063 lines
193 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* MMU support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "irq.h"
#include "ioapic.h"
#include "mmu.h"
#include "mmu_internal.h"
#include "tdp_mmu.h"
#include "x86.h"
#include "kvm_cache_regs.h"
#include "smm.h"
#include "kvm_emulate.h"
#include "cpuid.h"
#include "spte.h"
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/moduleparam.h>
#include <linux/export.h>
#include <linux/swap.h>
#include <linux/hugetlb.h>
#include <linux/compiler.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include <linux/uaccess.h>
#include <linux/hash.h>
#include <linux/kern_levels.h>
#include <linux/kthread.h>
#include <asm/page.h>
#include <asm/memtype.h>
#include <asm/cmpxchg.h>
#include <asm/io.h>
#include <asm/set_memory.h>
#include <asm/vmx.h>
#include <asm/kvm_page_track.h>
#include "trace.h"
extern bool itlb_multihit_kvm_mitigation;
int __read_mostly nx_huge_pages = -1;
static uint __read_mostly nx_huge_pages_recovery_period_ms;
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
#endif
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
static const struct kernel_param_ops nx_huge_pages_ops = {
.set = set_nx_huge_pages,
.get = param_get_bool,
};
static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
.set = set_nx_huge_pages_recovery_param,
.get = param_get_uint,
};
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
&nx_huge_pages_recovery_period_ms, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
/*
* When setting this variable to true it enables Two-Dimensional-Paging
* where the hardware walks 2 page tables:
* 1. the guest-virtual to guest-physical
* 2. while doing 1. it walks guest-physical to host-physical
* If the hardware supports that we don't need to do shadow paging.
*/
bool tdp_enabled = false;
bool __ro_after_init tdp_mmu_allowed;
#ifdef CONFIG_X86_64
bool __read_mostly tdp_mmu_enabled = true;
module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
#endif
static int max_huge_page_level __read_mostly;
static int tdp_root_level __read_mostly;
static int max_tdp_level __read_mostly;
#ifdef MMU_DEBUG
bool dbg = 0;
module_param(dbg, bool, 0644);
#endif
#define PTE_PREFETCH_NUM 8
#include <trace/events/kvm.h>
/* make pte_list_desc fit well in cache lines */
#define PTE_LIST_EXT 14
/*
* Slight optimization of cacheline layout, by putting `more' and `spte_count'
* at the start; then accessing it will only use one single cacheline for
* either full (entries==PTE_LIST_EXT) case or entries<=6.
*/
struct pte_list_desc {
struct pte_list_desc *more;
/*
* Stores number of entries stored in the pte_list_desc. No need to be
* u64 but just for easier alignment. When PTE_LIST_EXT, means full.
*/
u64 spte_count;
u64 *sptes[PTE_LIST_EXT];
};
struct kvm_shadow_walk_iterator {
u64 addr;
hpa_t shadow_addr;
u64 *sptep;
int level;
unsigned index;
};
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
(_root), (_addr)); \
shadow_walk_okay(&(_walker)); \
shadow_walk_next(&(_walker)))
#define for_each_shadow_entry(_vcpu, _addr, _walker) \
for (shadow_walk_init(&(_walker), _vcpu, _addr); \
shadow_walk_okay(&(_walker)); \
shadow_walk_next(&(_walker)))
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
for (shadow_walk_init(&(_walker), _vcpu, _addr); \
shadow_walk_okay(&(_walker)) && \
({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
__shadow_walk_next(&(_walker), spte))
static struct kmem_cache *pte_list_desc_cache;
struct kmem_cache *mmu_page_header_cache;
static struct percpu_counter kvm_total_used_mmu_pages;
static void mmu_spte_set(u64 *sptep, u64 spte);
struct kvm_mmu_role_regs {
const unsigned long cr0;
const unsigned long cr4;
const u64 efer;
};
#define CREATE_TRACE_POINTS
#include "mmutrace.h"
/*
* Yes, lot's of underscores. They're a hint that you probably shouldn't be
* reading from the role_regs. Once the root_role is constructed, it becomes
* the single source of truth for the MMU's state.
*/
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
static inline bool __maybe_unused \
____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
{ \
return !!(regs->reg & flag); \
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
/*
* The MMU itself (with a valid role) is the single source of truth for the
* MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
* regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
* and the vCPU may be incorrect/irrelevant.
*/
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
{ \
return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
}
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
static inline bool is_cr0_pg(struct kvm_mmu *mmu)
{
return mmu->cpu_role.base.level > 0;
}
static inline bool is_cr4_pae(struct kvm_mmu *mmu)
{
return !mmu->cpu_role.base.has_4_byte_gpte;
}
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu_role_regs regs = {
.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
.efer = vcpu->arch.efer,
};
return regs;
}
static inline bool kvm_available_flush_tlb_with_range(void)
{
return kvm_x86_ops.tlb_remote_flush_with_range;
}
static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
struct kvm_tlb_range *range)
{
int ret = -ENOTSUPP;
if (range && kvm_x86_ops.tlb_remote_flush_with_range)
ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
if (ret)
kvm_flush_remote_tlbs(kvm);
}
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
u64 start_gfn, u64 pages)
{
struct kvm_tlb_range range;
range.start_gfn = start_gfn;
range.pages = pages;
kvm_flush_remote_tlbs_with_range(kvm, &range);
}
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
unsigned int access)
{
u64 spte = make_mmio_spte(vcpu, gfn, access);
trace_mark_mmio_spte(sptep, gfn, spte);
mmu_spte_set(sptep, spte);
}
static gfn_t get_mmio_spte_gfn(u64 spte)
{
u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
& shadow_nonpresent_or_rsvd_mask;
return gpa >> PAGE_SHIFT;
}
static unsigned get_mmio_spte_access(u64 spte)
{
return spte & shadow_mmio_access_mask;
}
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
{
u64 kvm_gen, spte_gen, gen;
gen = kvm_vcpu_memslots(vcpu)->generation;
if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
return false;
kvm_gen = gen & MMIO_SPTE_GEN_MASK;
spte_gen = get_mmio_spte_generation(spte);
trace_check_mmio_spte(spte, kvm_gen, spte_gen);
return likely(kvm_gen == spte_gen);
}
static int is_cpuid_PSE36(void)
{
return 1;
}
#ifdef CONFIG_X86_64
static void __set_spte(u64 *sptep, u64 spte)
{
WRITE_ONCE(*sptep, spte);
}
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
WRITE_ONCE(*sptep, spte);
}
static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
return xchg(sptep, spte);
}
static u64 __get_spte_lockless(u64 *sptep)
{
return READ_ONCE(*sptep);
}
#else
union split_spte {
struct {
u32 spte_low;
u32 spte_high;
};
u64 spte;
};
static void count_spte_clear(u64 *sptep, u64 spte)
{
struct kvm_mmu_page *sp = sptep_to_sp(sptep);
if (is_shadow_present_pte(spte))
return;
/* Ensure the spte is completely set before we increase the count */
smp_wmb();
sp->clear_spte_count++;
}
static void __set_spte(u64 *sptep, u64 spte)
{
union split_spte *ssptep, sspte;
ssptep = (union split_spte *)sptep;
sspte = (union split_spte)spte;
ssptep->spte_high = sspte.spte_high;
/*
* If we map the spte from nonpresent to present, We should store
* the high bits firstly, then set present bit, so cpu can not
* fetch this spte while we are setting the spte.
*/
smp_wmb();
WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
}
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
union split_spte *ssptep, sspte;
ssptep = (union split_spte *)sptep;
sspte = (union split_spte)spte;
WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
/*
* If we map the spte from present to nonpresent, we should clear
* present bit firstly to avoid vcpu fetch the old high bits.
*/
smp_wmb();
ssptep->spte_high = sspte.spte_high;
count_spte_clear(sptep, spte);
}
static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
union split_spte *ssptep, sspte, orig;
ssptep = (union split_spte *)sptep;
sspte = (union split_spte)spte;
/* xchg acts as a barrier before the setting of the high bits */
orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
orig.spte_high = ssptep->spte_high;
ssptep->spte_high = sspte.spte_high;
count_spte_clear(sptep, spte);
return orig.spte;
}
/*
* The idea using the light way get the spte on x86_32 guest is from
* gup_get_pte (mm/gup.c).
*
* An spte tlb flush may be pending, because kvm_set_pte_rmap
* coalesces them and we are running out of the MMU lock. Therefore
* we need to protect against in-progress updates of the spte.
*
* Reading the spte while an update is in progress may get the old value
* for the high part of the spte. The race is fine for a present->non-present
* change (because the high part of the spte is ignored for non-present spte),
* but for a present->present change we must reread the spte.
*
* All such changes are done in two steps (present->non-present and
* non-present->present), hence it is enough to count the number of
* present->non-present updates: if it changed while reading the spte,
* we might have hit the race. This is done using clear_spte_count.
*/
static u64 __get_spte_lockless(u64 *sptep)
{
struct kvm_mmu_page *sp = sptep_to_sp(sptep);
union split_spte spte, *orig = (union split_spte *)sptep;
int count;
retry:
count = sp->clear_spte_count;
smp_rmb();
spte.spte_low = orig->spte_low;
smp_rmb();
spte.spte_high = orig->spte_high;
smp_rmb();
if (unlikely(spte.spte_low != orig->spte_low ||
count != sp->clear_spte_count))
goto retry;
return spte.spte;
}
#endif
/* Rules for using mmu_spte_set:
* Set the sptep from nonpresent to present.
* Note: the sptep being assigned *must* be either not present
* or in a state where the hardware will not attempt to update
* the spte.
*/
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
WARN_ON(is_shadow_present_pte(*sptep));
__set_spte(sptep, new_spte);
}
/*
* Update the SPTE (excluding the PFN), but do not track changes in its
* accessed/dirty status.
*/
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
{
u64 old_spte = *sptep;
WARN_ON(!is_shadow_present_pte(new_spte));
check_spte_writable_invariants(new_spte);
if (!is_shadow_present_pte(old_spte)) {
mmu_spte_set(sptep, new_spte);
return old_spte;
}
if (!spte_has_volatile_bits(old_spte))
__update_clear_spte_fast(sptep, new_spte);
else
old_spte = __update_clear_spte_slow(sptep, new_spte);
WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
return old_spte;
}
/* Rules for using mmu_spte_update:
* Update the state bits, it means the mapped pfn is not changed.
*
* Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
* TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
* spte, even though the writable spte might be cached on a CPU's TLB.
*
* Returns true if the TLB needs to be flushed
*/
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
bool flush = false;
u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
if (!is_shadow_present_pte(old_spte))
return false;
/*
* For the spte updated out of mmu-lock is safe, since
* we always atomically update it, see the comments in
* spte_has_volatile_bits().
*/
if (is_mmu_writable_spte(old_spte) &&
!is_writable_pte(new_spte))
flush = true;
/*
* Flush TLB when accessed/dirty states are changed in the page tables,
* to guarantee consistency between TLB and page tables.
*/
if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
flush = true;
kvm_set_pfn_accessed(spte_to_pfn(old_spte));
}
if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
flush = true;
kvm_set_pfn_dirty(spte_to_pfn(old_spte));
}
return flush;
}
/*
* Rules for using mmu_spte_clear_track_bits:
* It sets the sptep from present to nonpresent, and track the
* state bits, it is used to clear the last level sptep.
* Returns the old PTE.
*/
static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
{
kvm_pfn_t pfn;
u64 old_spte = *sptep;
int level = sptep_to_sp(sptep)->role.level;
struct page *page;
if (!is_shadow_present_pte(old_spte) ||
!spte_has_volatile_bits(old_spte))
__update_clear_spte_fast(sptep, 0ull);
else
old_spte = __update_clear_spte_slow(sptep, 0ull);
if (!is_shadow_present_pte(old_spte))
return old_spte;
kvm_update_page_stats(kvm, level, -1);
pfn = spte_to_pfn(old_spte);
/*
* KVM doesn't hold a reference to any pages mapped into the guest, and
* instead uses the mmu_notifier to ensure that KVM unmaps any pages
* before they are reclaimed. Sanity check that, if the pfn is backed
* by a refcounted page, the refcount is elevated.
*/
page = kvm_pfn_to_refcounted_page(pfn);
WARN_ON(page && !page_count(page));
if (is_accessed_spte(old_spte))
kvm_set_pfn_accessed(pfn);
if (is_dirty_spte(old_spte))
kvm_set_pfn_dirty(pfn);
return old_spte;
}
/*
* Rules for using mmu_spte_clear_no_track:
* Directly clear spte without caring the state bits of sptep,
* it is used to set the upper level spte.
*/
static void mmu_spte_clear_no_track(u64 *sptep)
{
__update_clear_spte_fast(sptep, 0ull);
}
static u64 mmu_spte_get_lockless(u64 *sptep)
{
return __get_spte_lockless(sptep);
}
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
u64 spte = mmu_spte_get_lockless(sptep);
if (!is_accessed_spte(spte))
return false;
if (spte_ad_enabled(spte)) {
clear_bit((ffs(shadow_accessed_mask) - 1),
(unsigned long *)sptep);
} else {
/*
* Capture the dirty status of the page, so that it doesn't get
* lost when the SPTE is marked for access tracking.
*/
if (is_writable_pte(spte))
kvm_set_pfn_dirty(spte_to_pfn(spte));
spte = mark_spte_for_access_track(spte);
mmu_spte_update_no_track(sptep, spte);
}
return true;
}
static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
{
return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
}
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
if (is_tdp_mmu_active(vcpu)) {
kvm_tdp_mmu_walk_lockless_begin();
} else {
/*
* Prevent page table teardown by making any free-er wait during
* kvm_flush_remote_tlbs() IPI to all active vcpus.
*/
local_irq_disable();
/*
* Make sure a following spte read is not reordered ahead of the write
* to vcpu->mode.
*/
smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
}
}
static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
if (is_tdp_mmu_active(vcpu)) {
kvm_tdp_mmu_walk_lockless_end();
} else {
/*
* Make sure the write to vcpu->mode is not reordered in front of
* reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
* OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
*/
smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
local_irq_enable();
}
}
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
{
int r;
/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
if (r)
return r;
r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
PT64_ROOT_MAX_LEVEL);
if (r)
return r;
if (maybe_indirect) {
r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadowed_info_cache,
PT64_ROOT_MAX_LEVEL);
if (r)
return r;
}
return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
PT64_ROOT_MAX_LEVEL);
}
static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadowed_info_cache);
kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
}
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
{
kmem_cache_free(pte_list_desc_cache, pte_list_desc);
}
static bool sp_has_gptes(struct kvm_mmu_page *sp);
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
if (sp->role.passthrough)
return sp->gfn;
if (!sp->role.direct)
return sp->shadowed_translation[index] >> PAGE_SHIFT;
return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
}
/*
* For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
* that the SPTE itself may have a more constrained access permissions that
* what the guest enforces. For example, a guest may create an executable
* huge PTE but KVM may disallow execution to mitigate iTLB multihit.
*/
static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
{
if (sp_has_gptes(sp))
return sp->shadowed_translation[index] & ACC_ALL;
/*
* For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
* KVM is not shadowing any guest page tables, so the "guest access
* permissions" are just ACC_ALL.
*
* For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
* is shadowing a guest huge page with small pages, the guest access
* permissions being shadowed are the access permissions of the huge
* page.
*
* In both cases, sp->role.access contains the correct access bits.
*/
return sp->role.access;
}
static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
gfn_t gfn, unsigned int access)
{
if (sp_has_gptes(sp)) {
sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
return;
}
WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
"access mismatch under %s page %llx (expected %u, got %u)\n",
sp->role.passthrough ? "passthrough" : "direct",
sp->gfn, kvm_mmu_page_get_access(sp, index), access);
WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
"gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
sp->role.passthrough ? "passthrough" : "direct",
sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
}
static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
unsigned int access)
{
gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
kvm_mmu_page_set_translation(sp, index, gfn, access);
}
/*
* Return the pointer to the large page information for a given gfn,
* handling slots that are not large page aligned.
*/
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
const struct kvm_memory_slot *slot, int level)
{
unsigned long idx;
idx = gfn_to_index(gfn, slot->base_gfn, level);
return &slot->arch.lpage_info[level - 2][idx];
}
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
gfn_t gfn, int count)
{
struct kvm_lpage_info *linfo;
int i;
for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
linfo = lpage_info_slot(gfn, slot, i);
linfo->disallow_lpage += count;
WARN_ON(linfo->disallow_lpage < 0);
}
}
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
{
update_gfn_disallow_lpage_count(slot, gfn, 1);
}
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
{
update_gfn_disallow_lpage_count(slot, gfn, -1);
}
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *slot;
gfn_t gfn;
kvm->arch.indirect_shadow_pages++;
gfn = sp->gfn;
slots = kvm_memslots_for_spte_role(kvm, sp->role);
slot = __gfn_to_memslot(slots, gfn);
/* the non-leaf shadow pages are keeping readonly. */
if (sp->role.level > PG_LEVEL_4K)
return kvm_slot_page_track_add_page(kvm, slot, gfn,
KVM_PAGE_TRACK_WRITE);
kvm_mmu_gfn_disallow_lpage(slot, gfn);
if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, PG_LEVEL_4K))
kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
}
void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
/*
* If it's possible to replace the shadow page with an NX huge page,
* i.e. if the shadow page is the only thing currently preventing KVM
* from using a huge page, add the shadow page to the list of "to be
* zapped for NX recovery" pages. Note, the shadow page can already be
* on the list if KVM is reusing an existing shadow page, i.e. if KVM
* links a shadow page at multiple points.
*/
if (!list_empty(&sp->possible_nx_huge_page_link))
return;
++kvm->stat.nx_lpage_splits;
list_add_tail(&sp->possible_nx_huge_page_link,
&kvm->arch.possible_nx_huge_pages);
}
static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
bool nx_huge_page_possible)
{
sp->nx_huge_page_disallowed = true;
if (nx_huge_page_possible)
track_possible_nx_huge_page(kvm, sp);
}
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *slot;
gfn_t gfn;
kvm->arch.indirect_shadow_pages--;
gfn = sp->gfn;
slots = kvm_memslots_for_spte_role(kvm, sp->role);
slot = __gfn_to_memslot(slots, gfn);
if (sp->role.level > PG_LEVEL_4K)
return kvm_slot_page_track_remove_page(kvm, slot, gfn,
KVM_PAGE_TRACK_WRITE);
kvm_mmu_gfn_allow_lpage(slot, gfn);
}
void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
if (list_empty(&sp->possible_nx_huge_page_link))
return;
--kvm->stat.nx_lpage_splits;
list_del_init(&sp->possible_nx_huge_page_link);
}
static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
sp->nx_huge_page_disallowed = false;
untrack_possible_nx_huge_page(kvm, sp);
}
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
bool no_dirty_log)
{
struct kvm_memory_slot *slot;
slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
return NULL;
if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
return NULL;
return slot;
}
/*
* About rmap_head encoding:
*
* If the bit zero of rmap_head->val is clear, then it points to the only spte
* in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
* pte_list_desc containing more mappings.
*/
/*
* Returns the number of pointers in the rmap chain, not counting the new one.
*/
static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
struct kvm_rmap_head *rmap_head)
{
struct pte_list_desc *desc;
int count = 0;
if (!rmap_head->val) {
rmap_printk("%p %llx 0->1\n", spte, *spte);
rmap_head->val = (unsigned long)spte;
} else if (!(rmap_head->val & 1)) {
rmap_printk("%p %llx 1->many\n", spte, *spte);
desc = kvm_mmu_memory_cache_alloc(cache);
desc->sptes[0] = (u64 *)rmap_head->val;
desc->sptes[1] = spte;
desc->spte_count = 2;
rmap_head->val = (unsigned long)desc | 1;
++count;
} else {
rmap_printk("%p %llx many->many\n", spte, *spte);
desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
while (desc->spte_count == PTE_LIST_EXT) {
count += PTE_LIST_EXT;
if (!desc->more) {
desc->more = kvm_mmu_memory_cache_alloc(cache);
desc = desc->more;
desc->spte_count = 0;
break;
}
desc = desc->more;
}
count += desc->spte_count;
desc->sptes[desc->spte_count++] = spte;
}
return count;
}
static void
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
struct pte_list_desc *desc, int i,
struct pte_list_desc *prev_desc)
{
int j = desc->spte_count - 1;
desc->sptes[i] = desc->sptes[j];
desc->sptes[j] = NULL;
desc->spte_count--;
if (desc->spte_count)
return;
if (!prev_desc && !desc->more)
rmap_head->val = 0;
else
if (prev_desc)
prev_desc->more = desc->more;
else
rmap_head->val = (unsigned long)desc->more | 1;
mmu_free_pte_list_desc(desc);
}
static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
{
struct pte_list_desc *desc;
struct pte_list_desc *prev_desc;
int i;
if (!rmap_head->val) {
pr_err("%s: %p 0->BUG\n", __func__, spte);
BUG();
} else if (!(rmap_head->val & 1)) {
rmap_printk("%p 1->0\n", spte);
if ((u64 *)rmap_head->val != spte) {
pr_err("%s: %p 1->BUG\n", __func__, spte);
BUG();
}
rmap_head->val = 0;
} else {
rmap_printk("%p many->many\n", spte);
desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
prev_desc = NULL;
while (desc) {
for (i = 0; i < desc->spte_count; ++i) {
if (desc->sptes[i] == spte) {
pte_list_desc_remove_entry(rmap_head,
desc, i, prev_desc);
return;
}
}
prev_desc = desc;
desc = desc->more;
}
pr_err("%s: %p many->many\n", __func__, spte);
BUG();
}
}
static void kvm_zap_one_rmap_spte(struct kvm *kvm,
struct kvm_rmap_head *rmap_head, u64 *sptep)
{
mmu_spte_clear_track_bits(kvm, sptep);
pte_list_remove(sptep, rmap_head);
}
/* Return true if at least one SPTE was zapped, false otherwise */
static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
struct kvm_rmap_head *rmap_head)
{
struct pte_list_desc *desc, *next;
int i;
if (!rmap_head->val)
return false;
if (!(rmap_head->val & 1)) {
mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
goto out;
}
desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
for (; desc; desc = next) {
for (i = 0; i < desc->spte_count; i++)
mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
next = desc->more;
mmu_free_pte_list_desc(desc);
}
out:
/* rmap_head is meaningless now, remember to reset it */
rmap_head->val = 0;
return true;
}
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
struct pte_list_desc *desc;
unsigned int count = 0;
if (!rmap_head->val)
return 0;
else if (!(rmap_head->val & 1))
return 1;
desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
while (desc) {
count += desc->spte_count;
desc = desc->more;
}
return count;
}
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
const struct kvm_memory_slot *slot)
{
unsigned long idx;
idx = gfn_to_index(gfn, slot->base_gfn, level);
return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
}
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
struct kvm_mmu_memory_cache *mc;
mc = &vcpu->arch.mmu_pte_list_desc_cache;
return kvm_mmu_memory_cache_nr_free_objects(mc);
}
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *slot;
struct kvm_mmu_page *sp;
gfn_t gfn;
struct kvm_rmap_head *rmap_head;
sp = sptep_to_sp(spte);
gfn = kvm_mmu_page_get_gfn(sp, spte_index(spte));
/*
* Unlike rmap_add, rmap_remove does not run in the context of a vCPU
* so we have to determine which memslots to use based on context
* information in sp->role.
*/
slots = kvm_memslots_for_spte_role(kvm, sp->role);
slot = __gfn_to_memslot(slots, gfn);
rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
pte_list_remove(spte, rmap_head);
}
/*
* Used by the following functions to iterate through the sptes linked by a
* rmap. All fields are private and not assumed to be used outside.
*/
struct rmap_iterator {
/* private fields */
struct pte_list_desc *desc; /* holds the sptep if not NULL */
int pos; /* index of the sptep */
};
/*
* Iteration must be started by this function. This should also be used after
* removing/dropping sptes from the rmap link because in such cases the
* information in the iterator may not be valid.
*
* Returns sptep if found, NULL otherwise.
*/
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
struct rmap_iterator *iter)
{
u64 *sptep;
if (!rmap_head->val)
return NULL;
if (!(rmap_head->val & 1)) {
iter->desc = NULL;
sptep = (u64 *)rmap_head->val;
goto out;
}
iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
iter->pos = 0;
sptep = iter->desc->sptes[iter->pos];
out:
BUG_ON(!is_shadow_present_pte(*sptep));
return sptep;
}
/*
* Must be used with a valid iterator: e.g. after rmap_get_first().
*
* Returns sptep if found, NULL otherwise.
*/
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
u64 *sptep;
if (iter->desc) {
if (iter->pos < PTE_LIST_EXT - 1) {
++iter->pos;
sptep = iter->desc->sptes[iter->pos];
if (sptep)
goto out;
}
iter->desc = iter->desc->more;
if (iter->desc) {
iter->pos = 0;
/* desc->sptes[0] cannot be NULL */
sptep = iter->desc->sptes[iter->pos];
goto out;
}
}
return NULL;
out:
BUG_ON(!is_shadow_present_pte(*sptep));
return sptep;
}
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
_spte_; _spte_ = rmap_get_next(_iter_))
static void drop_spte(struct kvm *kvm, u64 *sptep)
{
u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
if (is_shadow_present_pte(old_spte))
rmap_remove(kvm, sptep);
}
static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
{
struct kvm_mmu_page *sp;
sp = sptep_to_sp(sptep);
WARN_ON(sp->role.level == PG_LEVEL_4K);
drop_spte(kvm, sptep);
if (flush)
kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
KVM_PAGES_PER_HPAGE(sp->role.level));
}
/*
* Write-protect on the specified @sptep, @pt_protect indicates whether
* spte write-protection is caused by protecting shadow page table.
*
* Note: write protection is difference between dirty logging and spte
* protection:
* - for dirty logging, the spte can be set to writable at anytime if
* its dirty bitmap is properly set.
* - for spte protection, the spte can be writable only after unsync-ing
* shadow page.
*
* Return true if tlb need be flushed.
*/
static bool spte_write_protect(u64 *sptep, bool pt_protect)
{
u64 spte = *sptep;
if (!is_writable_pte(spte) &&
!(pt_protect && is_mmu_writable_spte(spte)))
return false;
rmap_printk("spte %p %llx\n", sptep, *sptep);
if (pt_protect)
spte &= ~shadow_mmu_writable_mask;
spte = spte & ~PT_WRITABLE_MASK;
return mmu_spte_update(sptep, spte);
}
static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
bool pt_protect)
{
u64 *sptep;
struct rmap_iterator iter;
bool flush = false;
for_each_rmap_spte(rmap_head, &iter, sptep)
flush |= spte_write_protect(sptep, pt_protect);
return flush;
}
static bool spte_clear_dirty(u64 *sptep)
{
u64 spte = *sptep;
rmap_printk("spte %p %llx\n", sptep, *sptep);
MMU_WARN_ON(!spte_ad_enabled(spte));
spte &= ~shadow_dirty_mask;
return mmu_spte_update(sptep, spte);
}
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
{
bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
(unsigned long *)sptep);
if (was_writable && !spte_ad_enabled(*sptep))
kvm_set_pfn_dirty(spte_to_pfn(*sptep));
return was_writable;
}
/*
* Gets the GFN ready for another round of dirty logging by clearing the
* - D bit on ad-enabled SPTEs, and
* - W bit on ad-disabled SPTEs.
* Returns true iff any D or W bits were cleared.
*/
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
const struct kvm_memory_slot *slot)
{
u64 *sptep;
struct rmap_iterator iter;
bool flush = false;
for_each_rmap_spte(rmap_head, &iter, sptep)
if (spte_ad_need_write_protect(*sptep))
flush |= spte_wrprot_for_clear_dirty(sptep);
else
flush |= spte_clear_dirty(sptep);
return flush;
}
/**
* kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
* @kvm: kvm instance
* @slot: slot to protect
* @gfn_offset: start of the BITS_PER_LONG pages we care about
* @mask: indicates which pages we should protect
*
* Used when we do not need to care about huge page mappings.
*/
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
struct kvm_rmap_head *rmap_head;
if (tdp_mmu_enabled)
kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
slot->base_gfn + gfn_offset, mask, true);
if (!kvm_memslots_have_rmaps(kvm))
return;
while (mask) {
rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
PG_LEVEL_4K, slot);
rmap_write_protect(rmap_head, false);
/* clear the first set bit */
mask &= mask - 1;
}
}
/**
* kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
* protect the page if the D-bit isn't supported.
* @kvm: kvm instance
* @slot: slot to clear D-bit
* @gfn_offset: start of the BITS_PER_LONG pages we care about
* @mask: indicates which pages we should clear D-bit
*
* Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
*/
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
struct kvm_rmap_head *rmap_head;
if (tdp_mmu_enabled)
kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
slot->base_gfn + gfn_offset, mask, false);
if (!kvm_memslots_have_rmaps(kvm))
return;
while (mask) {
rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
PG_LEVEL_4K, slot);
__rmap_clear_dirty(kvm, rmap_head, slot);
/* clear the first set bit */
mask &= mask - 1;
}
}
/**
* kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
* PT level pages.
*
* It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
* enable dirty logging for them.
*
* We need to care about huge page mappings: e.g. during dirty logging we may
* have such mappings.
*/
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *slot,
gfn_t gfn_offset, unsigned long mask)
{
/*
* Huge pages are NOT write protected when we start dirty logging in
* initially-all-set mode; must write protect them here so that they
* are split to 4K on the first write.
*
* The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
* of memslot has no such restriction, so the range can cross two large
* pages.
*/
if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
if (READ_ONCE(eager_page_split))
kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
/* Cross two large pages? */
if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
ALIGN(end << PAGE_SHIFT, PMD_SIZE))
kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
PG_LEVEL_2M);
}
/* Now handle 4K PTEs. */
if (kvm_x86_ops.cpu_dirty_log_size)
kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
else
kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}
int kvm_cpu_dirty_log_size(void)
{
return kvm_x86_ops.cpu_dirty_log_size;
}
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
struct kvm_memory_slot *slot, u64 gfn,
int min_level)
{
struct kvm_rmap_head *rmap_head;
int i;
bool write_protected = false;
if (kvm_memslots_have_rmaps(kvm)) {
for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
rmap_head = gfn_to_rmap(gfn, i, slot);
write_protected |= rmap_write_protect(rmap_head, true);
}
}
if (tdp_mmu_enabled)
write_protected |=
kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
return write_protected;
}
static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
{
struct kvm_memory_slot *slot;
slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
}
static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
const struct kvm_memory_slot *slot)
{
return kvm_zap_all_rmap_sptes(kvm, rmap_head);
}
static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
struct kvm_memory_slot *slot, gfn_t gfn, int level,
pte_t unused)
{
return __kvm_zap_rmap(kvm, rmap_head, slot);
}
static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
struct kvm_memory_slot *slot, gfn_t gfn, int level,
pte_t pte)
{
u64 *sptep;
struct rmap_iterator iter;
bool need_flush = false;
u64 new_spte;
kvm_pfn_t new_pfn;
WARN_ON(pte_huge(pte));
new_pfn = pte_pfn(pte);
restart:
for_each_rmap_spte(rmap_head, &iter, sptep) {
rmap_printk("spte %p %llx gfn %llx (%d)\n",
sptep, *sptep, gfn, level);
need_flush = true;
if (pte_write(pte)) {
kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
goto restart;
} else {
new_spte = kvm_mmu_changed_pte_notifier_make_spte(
*sptep, new_pfn);
mmu_spte_clear_track_bits(kvm, sptep);
mmu_spte_set(sptep, new_spte);
}
}
if (need_flush && kvm_available_flush_tlb_with_range()) {
kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
return false;
}
return need_flush;
}
struct slot_rmap_walk_iterator {
/* input fields. */
const struct kvm_memory_slot *slot;
gfn_t start_gfn;
gfn_t end_gfn;
int start_level;
int end_level;
/* output fields. */
gfn_t gfn;
struct kvm_rmap_head *rmap;
int level;
/* private field. */
struct kvm_rmap_head *end_rmap;
};
static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
iterator->level = level;
iterator->gfn = iterator->start_gfn;
iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
}
static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
const struct kvm_memory_slot *slot, int start_level,
int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
iterator->slot = slot;
iterator->start_level = start_level;
iterator->end_level = end_level;
iterator->start_gfn = start_gfn;
iterator->end_gfn = end_gfn;
rmap_walk_init_level(iterator, iterator->start_level);
}
static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
return !!iterator->rmap;
}
static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
while (++iterator->rmap <= iterator->end_rmap) {
iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
if (iterator->rmap->val)
return;
}
if (++iterator->level > iterator->end_level) {
iterator->rmap = NULL;
return;
}
rmap_walk_init_level(iterator, iterator->level);
}
#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
_start_gfn, _end_gfn, _iter_) \
for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
_end_level_, _start_gfn, _end_gfn); \
slot_rmap_walk_okay(_iter_); \
slot_rmap_walk_next(_iter_))
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
struct kvm_memory_slot *slot, gfn_t gfn,
int level, pte_t pte);
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
struct kvm_gfn_range *range,
rmap_handler_t handler)
{
struct slot_rmap_walk_iterator iterator;
bool ret = false;
for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
range->start, range->end - 1, &iterator)
ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
iterator.level, range->pte);
return ret;
}
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
{
bool flush = false;
if (kvm_memslots_have_rmaps(kvm))
flush = kvm_handle_gfn_range(kvm, range, kvm_zap_rmap);
if (tdp_mmu_enabled)
flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
return flush;
}
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
bool flush = false;
if (kvm_memslots_have_rmaps(kvm))
flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmap);
if (tdp_mmu_enabled)
flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
return flush;
}
static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
struct kvm_memory_slot *slot, gfn_t gfn, int level,
pte_t unused)
{
u64 *sptep;
struct rmap_iterator iter;
int young = 0;
for_each_rmap_spte(rmap_head, &iter, sptep)
young |= mmu_spte_age(sptep);
return young;
}
static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
struct kvm_memory_slot *slot, gfn_t gfn,
int level, pte_t unused)
{
u64 *sptep;
struct rmap_iterator iter;
for_each_rmap_spte(rmap_head, &iter, sptep)
if (is_accessed_spte(*sptep))
return true;
return false;
}
#define RMAP_RECYCLE_THRESHOLD 1000
static void __rmap_add(struct kvm *kvm,
struct kvm_mmu_memory_cache *cache,
const struct kvm_memory_slot *slot,
u64 *spte, gfn_t gfn, unsigned int access)
{
struct kvm_mmu_page *sp;
struct kvm_rmap_head *rmap_head;
int rmap_count;
sp = sptep_to_sp(spte);
kvm_mmu_page_set_translation(sp, spte_index(spte), gfn, access);
kvm_update_page_stats(kvm, sp->role.level, 1);
rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
rmap_count = pte_list_add(cache, spte, rmap_head);
if (rmap_count > kvm->stat.max_mmu_rmap_size)
kvm->stat.max_mmu_rmap_size = rmap_count;
if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
kvm_zap_all_rmap_sptes(kvm, rmap_head);
kvm_flush_remote_tlbs_with_address(
kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
}
}
static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
u64 *spte, gfn_t gfn, unsigned int access)
{
struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
__rmap_add(vcpu->kvm, cache, slot, spte, gfn, access);
}
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
bool young = false;
if (kvm_memslots_have_rmaps(kvm))
young = kvm_handle_gfn_range(kvm, range, kvm_age_rmap);
if (tdp_mmu_enabled)
young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
return young;
}
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
bool young = false;
if (kvm_memslots_have_rmaps(kvm))
young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmap);
if (tdp_mmu_enabled)
young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
return young;
}
#ifdef MMU_DEBUG
static int is_empty_shadow_page(u64 *spt)
{
u64 *pos;
u64 *end;
for (pos = spt, end = pos + SPTE_ENT_PER_PAGE; pos != end; pos++)
if (is_shadow_present_pte(*pos)) {
printk(KERN_ERR "%s: %p %llx\n", __func__,
pos, *pos);
return 0;
}
return 1;
}
#endif
/*
* This value is the sum of all of the kvm instances's
* kvm->arch.n_used_mmu_pages values. We need a global,
* aggregate version in order to make the slab shrinker
* faster
*/
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
{
kvm->arch.n_used_mmu_pages += nr;
percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}
static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
kvm_mod_used_mmu_pages(kvm, +1);
kvm_account_pgtable_pages((void *)sp->spt, +1);
}
static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
kvm_mod_used_mmu_pages(kvm, -1);
kvm_account_pgtable_pages((void *)sp->spt, -1);
}
static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
{
MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
hlist_del(&sp->hash_link);
list_del(&sp->link);
free_page((unsigned long)sp->spt);
if (!sp->role.direct)
free_page((unsigned long)sp->shadowed_translation);
kmem_cache_free(mmu_page_header_cache, sp);
}
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
return hash_64(gfn, KVM_MMU_HASH_SHIFT);
}
static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
struct kvm_mmu_page *sp, u64 *parent_pte)
{
if (!parent_pte)
return;
pte_list_add(cache, parent_pte, &sp->parent_ptes);
}
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
u64 *parent_pte)
{
pte_list_remove(parent_pte, &sp->parent_ptes);
}
static void drop_parent_pte(struct kvm_mmu_page *sp,
u64 *parent_pte)
{
mmu_page_remove_parent_pte(sp, parent_pte);
mmu_spte_clear_no_track(parent_pte);
}
static void mark_unsync(u64 *spte);
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
{
u64 *sptep;
struct rmap_iterator iter;
for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
mark_unsync(sptep);
}
}
static void mark_unsync(u64 *spte)
{
struct kvm_mmu_page *sp;
sp = sptep_to_sp(spte);
if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
return;
if (sp->unsync_children++)
return;
kvm_mmu_mark_parents_unsync(sp);
}
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp)
{
return -1;
}
#define KVM_PAGE_ARRAY_NR 16
struct kvm_mmu_pages {
struct mmu_page_and_offset {
struct kvm_mmu_page *sp;
unsigned int idx;
} page[KVM_PAGE_ARRAY_NR];
unsigned int nr;
};
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
int idx)
{
int i;
if (sp->unsync)
for (i=0; i < pvec->nr; i++)
if (pvec->page[i].sp == sp)
return 0;
pvec->page[pvec->nr].sp = sp;
pvec->page[pvec->nr].idx = idx;
pvec->nr++;
return (pvec->nr == KVM_PAGE_ARRAY_NR);
}
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
--sp->unsync_children;
WARN_ON((int)sp->unsync_children < 0);
__clear_bit(idx, sp->unsync_child_bitmap);
}
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
struct kvm_mmu_pages *pvec)
{
int i, ret, nr_unsync_leaf = 0;
for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
struct kvm_mmu_page *child;
u64 ent = sp->spt[i];
if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
clear_unsync_child_bit(sp, i);
continue;
}
child = spte_to_child_sp(ent);
if (child->unsync_children) {
if (mmu_pages_add(pvec, child, i))
return -ENOSPC;
ret = __mmu_unsync_walk(child, pvec);
if (!ret) {
clear_unsync_child_bit(sp, i);
continue;
} else if (ret > 0) {
nr_unsync_leaf += ret;
} else
return ret;
} else if (child->unsync) {
nr_unsync_leaf++;
if (mmu_pages_add(pvec, child, i))
return -ENOSPC;
} else
clear_unsync_child_bit(sp, i);
}
return nr_unsync_leaf;
}
#define INVALID_INDEX (-1)
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
struct kvm_mmu_pages *pvec)
{
pvec->nr = 0;
if (!sp->unsync_children)
return 0;
mmu_pages_add(pvec, sp, INVALID_INDEX);
return __mmu_unsync_walk(sp, pvec);
}
static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
WARN_ON(!sp->unsync);
trace_kvm_mmu_sync_page(sp);
sp->unsync = 0;
--kvm->stat.mmu_unsync;
}
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
struct list_head *invalid_list);
static bool sp_has_gptes(struct kvm_mmu_page *sp)
{
if (sp->role.direct)
return false;
if (sp->role.passthrough)
return false;
return true;
}
#define for_each_valid_sp(_kvm, _sp, _list) \
hlist_for_each_entry(_sp, _list, hash_link) \
if (is_obsolete_sp((_kvm), (_sp))) { \
} else
#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
for_each_valid_sp(_kvm, _sp, \
&(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
struct list_head *invalid_list)
{
int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
if (ret < 0)
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
return ret;
}
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
struct list_head *invalid_list,
bool remote_flush)
{
if (!remote_flush && list_empty(invalid_list))
return false;
if (!list_empty(invalid_list))
kvm_mmu_commit_zap_page(kvm, invalid_list);
else
kvm_flush_remote_tlbs(kvm);
return true;
}
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
if (sp->role.invalid)
return true;
/* TDP MMU pages do not use the MMU generation. */
return !is_tdp_mmu_page(sp) &&
unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}
struct mmu_page_path {
struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
unsigned int idx[PT64_ROOT_MAX_LEVEL];
};
#define for_each_sp(pvec, sp, parents, i) \
for (i = mmu_pages_first(&pvec, &parents); \
i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
i = mmu_pages_next(&pvec, &parents, i))
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
struct mmu_page_path *parents,
int i)
{
int n;
for (n = i+1; n < pvec->nr; n++) {
struct kvm_mmu_page *sp = pvec->page[n].sp;
unsigned idx = pvec->page[n].idx;
int level = sp->role.level;
parents->idx[level-1] = idx;
if (level == PG_LEVEL_4K)
break;
parents->parent[level-2] = sp;
}
return n;
}
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
struct mmu_page_path *parents)
{
struct kvm_mmu_page *sp;
int level;
if (pvec->nr == 0)
return 0;
WARN_ON(pvec->page[0].idx != INVALID_INDEX);
sp = pvec->page[0].sp;
level = sp->role.level;
WARN_ON(level == PG_LEVEL_4K);
parents->parent[level-2] = sp;
/* Also set up a sentinel. Further entries in pvec are all
* children of sp, so this element is never overwritten.
*/
parents->parent[level-1] = NULL;
return mmu_pages_next(pvec, parents, 0);
}
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
{
struct kvm_mmu_page *sp;
unsigned int level = 0;
do {
unsigned int idx = parents->idx[level];
sp = parents->parent[level];
if (!sp)
return;
WARN_ON(idx == INVALID_INDEX);
clear_unsync_child_bit(sp, idx);
level++;
} while (!sp->unsync_children);
}
static int mmu_sync_children(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *parent, bool can_yield)
{
int i;
struct kvm_mmu_page *sp;
struct mmu_page_path parents;
struct kvm_mmu_pages pages;
LIST_HEAD(invalid_list);
bool flush = false;
while (mmu_unsync_walk(parent, &pages)) {
bool protected = false;
for_each_sp(pages, sp, parents, i)
protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
if (protected) {
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
flush = false;
}
for_each_sp(pages, sp, parents, i) {
kvm_unlink_unsync_page(vcpu->kvm, sp);
flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
mmu_pages_clear_parents(&parents);
}
if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
if (!can_yield) {
kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
return -EINTR;
}
cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
flush = false;
}
}
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
return 0;
}
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
atomic_set(&sp->write_flooding_count, 0);
}
static void clear_sp_write_flooding_count(u64 *spte)
{
__clear_sp_write_flooding_count(sptep_to_sp(spte));
}
/*
* The vCPU is required when finding indirect shadow pages; the shadow
* page may already exist and syncing it needs the vCPU pointer in
* order to read guest page tables. Direct shadow pages are never
* unsync, thus @vcpu can be NULL if @role.direct is true.
*/
static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
struct kvm_vcpu *vcpu,
gfn_t gfn,
struct hlist_head *sp_list,
union kvm_mmu_page_role role)
{
struct kvm_mmu_page *sp;
int ret;
int collisions = 0;
LIST_HEAD(invalid_list);
for_each_valid_sp(kvm, sp, sp_list) {
if (sp->gfn != gfn) {
collisions++;
continue;
}
if (sp->role.word != role.word) {
/*
* If the guest is creating an upper-level page, zap
* unsync pages for the same gfn. While it's possible
* the guest is using recursive page tables, in all
* likelihood the guest has stopped using the unsync
* page and is installing a completely unrelated page.
* Unsync pages must not be left as is, because the new
* upper-level page will be write-protected.
*/
if (role.level > PG_LEVEL_4K && sp->unsync)
kvm_mmu_prepare_zap_page(kvm, sp,
&invalid_list);
continue;
}
/* unsync and write-flooding only apply to indirect SPs. */
if (sp->role.direct)
goto out;
if (sp->unsync) {
if (KVM_BUG_ON(!vcpu, kvm))
break;
/*
* The page is good, but is stale. kvm_sync_page does
* get the latest guest state, but (unlike mmu_unsync_children)
* it doesn't write-protect the page or mark it synchronized!
* This way the validity of the mapping is ensured, but the
* overhead of write protection is not incurred until the
* guest invalidates the TLB mapping. This allows multiple
* SPs for a single gfn to be unsync.
*
* If the sync fails, the page is zapped. If so, break
* in order to rebuild it.
*/
ret = kvm_sync_page(vcpu, sp, &invalid_list);
if (ret < 0)
break;
WARN_ON(!list_empty(&invalid_list));
if (ret > 0)
kvm_flush_remote_tlbs(kvm);
}
__clear_sp_write_flooding_count(sp);
goto out;
}
sp = NULL;
++kvm->stat.mmu_cache_miss;
out:
kvm_mmu_commit_zap_page(kvm, &invalid_list);
if (collisions > kvm->stat.max_mmu_page_hash_collisions)
kvm->stat.max_mmu_page_hash_collisions = collisions;
return sp;
}
/* Caches used when allocating a new shadow page. */
struct shadow_page_caches {
struct kvm_mmu_memory_cache *page_header_cache;
struct kvm_mmu_memory_cache *shadow_page_cache;
struct kvm_mmu_memory_cache *shadowed_info_cache;
};
static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
struct shadow_page_caches *caches,
gfn_t gfn,
struct hlist_head *sp_list,
union kvm_mmu_page_role role)
{
struct kvm_mmu_page *sp;
sp = kvm_mmu_memory_cache_alloc(caches->page_header_cache);
sp->spt = kvm_mmu_memory_cache_alloc(caches->shadow_page_cache);
if (!role.direct)
sp->shadowed_translation = kvm_mmu_memory_cache_alloc(caches->shadowed_info_cache);
set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
/*
* active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
* depends on valid pages being added to the head of the list. See
* comments in kvm_zap_obsolete_pages().
*/
sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
list_add(&sp->link, &kvm->arch.active_mmu_pages);
kvm_account_mmu_page(kvm, sp);
sp->gfn = gfn;
sp->role = role;
hlist_add_head(&sp->hash_link, sp_list);
if (sp_has_gptes(sp))
account_shadowed(kvm, sp);
return sp;
}
/* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
struct kvm_vcpu *vcpu,
struct shadow_page_caches *caches,
gfn_t gfn,
union kvm_mmu_page_role role)
{
struct hlist_head *sp_list;
struct kvm_mmu_page *sp;
bool created = false;
sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
if (!sp) {
created = true;
sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
}
trace_kvm_mmu_get_page(sp, created);
return sp;
}
static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
gfn_t gfn,
union kvm_mmu_page_role role)
{
struct shadow_page_caches caches = {
.page_header_cache = &vcpu->arch.mmu_page_header_cache,
.shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
.shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
};
return __kvm_mmu_get_shadow_page(vcpu->kvm, vcpu, &caches, gfn, role);
}
static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
unsigned int access)
{
struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
union kvm_mmu_page_role role;
role = parent_sp->role;
role.level--;
role.access = access;
role.direct = direct;
role.passthrough = 0;
/*
* If the guest has 4-byte PTEs then that means it's using 32-bit,
* 2-level, non-PAE paging. KVM shadows such guests with PAE paging
* (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
* shadow each guest page table with multiple shadow page tables, which
* requires extra bookkeeping in the role.
*
* Specifically, to shadow the guest's page directory (which covers a
* 4GiB address space), KVM uses 4 PAE page directories, each mapping
* 1GiB of the address space. @role.quadrant encodes which quarter of
* the address space each maps.
*
* To shadow the guest's page tables (which each map a 4MiB region), KVM
* uses 2 PAE page tables, each mapping a 2MiB region. For these,
* @role.quadrant encodes which half of the region they map.
*
* Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
* consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
* PDPTEs; those 4 PAE page directories are pre-allocated and their
* quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
* bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
* bit 21 in the PTE (the child here), KVM propagates that bit to the
* quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
* covers bit 21 (see above), thus the quadrant is calculated from the
* _least_ significant bit of the PDE index.
*/
if (role.has_4_byte_gpte) {
WARN_ON_ONCE(role.level != PG_LEVEL_4K);
role.quadrant = spte_index(sptep) & 1;
}
return role;
}
static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
u64 *sptep, gfn_t gfn,
bool direct, unsigned int access)
{
union kvm_mmu_page_role role;
if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
return ERR_PTR(-EEXIST);
role = kvm_mmu_child_role(sptep, direct, access);
return kvm_mmu_get_shadow_page(vcpu, gfn, role);
}
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
struct kvm_vcpu *vcpu, hpa_t root,
u64 addr)
{
iterator->addr = addr;
iterator->shadow_addr = root;
iterator->level = vcpu->arch.mmu->root_role.level;
if (iterator->level >= PT64_ROOT_4LEVEL &&
vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
!vcpu->arch.mmu->root_role.direct)
iterator->level = PT32E_ROOT_LEVEL;
if (iterator->level == PT32E_ROOT_LEVEL) {
/*
* prev_root is currently only used for 64-bit hosts. So only
* the active root_hpa is valid here.
*/
BUG_ON(root != vcpu->arch.mmu->root.hpa);
iterator->shadow_addr
= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
--iterator->level;
if (!iterator->shadow_addr)
iterator->level = 0;
}
}
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
struct kvm_vcpu *vcpu, u64 addr)
{
shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
addr);
}
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
if (iterator->level < PG_LEVEL_4K)
return false;
iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
return true;
}
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
u64 spte)
{
if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
iterator->level = 0;
return;
}
iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
--iterator->level;
}
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
__shadow_walk_next(iterator, *iterator->sptep);
}
static void __link_shadow_page(struct kvm *kvm,
struct kvm_mmu_memory_cache *cache, u64 *sptep,
struct kvm_mmu_page *sp, bool flush)
{
u64 spte;
BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
/*
* If an SPTE is present already, it must be a leaf and therefore
* a large one. Drop it, and flush the TLB if needed, before
* installing sp.
*/
if (is_shadow_present_pte(*sptep))
drop_large_spte(kvm, sptep, flush);
spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
mmu_spte_set(sptep, spte);
mmu_page_add_parent_pte(cache, sp, sptep);
/*
* The non-direct sub-pagetable must be updated before linking. For
* L1 sp, the pagetable is updated via kvm_sync_page() in
* kvm_mmu_find_shadow_page() without write-protecting the gfn,
* so sp->unsync can be true or false. For higher level non-direct
* sp, the pagetable is updated/synced via mmu_sync_children() in
* FNAME(fetch)(), so sp->unsync_children can only be false.
* WARN_ON_ONCE() if anything happens unexpectedly.
*/
if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
mark_unsync(sptep);
}
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
struct kvm_mmu_page *sp)
{
__link_shadow_page(vcpu->kvm, &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, true);
}
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
unsigned direct_access)
{
if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
struct kvm_mmu_page *child;
/*
* For the direct sp, if the guest pte's dirty bit
* changed form clean to dirty, it will corrupt the
* sp's access: allow writable in the read-only sp,
* so we should update the spte at this point to get
* a new sp with the correct access.
*/
child = spte_to_child_sp(*sptep);
if (child->role.access == direct_access)
return;
drop_parent_pte(child, sptep);
kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
}
}
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
u64 *spte, struct list_head *invalid_list)
{
u64 pte;
struct kvm_mmu_page *child;
pte = *spte;
if (is_shadow_present_pte(pte)) {
if (is_last_spte(pte, sp->role.level)) {
drop_spte(kvm, spte);
} else {
child = spte_to_child_sp(pte);
drop_parent_pte(child, spte);
/*
* Recursively zap nested TDP SPs, parentless SPs are
* unlikely to be used again in the near future. This
* avoids retaining a large number of stale nested SPs.
*/
if (tdp_enabled && invalid_list &&
child->role.guest_mode && !child->parent_ptes.val)
return kvm_mmu_prepare_zap_page(kvm, child,
invalid_list);
}
} else if (is_mmio_spte(pte)) {
mmu_spte_clear_no_track(spte);
}
return 0;
}
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
struct kvm_mmu_page *sp,
struct list_head *invalid_list)
{
int zapped = 0;
unsigned i;
for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
return zapped;
}
static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
{
u64 *sptep;
struct rmap_iterator iter;
while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
drop_parent_pte(sp, sptep);
}
static int mmu_zap_unsync_children(struct kvm *kvm,
struct kvm_mmu_page *parent,
struct list_head *invalid_list)
{
int i, zapped = 0;
struct mmu_page_path parents;
struct kvm_mmu_pages pages;
if (parent->role.level == PG_LEVEL_4K)
return 0;
while (mmu_unsync_walk(parent, &pages)) {
struct kvm_mmu_page *sp;
for_each_sp(pages, sp, parents, i) {
kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
mmu_pages_clear_parents(&parents);
zapped++;
}
}
return zapped;
}
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
struct kvm_mmu_page *sp,
struct list_head *invalid_list,
int *nr_zapped)
{
bool list_unstable, zapped_root = false;
lockdep_assert_held_write(&kvm->mmu_lock);
trace_kvm_mmu_prepare_zap_page(sp);
++kvm->stat.mmu_shadow_zapped;
*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
kvm_mmu_unlink_parents(sp);
/* Zapping children means active_mmu_pages has become unstable. */
list_unstable = *nr_zapped;
if (!sp->role.invalid && sp_has_gptes(sp))
unaccount_shadowed(kvm, sp);
if (sp->unsync)
kvm_unlink_unsync_page(kvm, sp);
if (!sp->root_count) {
/* Count self */
(*nr_zapped)++;
/*
* Already invalid pages (previously active roots) are not on
* the active page list. See list_del() in the "else" case of
* !sp->root_count.
*/
if (sp->role.invalid)
list_add(&sp->link, invalid_list);
else
list_move(&sp->link, invalid_list);
kvm_unaccount_mmu_page(kvm, sp);
} else {
/*
* Remove the active root from the active page list, the root
* will be explicitly freed when the root_count hits zero.
*/
list_del(&sp->link);
/*
* Obsolete pages cannot be used on any vCPUs, see the comment
* in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
* treats invalid shadow pages as being obsolete.
*/
zapped_root = !is_obsolete_sp(kvm, sp);
}
if (sp->nx_huge_page_disallowed)
unaccount_nx_huge_page(kvm, sp);
sp->role.invalid = 1;
/*
* Make the request to free obsolete roots after marking the root
* invalid, otherwise other vCPUs may not see it as invalid.
*/
if (zapped_root)
kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
return list_unstable;
}
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
struct list_head *invalid_list)
{
int nr_zapped;
__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
return nr_zapped;
}
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
struct list_head *invalid_list)
{
struct kvm_mmu_page *sp, *nsp;
if (list_empty(invalid_list))
return;
/*
* We need to make sure everyone sees our modifications to
* the page tables and see changes to vcpu->mode here. The barrier
* in the kvm_flush_remote_tlbs() achieves this. This pairs
* with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
*
* In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
* guest mode and/or lockless shadow page table walks.
*/
kvm_flush_remote_tlbs(kvm);
list_for_each_entry_safe(sp, nsp, invalid_list, link) {
WARN_ON(!sp->role.invalid || sp->root_count);
kvm_mmu_free_shadow_page(sp);
}
}
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
unsigned long nr_to_zap)
{
unsigned long total_zapped = 0;
struct kvm_mmu_page *sp, *tmp;
LIST_HEAD(invalid_list);
bool unstable;
int nr_zapped;
if (list_empty(&kvm->arch.active_mmu_pages))
return 0;
restart:
list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
/*
* Don't zap active root pages, the page itself can't be freed
* and zapping it will just force vCPUs to realloc and reload.
*/
if (sp->root_count)
continue;
unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
&nr_zapped);
total_zapped += nr_zapped;
if (total_zapped >= nr_to_zap)
break;
if (unstable)
goto restart;
}
kvm_mmu_commit_zap_page(kvm, &invalid_list);
kvm->stat.mmu_recycled += total_zapped;
return total_zapped;
}
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
return kvm->arch.n_max_mmu_pages -
kvm->arch.n_used_mmu_pages;
return 0;
}
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
return 0;
kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
/*
* Note, this check is intentionally soft, it only guarantees that one
* page is available, while the caller may end up allocating as many as
* four pages, e.g. for PAE roots or for 5-level paging. Temporarily
* exceeding the (arbitrary by default) limit will not harm the host,
* being too aggressive may unnecessarily kill the guest, and getting an
* exact count is far more trouble than it's worth, especially in the
* page fault paths.
*/
if (!kvm_mmu_available_pages(vcpu->kvm))
return -ENOSPC;
return 0;
}
/*
* Changing the number of mmu pages allocated to the vm
* Note: if goal_nr_mmu_pages is too small, you will get dead lock
*/
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
{
write_lock(&kvm->mmu_lock);
if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
goal_nr_mmu_pages);
goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
}
kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
write_unlock(&kvm->mmu_lock);
}
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
{
struct kvm_mmu_page *sp;
LIST_HEAD(invalid_list);
int r;
pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
r = 0;
write_lock(&kvm->mmu_lock);
for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
sp->role.word);
r = 1;
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
}
kvm_mmu_commit_zap_page(kvm, &invalid_list);
write_unlock(&kvm->mmu_lock);
return r;
}
static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
gpa_t gpa;
int r;
if (vcpu->arch.mmu->root_role.direct)
return 0;
gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
return r;
}
static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
trace_kvm_mmu_unsync_page(sp);
++kvm->stat.mmu_unsync;
sp->unsync = 1;
kvm_mmu_mark_parents_unsync(sp);
}
/*
* Attempt to unsync any shadow pages that can be reached by the specified gfn,
* KVM is creating a writable mapping for said gfn. Returns 0 if all pages
* were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
* be write-protected.
*/
int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
gfn_t gfn, bool can_unsync, bool prefetch)
{
struct kvm_mmu_page *sp;
bool locked = false;
/*
* Force write-protection if the page is being tracked. Note, the page
* track machinery is used to write-protect upper-level shadow pages,
* i.e. this guards the role.level == 4K assertion below!
*/
if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
return -EPERM;
/*
* The page is not write-tracked, mark existing shadow pages unsync
* unless KVM is synchronizing an unsync SP (can_unsync = false). In
* that case, KVM must complete emulation of the guest TLB flush before
* allowing shadow pages to become unsync (writable by the guest).
*/
for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
if (!can_unsync)
return -EPERM;
if (sp->unsync)
continue;
if (prefetch)
return -EEXIST;
/*
* TDP MMU page faults require an additional spinlock as they
* run with mmu_lock held for read, not write, and the unsync
* logic is not thread safe. Take the spinklock regardless of
* the MMU type to avoid extra conditionals/parameters, there's
* no meaningful penalty if mmu_lock is held for write.
*/
if (!locked) {
locked = true;
spin_lock(&kvm->arch.mmu_unsync_pages_lock);
/*
* Recheck after taking the spinlock, a different vCPU
* may have since marked the page unsync. A false
* positive on the unprotected check above is not
* possible as clearing sp->unsync _must_ hold mmu_lock
* for write, i.e. unsync cannot transition from 0->1
* while this CPU holds mmu_lock for read (or write).
*/
if (READ_ONCE(sp->unsync))
continue;
}
WARN_ON(sp->role.level != PG_LEVEL_4K);
kvm_unsync_page(kvm, sp);
}
if (locked)
spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
/*
* We need to ensure that the marking of unsync pages is visible
* before the SPTE is updated to allow writes because
* kvm_mmu_sync_roots() checks the unsync flags without holding
* the MMU lock and so can race with this. If the SPTE was updated
* before the page had been marked as unsync-ed, something like the
* following could happen:
*
* CPU 1 CPU 2
* ---------------------------------------------------------------------
* 1.2 Host updates SPTE
* to be writable
* 2.1 Guest writes a GPTE for GVA X.
* (GPTE being in the guest page table shadowed
* by the SP from CPU 1.)
* This reads SPTE during the page table walk.
* Since SPTE.W is read as 1, there is no
* fault.
*
* 2.2 Guest issues TLB flush.
* That causes a VM Exit.
*
* 2.3 Walking of unsync pages sees sp->unsync is
* false and skips the page.
*
* 2.4 Guest accesses GVA X.
* Since the mapping in the SP was not updated,
* so the old mapping for GVA X incorrectly
* gets used.
* 1.1 Host marks SP
* as unsync
* (sp->unsync = true)
*
* The write barrier below ensures that 1.1 happens before 1.2 and thus
* the situation in 2.4 does not arise. It pairs with the read barrier
* in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
*/
smp_wmb();
return 0;
}
static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
u64 *sptep, unsigned int pte_access, gfn_t gfn,
kvm_pfn_t pfn, struct kvm_page_fault *fault)
{
struct kvm_mmu_page *sp = sptep_to_sp(sptep);
int level = sp->role.level;
int was_rmapped = 0;
int ret = RET_PF_FIXED;
bool flush = false;
bool wrprot;
u64 spte;
/* Prefetching always gets a writable pfn. */
bool host_writable = !fault || fault->map_writable;
bool prefetch = !fault || fault->prefetch;
bool write_fault = fault && fault->write;
pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
*sptep, write_fault, gfn);
if (unlikely(is_noslot_pfn(pfn))) {
vcpu->stat.pf_mmio_spte_created++;
mark_mmio_spte(vcpu, sptep, gfn, pte_access);
return RET_PF_EMULATE;
}
if (is_shadow_present_pte(*sptep)) {
/*
* If we overwrite a PTE page pointer with a 2MB PMD, unlink
* the parent of the now unreachable PTE.
*/
if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
struct kvm_mmu_page *child;
u64 pte = *sptep;
child = spte_to_child_sp(pte);
drop_parent_pte(child, sptep);
flush = true;
} else if (pfn != spte_to_pfn(*sptep)) {
pgprintk("hfn old %llx new %llx\n",
spte_to_pfn(*sptep), pfn);
drop_spte(vcpu->kvm, sptep);
flush = true;
} else
was_rmapped = 1;
}
wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
true, host_writable, &spte);
if (*sptep == spte) {
ret = RET_PF_SPURIOUS;
} else {
flush |= mmu_spte_update(sptep, spte);
trace_kvm_mmu_set_spte(level, gfn, sptep);
}
if (wrprot) {
if (write_fault)
ret = RET_PF_EMULATE;
}
if (flush)
kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
KVM_PAGES_PER_HPAGE(level));
pgprintk("%s: setting spte %llx\n", __func__, *sptep);
if (!was_rmapped) {
WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
rmap_add(vcpu, slot, sptep, gfn, pte_access);
} else {
/* Already rmapped but the pte_access bits may have changed. */
kvm_mmu_page_set_access(sp, spte_index(sptep), pte_access);
}
return ret;
}
static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp,
u64 *start, u64 *end)
{
struct page *pages[PTE_PREFETCH_NUM];
struct kvm_memory_slot *slot;
unsigned int access = sp->role.access;
int i, ret;
gfn_t gfn;
gfn = kvm_mmu_page_get_gfn(sp, spte_index(start));
slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
if (!slot)
return -1;
ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
if (ret <= 0)
return -1;
for (i = 0; i < ret; i++, gfn++, start++) {
mmu_set_spte(vcpu, slot, start, access, gfn,
page_to_pfn(pages[i]), NULL);
put_page(pages[i]);
}
return 0;
}
static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, u64 *sptep)
{
u64 *spte, *start = NULL;
int i;
WARN_ON(!sp->role.direct);
i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
spte = sp->spt + i;
for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
if (is_shadow_present_pte(*spte) || spte == sptep) {
if (!start)
continue;
if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
return;
start = NULL;
} else if (!start)
start = spte;
}
if (start)
direct_pte_prefetch_many(vcpu, sp, start, spte);
}
static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
struct kvm_mmu_page *sp;
sp = sptep_to_sp(sptep);
/*
* Without accessed bits, there's no way to distinguish between
* actually accessed translations and prefetched, so disable pte
* prefetch if accessed bits aren't available.
*/
if (sp_ad_disabled(sp))
return;
if (sp->role.level > PG_LEVEL_4K)
return;
/*
* If addresses are being invalidated, skip prefetching to avoid
* accidentally prefetching those addresses.
*/
if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
return;
__direct_pte_prefetch(vcpu, sp, sptep);
}
/*
* Lookup the mapping level for @gfn in the current mm.
*
* WARNING! Use of host_pfn_mapping_level() requires the caller and the end
* consumer to be tied into KVM's handlers for MMU notifier events!
*
* There are several ways to safely use this helper:
*
* - Check mmu_invalidate_retry_hva() after grabbing the mapping level, before
* consuming it. In this case, mmu_lock doesn't need to be held during the
* lookup, but it does need to be held while checking the MMU notifier.
*
* - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
* event for the hva. This can be done by explicit checking the MMU notifier
* or by ensuring that KVM already has a valid mapping that covers the hva.
*
* - Do not use the result to install new mappings, e.g. use the host mapping
* level only to decide whether or not to zap an entry. In this case, it's
* not required to hold mmu_lock (though it's highly likely the caller will
* want to hold mmu_lock anyways, e.g. to modify SPTEs).
*
* Note! The lookup can still race with modifications to host page tables, but
* the above "rules" ensure KVM will not _consume_ the result of the walk if a
* race with the primary MMU occurs.
*/
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
const struct kvm_memory_slot *slot)
{
int level = PG_LEVEL_4K;
unsigned long hva;
unsigned long flags;
pgd_t pgd;
p4d_t p4d;
pud_t pud;
pmd_t pmd;
/*
* Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
* is not solely for performance, it's also necessary to avoid the
* "writable" check in __gfn_to_hva_many(), which will always fail on
* read-only memslots due to gfn_to_hva() assuming writes. Earlier
* page fault steps have already verified the guest isn't writing a
* read-only memslot.
*/
hva = __gfn_to_hva_memslot(slot, gfn);
/*
* Disable IRQs to prevent concurrent tear down of host page tables,
* e.g. if the primary MMU promotes a P*D to a huge page and then frees
* the original page table.
*/
local_irq_save(flags);
/*
* Read each entry once. As above, a non-leaf entry can be promoted to
* a huge page _during_ this walk. Re-reading the entry could send the
* walk into the weeks, e.g. p*d_large() returns false (sees the old
* value) and then p*d_offset() walks into the target huge page instead
* of the old page table (sees the new value).
*/
pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
if (pgd_none(pgd))
goto out;
p4d = READ_ONCE(*p4d_offset(&pgd, hva));
if (p4d_none(p4d) || !p4d_present(p4d))
goto out;
pud = READ_ONCE(*pud_offset(&p4d, hva));
if (pud_none(pud) || !pud_present(pud))
goto out;
if (pud_large(pud)) {
level = PG_LEVEL_1G;
goto out;
}
pmd = READ_ONCE(*pmd_offset(&pud, hva));
if (pmd_none(pmd) || !pmd_present(pmd))
goto out;
if (pmd_large(pmd))
level = PG_LEVEL_2M;
out:
local_irq_restore(flags);
return level;
}
int kvm_mmu_max_mapping_level(struct kvm *kvm,
const struct kvm_memory_slot *slot, gfn_t gfn,
int max_level)
{
struct kvm_lpage_info *linfo;
int host_level;
max_level = min(max_level, max_huge_page_level);
for ( ; max_level > PG_LEVEL_4K; max_level--) {
linfo = lpage_info_slot(gfn, slot, max_level);
if (!linfo->disallow_lpage)
break;
}
if (max_level == PG_LEVEL_4K)
return PG_LEVEL_4K;
host_level = host_pfn_mapping_level(kvm, gfn, slot);
return min(host_level, max_level);
}
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
struct kvm_memory_slot *slot = fault->slot;
kvm_pfn_t mask;
fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
if (unlikely(fault->max_level == PG_LEVEL_4K))
return;
if (is_error_noslot_pfn(fault->pfn))
return;
if (kvm_slot_dirty_track_enabled(slot))
return;
/*
* Enforce the iTLB multihit workaround after capturing the requested
* level, which will be used to do precise, accurate accounting.
*/
fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
fault->gfn, fault->max_level);
if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
return;
/*
* mmu_invalidate_retry() was successful and mmu_lock is held, so
* the pmd can't be split from under us.
*/
fault->goal_level = fault->req_level;
mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
fault->pfn &= ~mask;
}
void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
{
if (cur_level > PG_LEVEL_4K &&
cur_level == fault->goal_level &&
is_shadow_present_pte(spte) &&
!is_large_pte(spte) &&
spte_to_child_sp(spte)->nx_huge_page_disallowed) {
/*
* A small SPTE exists for this pfn, but FNAME(fetch),
* direct_map(), or kvm_tdp_mmu_map() would like to create a
* large PTE instead: just force them to go down another level,
* patching back for them into pfn the next 9 bits of the
* address.
*/
u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
KVM_PAGES_PER_HPAGE(cur_level - 1);
fault->pfn |= fault->gfn & page_mask;
fault->goal_level--;
}
}
static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
struct kvm_shadow_walk_iterator it;
struct kvm_mmu_page *sp;
int ret;
gfn_t base_gfn = fault->gfn;
kvm_mmu_hugepage_adjust(vcpu, fault);
trace_kvm_mmu_spte_requested(fault);
for_each_shadow_entry(vcpu, fault->addr, it) {
/*
* We cannot overwrite existing page tables with an NX
* large page, as the leaf could be executable.
*/
if (fault->nx_huge_page_workaround_enabled)
disallowed_hugepage_adjust(fault, *it.sptep, it.level);
base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
if (it.level == fault->goal_level)
break;
sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
if (sp == ERR_PTR(-EEXIST))
continue;
link_shadow_page(vcpu, it.sptep, sp);
if (fault->huge_page_disallowed)
account_nx_huge_page(vcpu->kvm, sp,
fault->req_level >= it.level);
}
if (WARN_ON_ONCE(it.level != fault->goal_level))
return -EFAULT;
ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
base_gfn, fault->pfn, fault);
if (ret == RET_PF_SPURIOUS)
return ret;
direct_pte_prefetch(vcpu, it.sptep);
return ret;
}
static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
{
unsigned long hva = gfn_to_hva_memslot(slot, gfn);
send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
}
static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
if (is_sigpending_pfn(fault->pfn)) {
kvm_handle_signal_exit(vcpu);
return -EINTR;
}
/*
* Do not cache the mmio info caused by writing the readonly gfn
* into the spte otherwise read access on readonly gfn also can
* caused mmio page fault and treat it as mmio access.
*/
if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
return RET_PF_EMULATE;
if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
kvm_send_hwpoison_signal(fault->slot, fault->gfn);
return RET_PF_RETRY;
}
return -EFAULT;
}
static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
struct kvm_page_fault *fault,
unsigned int access)
{
gva_t gva = fault->is_tdp ? 0 : fault->addr;
vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
access & shadow_mmio_access_mask);
/*
* If MMIO caching is disabled, emulate immediately without
* touching the shadow page tables as attempting to install an
* MMIO SPTE will just be an expensive nop.
*/
if (unlikely(!enable_mmio_caching))
return RET_PF_EMULATE;
/*
* Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
* any guest that generates such gfns is running nested and is being
* tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
* only if L1's MAXPHYADDR is inaccurate with respect to the
* hardware's).
*/
if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
return RET_PF_EMULATE;
return RET_PF_CONTINUE;
}
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
{
/*
* Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
* reach the common page fault handler if the SPTE has an invalid MMIO
* generation number. Refreshing the MMIO generation needs to go down
* the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
*/
if (fault->rsvd)
return false;
/*
* #PF can be fast if:
*
* 1. The shadow page table entry is not present and A/D bits are
* disabled _by KVM_, which could mean that the fault is potentially
* caused by access tracking (if enabled). If A/D bits are enabled
* by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
* bits for L2 and employ access tracking, but the fast page fault
* mechanism only supports direct MMUs.
* 2. The shadow page table entry is present, the access is a write,
* and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
* the fault was caused by a write-protection violation. If the
* SPTE is MMU-writable (determined later), the fault can be fixed
* by setting the Writable bit, which can be done out of mmu_lock.
*/
if (!fault->present)
return !kvm_ad_enabled();
/*
* Note, instruction fetches and writes are mutually exclusive, ignore
* the "exec" flag.
*/
return fault->write;
}
/*
* Returns true if the SPTE was fixed successfully. Otherwise,
* someone else modified the SPTE from its original value.
*/
static bool
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
u64 *sptep, u64 old_spte, u64 new_spte)
{
/*
* Theoretically we could also set dirty bit (and flush TLB) here in
* order to eliminate unnecessary PML logging. See comments in
* set_spte. But fast_page_fault is very unlikely to happen with PML
* enabled, so we do not do this. This might result in the same GPA
* to be logged in PML buffer again when the write really happens, and
* eventually to be called by mark_page_dirty twice. But it's also no
* harm. This also avoids the TLB flush needed after setting dirty bit
* so non-PML cases won't be impacted.
*
* Compare with set_spte where instead shadow_dirty_mask is set.
*/
if (!try_cmpxchg64(sptep, &old_spte, new_spte))
return false;
if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
return true;
}
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
{
if (fault->exec)
return is_executable_pte(spte);
if (fault->write)
return is_writable_pte(spte);
/* Fault was on Read access */
return spte & PT_PRESENT_MASK;
}
/*
* Returns the last level spte pointer of the shadow page walk for the given
* gpa, and sets *spte to the spte value. This spte may be non-preset. If no
* walk could be performed, returns NULL and *spte does not contain valid data.
*
* Contract:
* - Must be called between walk_shadow_page_lockless_{begin,end}.
* - The returned sptep must not be used after walk_shadow_page_lockless_end.
*/
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
struct kvm_shadow_walk_iterator iterator;
u64 old_spte;
u64 *sptep = NULL;
for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
sptep = iterator.sptep;
*spte = old_spte;
}
return sptep;
}
/*
* Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
*/
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
struct kvm_mmu_page *sp;
int ret = RET_PF_INVALID;
u64 spte = 0ull;
u64 *sptep = NULL;
uint retry_count = 0;
if (!page_fault_can_be_fast(fault))
return ret;
walk_shadow_page_lockless_begin(vcpu);
do {
u64 new_spte;
if (tdp_mmu_enabled)
sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
else
sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
if (!is_shadow_present_pte(spte))
break;
sp = sptep_to_sp(sptep);
if (!is_last_spte(spte, sp->role.level))
break;
/*
* Check whether the memory access that caused the fault would
* still cause it if it were to be performed right now. If not,
* then this is a spurious fault caused by TLB lazily flushed,
* or some other CPU has already fixed the PTE after the
* current CPU took the fault.
*
* Need not check the access of upper level table entries since
* they are always ACC_ALL.
*/
if (is_access_allowed(fault, spte)) {
ret = RET_PF_SPURIOUS;
break;
}
new_spte = spte;
/*
* KVM only supports fixing page faults outside of MMU lock for
* direct MMUs, nested MMUs are always indirect, and KVM always
* uses A/D bits for non-nested MMUs. Thus, if A/D bits are
* enabled, the SPTE can't be an access-tracked SPTE.
*/
if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
new_spte = restore_acc_track_spte(new_spte);
/*
* To keep things simple, only SPTEs that are MMU-writable can
* be made fully writable outside of mmu_lock, e.g. only SPTEs
* that were write-protected for dirty-logging or access
* tracking are handled here. Don't bother checking if the
* SPTE is writable to prioritize running with A/D bits enabled.
* The is_access_allowed() check above handles the common case
* of the fault being spurious, and the SPTE is known to be
* shadow-present, i.e. except for access tracking restoration
* making the new SPTE writable, the check is wasteful.
*/
if (fault->write && is_mmu_writable_spte(spte)) {
new_spte |= PT_WRITABLE_MASK;
/*
* Do not fix write-permission on the large spte when
* dirty logging is enabled. Since we only dirty the
* first page into the dirty-bitmap in
* fast_pf_fix_direct_spte(), other pages are missed
* if its slot has dirty logging enabled.
*
* Instead, we let the slow page fault path create a
* normal spte to fix the access.
*/
if (sp->role.level > PG_LEVEL_4K &&
kvm_slot_dirty_track_enabled(fault->slot))
break;
}
/* Verify that the fault can be handled in the fast path */
if (new_spte == spte ||
!is_access_allowed(fault, new_spte))
break;
/*
* Currently, fast page fault only works for direct mapping
* since the gfn is not stable for indirect shadow page. See
* Documentation/virt/kvm/locking.rst to get more detail.
*/
if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
ret = RET_PF_FIXED;
break;
}
if (++retry_count > 4) {
pr_warn_once("Fast #PF retrying more than 4 times.\n");
break;
}
} while (true);
trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
walk_shadow_page_lockless_end(vcpu);
if (ret != RET_PF_INVALID)
vcpu->stat.pf_fast++;
return ret;
}
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
struct list_head *invalid_list)
{
struct kvm_mmu_page *sp;
if (!VALID_PAGE(*root_hpa))
return;
/*
* The "root" may be a special root, e.g. a PAE entry, treat it as a
* SPTE to ensure any non-PA bits are dropped.
*/
sp = spte_to_child_sp(*root_hpa);
if (WARN_ON(!sp))
return;
if (is_tdp_mmu_page(sp))
kvm_tdp_mmu_put_root(kvm, sp, false);
else if (!--sp->root_count && sp->role.invalid)
kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
*root_hpa = INVALID_PAGE;
}
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
ulong roots_to_free)
{
int i;
LIST_HEAD(invalid_list);
bool free_active_root;
BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
/* Before acquiring the MMU lock, see if we need to do any real work. */
free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
&& VALID_PAGE(mmu->root.hpa);
if (!free_active_root) {
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
VALID_PAGE(mmu->prev_roots[i].hpa))
break;
if (i == KVM_MMU_NUM_PREV_ROOTS)
return;
}
write_lock(&kvm->mmu_lock);
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
&invalid_list);
if (free_active_root) {
if (to_shadow_page(mmu->root.hpa)) {
mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
} else if (mmu->pae_root) {
for (i = 0; i < 4; ++i) {
if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
continue;
mmu_free_root_page(kvm, &mmu->pae_root[i],
&invalid_list);
mmu->pae_root[i] = INVALID_PAE_ROOT;
}
}
mmu->root.hpa = INVALID_PAGE;
mmu->root.pgd = 0;
}
kvm_mmu_commit_zap_page(kvm, &invalid_list);
write_unlock(&kvm->mmu_lock);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
{
unsigned long roots_to_free = 0;
hpa_t root_hpa;
int i;
/*
* This should not be called while L2 is active, L2 can't invalidate
* _only_ its own roots, e.g. INVVPID unconditionally exits.
*/
WARN_ON_ONCE(mmu->root_role.guest_mode);
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
root_hpa = mmu->prev_roots[i].hpa;
if (!VALID_PAGE(root_hpa))
continue;
if (!to_shadow_page(root_hpa) ||
to_shadow_page(root_hpa)->role.guest_mode)
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
}
kvm_mmu_free_roots(kvm, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
int ret = 0;
if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
ret = 1;
}
return ret;
}
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
u8 level)
{
union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
struct kvm_mmu_page *sp;
role.level = level;
role.quadrant = quadrant;
WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
++sp->root_count;
return __pa(sp->spt);
}
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.mmu;
u8 shadow_root_level = mmu->root_role.level;
hpa_t root;
unsigned i;
int r;
write_lock(&vcpu->kvm->mmu_lock);
r = make_mmu_pages_available(vcpu);
if (r < 0)
goto out_unlock;
if (tdp_mmu_enabled) {
root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
mmu->root.hpa = root;
} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level);
mmu->root.hpa = root;
} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
if (WARN_ON_ONCE(!mmu->pae_root)) {
r = -EIO;
goto out_unlock;
}
for (i = 0; i < 4; ++i) {
WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 0,
PT32_ROOT_LEVEL);
mmu->pae_root[i] = root | PT_PRESENT_MASK |
shadow_me_value;
}
mmu->root.hpa = __pa(mmu->pae_root);
} else {
WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
r = -EIO;
goto out_unlock;
}
/* root.pgd is ignored for direct MMUs. */
mmu->root.pgd = 0;
out_unlock:
write_unlock(&vcpu->kvm->mmu_lock);
return r;
}
static int mmu_first_shadow_root_alloc(struct kvm *kvm)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *slot;
int r = 0, i, bkt;
/*
* Check if this is the first shadow root being allocated before
* taking the lock.
*/
if (kvm_shadow_root_allocated(kvm))
return 0;
mutex_lock(&kvm->slots_arch_lock);
/* Recheck, under the lock, whether this is the first shadow root. */
if (kvm_shadow_root_allocated(kvm))
goto out_unlock;
/*
* Check if anything actually needs to be allocated, e.g. all metadata
* will be allocated upfront if TDP is disabled.
*/
if (kvm_memslots_have_rmaps(kvm) &&
kvm_page_track_write_tracking_enabled(kvm))
goto out_success;
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
slots = __kvm_memslots(kvm, i);
kvm_for_each_memslot(slot, bkt, slots) {
/*
* Both of these functions are no-ops if the target is
* already allocated, so unconditionally calling both
* is safe. Intentionally do NOT free allocations on
* failure to avoid having to track which allocations
* were made now versus when the memslot was created.
* The metadata is guaranteed to be freed when the slot
* is freed, and will be kept/used if userspace retries
* KVM_RUN instead of killing the VM.
*/
r = memslot_rmap_alloc(slot, slot->npages);
if (r)
goto out_unlock;
r = kvm_page_track_write_tracking_alloc(slot);
if (r)
goto out_unlock;
}
}
/*
* Ensure that shadow_root_allocated becomes true strictly after
* all the related pointers are set.
*/
out_success:
smp_store_release(&kvm->arch.shadow_root_allocated, true);
out_unlock:
mutex_unlock(&kvm->slots_arch_lock);
return r;
}
static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.mmu;
u64 pdptrs[4], pm_mask;
gfn_t root_gfn, root_pgd;
int quadrant, i, r;
hpa_t root;
root_pgd = mmu->get_guest_pgd(vcpu);
root_gfn = root_pgd >> PAGE_SHIFT;
if (mmu_check_root(vcpu, root_gfn))
return 1;
/*
* On SVM, reading PDPTRs might access guest memory, which might fault
* and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
*/
if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
for (i = 0; i < 4; ++i) {
pdptrs[i] = mmu->get_pdptr(vcpu, i);
if (!(pdptrs[i] & PT_PRESENT_MASK))
continue;
if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
return 1;
}
}
r = mmu_first_shadow_root_alloc(vcpu->kvm);
if (r)
return r;
write_lock(&vcpu->kvm->mmu_lock);
r = make_mmu_pages_available(vcpu);
if (r < 0)
goto out_unlock;
/*
* Do we shadow a long mode page table? If so we need to
* write-protect the guests page table root.
*/
if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
root = mmu_alloc_root(vcpu, root_gfn, 0,
mmu->root_role.level);
mmu->root.hpa = root;
goto set_root_pgd;
}
if (WARN_ON_ONCE(!mmu->pae_root)) {
r = -EIO;
goto out_unlock;
}
/*
* We shadow a 32 bit page table. This may be a legacy 2-level
* or a PAE 3-level page table. In either case we need to be aware that
* the shadow page table may be a PAE or a long mode page table.
*/
pm_mask = PT_PRESENT_MASK | shadow_me_value;
if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
if (WARN_ON_ONCE(!mmu->pml4_root)) {
r = -EIO;
goto out_unlock;
}
mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
if (WARN_ON_ONCE(!mmu->pml5_root)) {
r = -EIO;
goto out_unlock;
}
mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
}
}
for (i = 0; i < 4; ++i) {
WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
if (!(pdptrs[i] & PT_PRESENT_MASK)) {
mmu->pae_root[i] = INVALID_PAE_ROOT;
continue;
}
root_gfn = pdptrs[i] >> PAGE_SHIFT;
}
/*
* If shadowing 32-bit non-PAE page tables, each PAE page
* directory maps one quarter of the guest's non-PAE page
* directory. Othwerise each PAE page direct shadows one guest
* PAE page directory so that quadrant should be 0.
*/
quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
mmu->pae_root[i] = root | pm_mask;
}
if (mmu->root_role.level == PT64_ROOT_5LEVEL)
mmu->root.hpa = __pa(mmu->pml5_root);
else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
mmu->root.hpa = __pa(mmu->pml4_root);
else
mmu->root.hpa = __pa(mmu->pae_root);
set_root_pgd:
mmu->root.pgd = root_pgd;
out_unlock:
write_unlock(&vcpu->kvm->mmu_lock);
return r;
}
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.mmu;
bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
u64 *pml5_root = NULL;
u64 *pml4_root = NULL;
u64 *pae_root;
/*
* When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
* tables are allocated and initialized at root creation as there is no
* equivalent level in the guest's NPT to shadow. Allocate the tables
* on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
*/
if (mmu->root_role.direct ||
mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
mmu->root_role.level < PT64_ROOT_4LEVEL)
return 0;
/*
* NPT, the only paging mode that uses this horror, uses a fixed number
* of levels for the shadow page tables, e.g. all MMUs are 4-level or
* all MMus are 5-level. Thus, this can safely require that pml5_root
* is allocated if the other roots are valid and pml5 is needed, as any
* prior MMU would also have required pml5.
*/
if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
return 0;
/*
* The special roots should always be allocated in concert. Yell and
* bail if KVM ends up in a state where only one of the roots is valid.
*/
if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
(need_pml5 && mmu->pml5_root)))
return -EIO;
/*
* Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
* doesn't need to be decrypted.
*/
pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
if (!pae_root)
return -ENOMEM;
#ifdef CONFIG_X86_64
pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
if (!pml4_root)
goto err_pml4;
if (need_pml5) {
pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
if (!pml5_root)
goto err_pml5;
}
#endif
mmu->pae_root = pae_root;
mmu->pml4_root = pml4_root;
mmu->pml5_root = pml5_root;
return 0;
#ifdef CONFIG_X86_64
err_pml5:
free_page((unsigned long)pml4_root);
err_pml4:
free_page((unsigned long)pae_root);
return -ENOMEM;
#endif
}
static bool is_unsync_root(hpa_t root)
{
struct kvm_mmu_page *sp;
if (!VALID_PAGE(root))
return false;
/*
* The read barrier orders the CPU's read of SPTE.W during the page table
* walk before the reads of sp->unsync/sp->unsync_children here.
*
* Even if another CPU was marking the SP as unsync-ed simultaneously,
* any guest page table changes are not guaranteed to be visible anyway
* until this VCPU issues a TLB flush strictly after those changes are
* made. We only need to ensure that the other CPU sets these flags
* before any actual changes to the page tables are made. The comments
* in mmu_try_to_unsync_pages() describe what could go wrong if this
* requirement isn't satisfied.
*/
smp_rmb();
sp = to_shadow_page(root);
/*
* PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
* PDPTEs for a given PAE root need to be synchronized individually.
*/
if (WARN_ON_ONCE(!sp))
return false;
if (sp->unsync || sp->unsync_children)
return true;
return false;
}
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_mmu_page *sp;
if (vcpu->arch.mmu->root_role.direct)
return;
if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
return;
vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
hpa_t root = vcpu->arch.mmu->root.hpa;
sp = to_shadow_page(root);
if (!is_unsync_root(root))
return;
write_lock(&vcpu->kvm->mmu_lock);
mmu_sync_children(vcpu, sp, true);
write_unlock(&vcpu->kvm->mmu_lock);
return;
}
write_lock(&vcpu->kvm->mmu_lock);
for (i = 0; i < 4; ++i) {
hpa_t root = vcpu->arch.mmu->pae_root[i];
if (IS_VALID_PAE_ROOT(root)) {
sp = spte_to_child_sp(root);
mmu_sync_children(vcpu, sp, true);
}
}
write_unlock(&vcpu->kvm->mmu_lock);
}
void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
{
unsigned long roots_to_free = 0;
int i;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
/* sync prev_roots by simply freeing them */
kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
}
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gpa_t vaddr, u64 access,
struct x86_exception *exception)
{
if (exception)
exception->error_code = 0;
return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
}
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
/*
* A nested guest cannot use the MMIO cache if it is using nested
* page tables, because cr2 is a nGPA while the cache stores GPAs.
*/
if (mmu_is_nested(vcpu))
return false;
if (direct)
return vcpu_match_mmio_gpa(vcpu, addr);
return vcpu_match_mmio_gva(vcpu, addr);
}
/*
* Return the level of the lowest level SPTE added to sptes.
* That SPTE may be non-present.
*
* Must be called between walk_shadow_page_lockless_{begin,end}.
*/
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
{
struct kvm_shadow_walk_iterator iterator;
int leaf = -1;
u64 spte;
for (shadow_walk_init(&iterator, vcpu, addr),
*root_level = iterator.level;
shadow_walk_okay(&iterator);
__shadow_walk_next(&iterator, spte)) {
leaf = iterator.level;
spte = mmu_spte_get_lockless(iterator.sptep);
sptes[leaf] = spte;
}
return leaf;
}
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
struct rsvd_bits_validate *rsvd_check;
int root, leaf, level;
bool reserved = false;
walk_shadow_page_lockless_begin(vcpu);
if (is_tdp_mmu_active(vcpu))
leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
else
leaf = get_walk(vcpu, addr, sptes, &root);
walk_shadow_page_lockless_end(vcpu);
if (unlikely(leaf < 0)) {
*sptep = 0ull;
return reserved;
}
*sptep = sptes[leaf];
/*
* Skip reserved bits checks on the terminal leaf if it's not a valid
* SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
* design, always have reserved bits set. The purpose of the checks is
* to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
*/
if (!is_shadow_present_pte(sptes[leaf]))
leaf++;
rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
for (level = root; level >= leaf; level--)
reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
if (reserved) {
pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
__func__, addr);
for (level = root; level >= leaf; level--)
pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
sptes[level], level,
get_rsvd_bits(rsvd_check, sptes[level], level));
}
return reserved;
}
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
u64 spte;
bool reserved;
if (mmio_info_in_cache(vcpu, addr, direct))
return RET_PF_EMULATE;
reserved = get_mmio_spte(vcpu, addr, &spte);
if (WARN_ON(reserved))
return -EINVAL;
if (is_mmio_spte(spte)) {
gfn_t gfn = get_mmio_spte_gfn(spte);
unsigned int access = get_mmio_spte_access(spte);
if (!check_mmio_spte(vcpu, spte))
return RET_PF_INVALID;
if (direct)
addr = 0;
trace_handle_mmio_page_fault(addr, gfn, access);
vcpu_cache_mmio_info(vcpu, addr, gfn, access);
return RET_PF_EMULATE;
}
/*
* If the page table is zapped by other cpus, let CPU fault again on
* the address.
*/
return RET_PF_RETRY;
}
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
struct kvm_page_fault *fault)
{
if (unlikely(fault->rsvd))
return false;
if (!fault->present || !fault->write)
return false;
/*
* guest is writing the page which is write tracked which can
* not be fixed by page fault handler.
*/
if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
return true;
return false;
}
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
struct kvm_shadow_walk_iterator iterator;
u64 spte;
walk_shadow_page_lockless_begin(vcpu);
for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
clear_sp_write_flooding_count(iterator.sptep);
walk_shadow_page_lockless_end(vcpu);
}
static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
{
/* make sure the token value is not 0 */
u32 id = vcpu->arch.apf.id;
if (id << 12 == 0)
vcpu->arch.apf.id = 1;
return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
}
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
gfn_t gfn)
{
struct kvm_arch_async_pf arch;
arch.token = alloc_apf_token(vcpu);
arch.gfn = gfn;
arch.direct_map = vcpu->arch.mmu->root_role.direct;
arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
return kvm_setup_async_pf(vcpu, cr2_or_gpa,
kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
}
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
{
int r;
if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
work->wakeup_all)
return;
r = kvm_mmu_reload(vcpu);
if (unlikely(r))
return;
if (!vcpu->arch.mmu->root_role.direct &&
work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
return;
kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
}
static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
struct kvm_memory_slot *slot = fault->slot;
bool async;
/*
* Retry the page fault if the gfn hit a memslot that is being deleted
* or moved. This ensures any existing SPTEs for the old memslot will
* be zapped before KVM inserts a new MMIO SPTE for the gfn.
*/
if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
return RET_PF_RETRY;
if (!kvm_is_visible_memslot(slot)) {
/* Don't expose private memslots to L2. */
if (is_guest_mode(vcpu)) {
fault->slot = NULL;
fault->pfn = KVM_PFN_NOSLOT;
fault->map_writable = false;
return RET_PF_CONTINUE;
}
/*
* If the APIC access page exists but is disabled, go directly
* to emulation without caching the MMIO access or creating a
* MMIO SPTE. That way the cache doesn't need to be purged
* when the AVIC is re-enabled.
*/
if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
!kvm_apicv_activated(vcpu->kvm))
return RET_PF_EMULATE;
}
async = false;
fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
fault->write, &fault->map_writable,
&fault->hva);
if (!async)
return RET_PF_CONTINUE; /* *pfn has correct page already */
if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
trace_kvm_try_async_get_page(fault->addr, fault->gfn);
if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
trace_kvm_async_pf_repeated_fault(fault->addr, fault->gfn);
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
return RET_PF_RETRY;
} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn)) {
return RET_PF_RETRY;
}
}
/*
* Allow gup to bail on pending non-fatal signals when it's also allowed
* to wait for IO. Note, gup always bails if it is unable to quickly
* get a page and a fatal signal, i.e. SIGKILL, is pending.
*/
fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, true, NULL,
fault->write, &fault->map_writable,
&fault->hva);
return RET_PF_CONTINUE;
}
static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
unsigned int access)
{
int ret;
fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
smp_rmb();
ret = __kvm_faultin_pfn(vcpu, fault);
if (ret != RET_PF_CONTINUE)
return ret;
if (unlikely(is_error_pfn(fault->pfn)))
return kvm_handle_error_pfn(vcpu, fault);
if (unlikely(!fault->slot))
return kvm_handle_noslot_fault(vcpu, fault, access);
return RET_PF_CONTINUE;
}
/*
* Returns true if the page fault is stale and needs to be retried, i.e. if the
* root was invalidated by a memslot update or a relevant mmu_notifier fired.
*/
static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
struct kvm_page_fault *fault)
{
struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
/* Special roots, e.g. pae_root, are not backed by shadow pages. */
if (sp && is_obsolete_sp(vcpu->kvm, sp))
return true;
/*
* Roots without an associated shadow page are considered invalid if
* there is a pending request to free obsolete roots. The request is
* only a hint that the current root _may_ be obsolete and needs to be
* reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
* previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
* to reload even if no vCPU is actively using the root.
*/
if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
return true;
return fault->slot &&
mmu_invalidate_retry_hva(vcpu->kvm, fault->mmu_seq, fault->hva);
}
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
int r;
if (page_fault_handle_page_track(vcpu, fault))
return RET_PF_EMULATE;
r = fast_page_fault(vcpu, fault);
if (r != RET_PF_INVALID)
return r;
r = mmu_topup_memory_caches(vcpu, false);
if (r)
return r;
r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
if (r != RET_PF_CONTINUE)
return r;
r = RET_PF_RETRY;
write_lock(&vcpu->kvm->mmu_lock);
if (is_page_fault_stale(vcpu, fault))
goto out_unlock;
r = make_mmu_pages_available(vcpu);
if (r)
goto out_unlock;
r = direct_map(vcpu, fault);
out_unlock:
write_unlock(&vcpu->kvm->mmu_lock);
kvm_release_pfn_clean(fault->pfn);
return r;
}
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
struct kvm_page_fault *fault)
{
pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
fault->max_level = PG_LEVEL_2M;
return direct_page_fault(vcpu, fault);
}
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
u64 fault_address, char *insn, int insn_len)
{
int r = 1;
u32 flags = vcpu->arch.apf.host_apf_flags;
#ifndef CONFIG_X86_64
/* A 64-bit CR2 should be impossible on 32-bit KVM. */
if (WARN_ON_ONCE(fault_address >> 32))
return -EFAULT;
#endif
vcpu->arch.l1tf_flush_l1d = true;
if (!flags) {
trace_kvm_page_fault(vcpu, fault_address, error_code);
if (kvm_event_needs_reinjection(vcpu))
kvm_mmu_unprotect_page_virt(vcpu, fault_address);
r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
insn_len);
} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
vcpu->arch.apf.host_apf_flags = 0;
local_irq_disable();
kvm_async_pf_task_wait_schedule(fault_address);
local_irq_enable();
} else {
WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
}
return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
#ifdef CONFIG_X86_64
static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
struct kvm_page_fault *fault)
{
int r;
if (page_fault_handle_page_track(vcpu, fault))
return RET_PF_EMULATE;
r = fast_page_fault(vcpu, fault);
if (r != RET_PF_INVALID)
return r;
r = mmu_topup_memory_caches(vcpu, false);
if (r)
return r;
r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
if (r != RET_PF_CONTINUE)
return r;
r = RET_PF_RETRY;
read_lock(&vcpu->kvm->mmu_lock);
if (is_page_fault_stale(vcpu, fault))
goto out_unlock;
r = kvm_tdp_mmu_map(vcpu, fault);
out_unlock:
read_unlock(&vcpu->kvm->mmu_lock);
kvm_release_pfn_clean(fault->pfn);
return r;
}
#endif
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
{
/*
* If the guest's MTRRs may be used to compute the "real" memtype,
* restrict the mapping level to ensure KVM uses a consistent memtype
* across the entire mapping. If the host MTRRs are ignored by TDP
* (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA
* (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype
* from the guest's MTRRs so that guest accesses to memory that is
* DMA'd aren't cached against the guest's wishes.
*
* Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
* e.g. KVM will force UC memtype for host MMIO.
*/
if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
gfn_t base = fault->gfn & ~(page_num - 1);
if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
break;
}
}
#ifdef CONFIG_X86_64
if (tdp_mmu_enabled)
return kvm_tdp_mmu_page_fault(vcpu, fault);
#endif
return direct_page_fault(vcpu, fault);
}
static void nonpaging_init_context(struct kvm_mmu *context)
{
context->page_fault = nonpaging_page_fault;
context->gva_to_gpa = nonpaging_gva_to_gpa;
context->sync_page = nonpaging_sync_page;
context->invlpg = NULL;
}
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
union kvm_mmu_page_role role)
{
return (role.direct || pgd == root->pgd) &&
VALID_PAGE(root->hpa) &&
role.word == to_shadow_page(root->hpa)->role.word;
}
/*
* Find out if a previously cached root matching the new pgd/role is available,
* and insert the current root as the MRU in the cache.
* If a matching root is found, it is assigned to kvm_mmu->root and
* true is returned.
* If no match is found, kvm_mmu->root is left invalid, the LRU root is
* evicted to make room for the current root, and false is returned.
*/
static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
gpa_t new_pgd,
union kvm_mmu_page_role new_role)
{
uint i;
if (is_root_usable(&mmu->root, new_pgd, new_role))
return true;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
/*
* The swaps end up rotating the cache like this:
* C 0 1 2 3 (on entry to the function)
* 0 C 1 2 3
* 1 C 0 2 3
* 2 C 0 1 3
* 3 C 0 1 2 (on exit from the loop)
*/
swap(mmu->root, mmu->prev_roots[i]);
if (is_root_usable(&mmu->root, new_pgd, new_role))
return true;
}
kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
return false;
}
/*
* Find out if a previously cached root matching the new pgd/role is available.
* On entry, mmu->root is invalid.
* If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
* of the cache becomes invalid, and true is returned.
* If no match is found, kvm_mmu->root is left invalid and false is returned.
*/
static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
gpa_t new_pgd,
union kvm_mmu_page_role new_role)
{
uint i;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
goto hit;
return false;
hit:
swap(mmu->root, mmu->prev_roots[i]);
/* Bubble up the remaining roots. */
for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
mmu->prev_roots[i] = mmu->prev_roots[i + 1];
mmu->prev_roots[i].hpa = INVALID_PAGE;
return true;
}
static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
gpa_t new_pgd, union kvm_mmu_page_role new_role)
{
/*
* For now, limit the caching to 64-bit hosts+VMs in order to avoid
* having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
* later if necessary.
*/
if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
if (VALID_PAGE(mmu->root.hpa))
return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
else
return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
}
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
{
struct kvm_mmu *mmu = vcpu->arch.mmu;
union kvm_mmu_page_role new_role = mmu->root_role;
if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
/* kvm_mmu_ensure_valid_pgd will set up a new root. */
return;
}
/*
* It's possible that the cached previous root page is obsolete because
* of a change in the MMU generation number. However, changing the
* generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
* which will free the root set here and allocate a new one.
*/
kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
if (force_flush_and_sync_on_reuse) {
kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
}
/*
* The last MMIO access's GVA and GPA are cached in the VCPU. When
* switching to a new CR3, that GVA->GPA mapping may no longer be
* valid. So clear any cached MMIO info even when we don't need to sync
* the shadow page tables.
*/
vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
/*
* If this is a direct root page, it doesn't have a write flooding
* count. Otherwise, clear the write flooding count.
*/
if (!new_role.direct)
__clear_sp_write_flooding_count(
to_shadow_page(vcpu->arch.mmu->root.hpa));
}
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
return kvm_read_cr3(vcpu);
}
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
unsigned int access)
{
if (unlikely(is_mmio_spte(*sptep))) {
if (gfn != get_mmio_spte_gfn(*sptep)) {
mmu_spte_clear_no_track(sptep);
return true;
}
mark_mmio_spte(vcpu, sptep, gfn, access);
return true;
}
return false;
}
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE
#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE
static void
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
bool pse, bool amd)
{
u64 gbpages_bit_rsvd = 0;
u64 nonleaf_bit8_rsvd = 0;
u64 high_bits_rsvd;
rsvd_check->bad_mt_xwr = 0;
if (!gbpages)
gbpages_bit_rsvd = rsvd_bits(7, 7);
if (level == PT32E_ROOT_LEVEL)
high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
else
high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
/* Note, NX doesn't exist in PDPTEs, this is handled below. */
if (!nx)
high_bits_rsvd |= rsvd_bits(63, 63);
/*
* Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
* leaf entries) on AMD CPUs only.
*/
if (amd)
nonleaf_bit8_rsvd = rsvd_bits(8, 8);
switch (level) {
case PT32_ROOT_LEVEL:
/* no rsvd bits for 2 level 4K page table entries */
rsvd_check->rsvd_bits_mask[0][1] = 0;
rsvd_check->rsvd_bits_mask[0][0] = 0;
rsvd_check->rsvd_bits_mask[1][0] =
rsvd_check->rsvd_bits_mask[0][0];
if (!pse) {
rsvd_check->rsvd_bits_mask[1][1] = 0;
break;
}
if (is_cpuid_PSE36())
/* 36bits PSE 4MB page */
rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
else
/* 32 bits PSE 4MB page */
rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
break;
case PT32E_ROOT_LEVEL:
rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
high_bits_rsvd |
rsvd_bits(5, 8) |
rsvd_bits(1, 2); /* PDPTE */
rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
rsvd_bits(13, 20); /* large page */
rsvd_check->rsvd_bits_mask[1][0] =
rsvd_check->rsvd_bits_mask[0][0];
break;
case PT64_ROOT_5LEVEL:
rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
nonleaf_bit8_rsvd |
rsvd_bits(7, 7);
rsvd_check->rsvd_bits_mask[1][4] =
rsvd_check->rsvd_bits_mask[0][4];
fallthrough;
case PT64_ROOT_4LEVEL:
rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
nonleaf_bit8_rsvd |
rsvd_bits(7, 7);
rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
gbpages_bit_rsvd;
rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
rsvd_check->rsvd_bits_mask[1][3] =
rsvd_check->rsvd_bits_mask[0][3];
rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
gbpages_bit_rsvd |
rsvd_bits(13, 29);
rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
rsvd_bits(13, 20); /* large page */
rsvd_check->rsvd_bits_mask[1][0] =
rsvd_check->rsvd_bits_mask[0][0];
break;
}
}
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
/*
* If TDP is enabled, let the guest use GBPAGES if they're supported in
* hardware. The hardware page walker doesn't let KVM disable GBPAGES,
* i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
* walk for performance and complexity reasons. Not to mention KVM
* _can't_ solve the problem because GVA->GPA walks aren't visible to
* KVM once a TDP translation is installed. Mimic hardware behavior so
* that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
*/
return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}
static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
struct kvm_mmu *context)
{
__reset_rsvds_bits_mask(&context->guest_rsvd_check,
vcpu->arch.reserved_gpa_bits,
context->cpu_role.base.level, is_efer_nx(context),
guest_can_use_gbpages(vcpu),
is_cr4_pse(context),
guest_cpuid_is_amd_or_hygon(vcpu));
}
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
u64 pa_bits_rsvd, bool execonly, int huge_page_level)
{
u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
u64 bad_mt_xwr;
if (huge_page_level < PG_LEVEL_1G)
large_1g_rsvd = rsvd_bits(7, 7);
if (huge_page_level < PG_LEVEL_2M)
large_2m_rsvd = rsvd_bits(7, 7);
rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
/* large page */
rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
if (!execonly) {
/* bits 0..2 must not be 100 unless VMX capabilities allow it */
bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
}
rsvd_check->bad_mt_xwr = bad_mt_xwr;
}
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
struct kvm_mmu *context, bool execonly, int huge_page_level)
{
__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
vcpu->arch.reserved_gpa_bits, execonly,
huge_page_level);
}
static inline u64 reserved_hpa_bits(void)
{
return rsvd_bits(shadow_phys_bits, 63);
}
/*
* the page table on host is the shadow page table for the page
* table in guest or amd nested guest, its mmu features completely
* follow the features in guest.
*/
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
struct kvm_mmu *context)
{
/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
bool is_amd = true;
/* KVM doesn't use 2-level page tables for the shadow MMU. */
bool is_pse = false;
struct rsvd_bits_validate *shadow_zero_check;
int i;
WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
shadow_zero_check = &context->shadow_zero_check;
__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
context->root_role.level,
context->root_role.efer_nx,
guest_can_use_gbpages(vcpu), is_pse, is_amd);
if (!shadow_me_mask)
return;
for (i = context->root_role.level; --i >= 0;) {
/*
* So far shadow_me_value is a constant during KVM's life
* time. Bits in shadow_me_value are allowed to be set.
* Bits in shadow_me_mask but not in shadow_me_value are
* not allowed to be set.
*/
shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
}
}
static inline bool boot_cpu_is_amd(void)
{
WARN_ON_ONCE(!tdp_enabled);
return shadow_x_mask == 0;
}
/*
* the direct page table on host, use as much mmu features as
* possible, however, kvm currently does not do execution-protection.
*/
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
{
struct rsvd_bits_validate *shadow_zero_check;
int i;
shadow_zero_check = &context->shadow_zero_check;
if (boot_cpu_is_amd())
__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
context->root_role.level, true,
boot_cpu_has(X86_FEATURE_GBPAGES),
false, true);
else
__reset_rsvds_bits_mask_ept(shadow_zero_check,
reserved_hpa_bits(), false,
max_huge_page_level);
if (!shadow_me_mask)
return;
for (i = context->root_role.level; --i >= 0;) {
shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
}
}
/*
* as the comments in reset_shadow_zero_bits_mask() except it
* is the shadow page table for intel nested guest.
*/
static void
reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
{
__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
reserved_hpa_bits(), execonly,
max_huge_page_level);
}
#define BYTE_MASK(access) \
((1 & (access) ? 2 : 0) | \
(2 & (access) ? 4 : 0) | \
(3 & (access) ? 8 : 0) | \
(4 & (access) ? 16 : 0) | \
(5 & (access) ? 32 : 0) | \
(6 & (access) ? 64 : 0) | \
(7 & (access) ? 128 : 0))
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
{
unsigned byte;
const u8 x = BYTE_MASK(ACC_EXEC_MASK);
const u8 w = BYTE_MASK(ACC_WRITE_MASK);
const u8 u = BYTE_MASK(ACC_USER_MASK);
bool cr4_smep = is_cr4_smep(mmu);
bool cr4_smap = is_cr4_smap(mmu);
bool cr0_wp = is_cr0_wp(mmu);
bool efer_nx = is_efer_nx(mmu);
for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
unsigned pfec = byte << 1;
/*
* Each "*f" variable has a 1 bit for each UWX value
* that causes a fault with the given PFEC.
*/
/* Faults from writes to non-writable pages */
u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
/* Faults from user mode accesses to supervisor pages */
u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
/* Faults from fetches of non-executable pages*/
u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
/* Faults from kernel mode fetches of user pages */
u8 smepf = 0;
/* Faults from kernel mode accesses of user pages */
u8 smapf = 0;
if (!ept) {
/* Faults from kernel mode accesses to user pages */
u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
/* Not really needed: !nx will cause pte.nx to fault */
if (!efer_nx)
ff = 0;
/* Allow supervisor writes if !cr0.wp */
if (!cr0_wp)
wf = (pfec & PFERR_USER_MASK) ? wf : 0;
/* Disallow supervisor fetches of user code if cr4.smep */
if (cr4_smep)
smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
/*
* SMAP:kernel-mode data accesses from user-mode
* mappings should fault. A fault is considered
* as a SMAP violation if all of the following
* conditions are true:
* - X86_CR4_SMAP is set in CR4
* - A user page is accessed
* - The access is not a fetch
* - The access is supervisor mode
* - If implicit supervisor access or X86_EFLAGS_AC is clear
*
* Here, we cover the first four conditions.
* The fifth is computed dynamically in permission_fault();
* PFERR_RSVD_MASK bit will be set in PFEC if the access is
* *not* subject to SMAP restrictions.
*/
if (cr4_smap)
smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
}
mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
}
}
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register. Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions. The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD. For all reads or if the last condition holds, WD
* only will be masked away.
*/
static void update_pkru_bitmask(struct kvm_mmu *mmu)
{
unsigned bit;
bool wp;
mmu->pkru_mask = 0;
if (!is_cr4_pke(mmu))
return;
wp = is_cr0_wp(mmu);
for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
unsigned pfec, pkey_bits;
bool check_pkey, check_write, ff, uf, wf, pte_user;
pfec = bit << 1;
ff = pfec & PFERR_FETCH_MASK;
uf = pfec & PFERR_USER_MASK;
wf = pfec & PFERR_WRITE_MASK;
/* PFEC.RSVD is replaced by ACC_USER_MASK. */
pte_user = pfec & PFERR_RSVD_MASK;
/*
* Only need to check the access which is not an
* instruction fetch and is to a user page.
*/
check_pkey = (!ff && pte_user);
/*
* write access is controlled by PKRU if it is a
* user access or CR0.WP = 1.
*/
check_write = check_pkey && wf && (uf || wp);
/* PKRU.AD stops both read and write access. */
pkey_bits = !!check_pkey;
/* PKRU.WD stops write access. */
pkey_bits |= (!!check_write) << 1;
mmu->pkru_mask |= (pkey_bits & 3) << pfec;
}
}
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu)
{
if (!is_cr0_pg(mmu))
return;
reset_guest_rsvds_bits_mask(vcpu, mmu);
update_permission_bitmask(mmu, false);
update_pkru_bitmask(mmu);
}
static void paging64_init_context(struct kvm_mmu *context)
{
context->page_fault = paging64_page_fault;
context->gva_to_gpa = paging64_gva_to_gpa;
context->sync_page = paging64_sync_page;
context->invlpg = paging64_invlpg;
}
static void paging32_init_context(struct kvm_mmu *context)
{
context->page_fault = paging32_page_fault;
context->gva_to_gpa = paging32_gva_to_gpa;
context->sync_page = paging32_sync_page;
context->invlpg = paging32_invlpg;
}
static union kvm_cpu_role
kvm_calc_cpu_role(struct kvm_vcpu *vcpu, const struct kvm_mmu_role_regs *regs)
{
union kvm_cpu_role role = {0};
role.base.access = ACC_ALL;
role.base.smm = is_smm(vcpu);
role.base.guest_mode = is_guest_mode(vcpu);
role.ext.valid = 1;
if (!____is_cr0_pg(regs)) {
role.base.direct = 1;
return role;
}
role.base.efer_nx = ____is_efer_nx(regs);
role.base.cr0_wp = ____is_cr0_wp(regs);
role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
if (____is_efer_lma(regs))
role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
: PT64_ROOT_4LEVEL;
else if (____is_cr4_pae(regs))
role.base.level = PT32E_ROOT_LEVEL;
else
role.base.level = PT32_ROOT_LEVEL;
role.ext.cr4_smep = ____is_cr4_smep(regs);
role.ext.cr4_smap = ____is_cr4_smap(regs);
role.ext.cr4_pse = ____is_cr4_pse(regs);
/* PKEY and LA57 are active iff long mode is active. */
role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
role.ext.efer_lma = ____is_efer_lma(regs);
return role;
}
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
/* tdp_root_level is architecture forced level, use it if nonzero */
if (tdp_root_level)
return tdp_root_level;
/* Use 5-level TDP if and only if it's useful/necessary. */
if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
return 4;
return max_tdp_level;
}
static union kvm_mmu_page_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
union kvm_cpu_role cpu_role)
{
union kvm_mmu_page_role role = {0};
role.access = ACC_ALL;
role.cr0_wp = true;
role.efer_nx = true;
role.smm = cpu_role.base.smm;
role.guest_mode = cpu_role.base.guest_mode;
role.ad_disabled = !kvm_ad_enabled();
role.level = kvm_mmu_get_tdp_level(vcpu);
role.direct = true;
role.has_4_byte_gpte = false;
return role;
}
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
union kvm_cpu_role cpu_role)
{
struct kvm_mmu *context = &vcpu->arch.root_mmu;
union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
root_role.word == context->root_role.word)
return;
context->cpu_role.as_u64 = cpu_role.as_u64;
context->root_role.word = root_role.word;
context->page_fault = kvm_tdp_page_fault;
context->sync_page = nonpaging_sync_page;
context->invlpg = NULL;
context->get_guest_pgd = get_cr3;
context->get_pdptr = kvm_pdptr_read;
context->inject_page_fault = kvm_inject_page_fault;
if (!is_cr0_pg(context))
context->gva_to_gpa = nonpaging_gva_to_gpa;
else if (is_cr4_pae(context))
context->gva_to_gpa = paging64_gva_to_gpa;
else
context->gva_to_gpa = paging32_gva_to_gpa;
reset_guest_paging_metadata(vcpu, context);
reset_tdp_shadow_zero_bits_mask(context);
}
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
union kvm_cpu_role cpu_role,
union kvm_mmu_page_role root_role)
{
if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
root_role.word == context->root_role.word)
return;
context->cpu_role.as_u64 = cpu_role.as_u64;
context->root_role.word = root_role.word;
if (!is_cr0_pg(context))
nonpaging_init_context(context);
else if (is_cr4_pae(context))
paging64_init_context(context);
else
paging32_init_context(context);
reset_guest_paging_metadata(vcpu, context);
reset_shadow_zero_bits_mask(vcpu, context);
}
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
union kvm_cpu_role cpu_role)
{
struct kvm_mmu *context = &vcpu->arch.root_mmu;
union kvm_mmu_page_role root_role;
root_role = cpu_role.base;
/* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
/*
* KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
* KVM uses NX when TDP is disabled to handle a variety of scenarios,
* notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
* to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
* The iTLB multi-hit workaround can be toggled at any time, so assume
* NX can be used by any non-nested shadow MMU to avoid having to reset
* MMU contexts.
*/
root_role.efer_nx = true;
shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
}
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
unsigned long cr4, u64 efer, gpa_t nested_cr3)
{
struct kvm_mmu *context = &vcpu->arch.guest_mmu;
struct kvm_mmu_role_regs regs = {
.cr0 = cr0,
.cr4 = cr4 & ~X86_CR4_PKE,
.efer = efer,
};
union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
union kvm_mmu_page_role root_role;
/* NPT requires CR0.PG=1. */
WARN_ON_ONCE(cpu_role.base.direct);
root_role = cpu_role.base;
root_role.level = kvm_mmu_get_tdp_level(vcpu);
if (root_role.level == PT64_ROOT_5LEVEL &&
cpu_role.base.level == PT64_ROOT_4LEVEL)
root_role.passthrough = 1;
shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
kvm_mmu_new_pgd(vcpu, nested_cr3);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
static union kvm_cpu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bool execonly, u8 level)
{
union kvm_cpu_role role = {0};
/*
* KVM does not support SMM transfer monitors, and consequently does not
* support the "entry to SMM" control either. role.base.smm is always 0.
*/
WARN_ON_ONCE(is_smm(vcpu));
role.base.level = level;
role.base.has_4_byte_gpte = false;
role.base.direct = false;
role.base.ad_disabled = !accessed_dirty;
role.base.guest_mode = true;
role.base.access = ACC_ALL;
role.ext.word = 0;
role.ext.execonly = execonly;
role.ext.valid = 1;
return role;
}
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
int huge_page_level, bool accessed_dirty,
gpa_t new_eptp)
{
struct kvm_mmu *context = &vcpu->arch.guest_mmu;
u8 level = vmx_eptp_page_walk_level(new_eptp);
union kvm_cpu_role new_mode =
kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
execonly, level);
if (new_mode.as_u64 != context->cpu_role.as_u64) {
/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
context->cpu_role.as_u64 = new_mode.as_u64;
context->root_role.word = new_mode.base.word;
context->page_fault = ept_page_fault;
context->gva_to_gpa = ept_gva_to_gpa;
context->sync_page = ept_sync_page;
context->invlpg = ept_invlpg;
update_permission_bitmask(context, true);
context->pkru_mask = 0;
reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
reset_ept_shadow_zero_bits_mask(context, execonly);
}
kvm_mmu_new_pgd(vcpu, new_eptp);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
union kvm_cpu_role cpu_role)
{
struct kvm_mmu *context = &vcpu->arch.root_mmu;
kvm_init_shadow_mmu(vcpu, cpu_role);
context->get_guest_pgd = get_cr3;
context->get_pdptr = kvm_pdptr_read;
context->inject_page_fault = kvm_inject_page_fault;
}
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
union kvm_cpu_role new_mode)
{
struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
if (new_mode.as_u64 == g_context->cpu_role.as_u64)
return;
g_context->cpu_role.as_u64 = new_mode.as_u64;
g_context->get_guest_pgd = get_cr3;
g_context->get_pdptr = kvm_pdptr_read;
g_context->inject_page_fault = kvm_inject_page_fault;
/*
* L2 page tables are never shadowed, so there is no need to sync
* SPTEs.
*/
g_context->invlpg = NULL;
/*
* Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
* L1's nested page tables (e.g. EPT12). The nested translation
* of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
* L2's page tables as the first level of translation and L1's
* nested page tables as the second level of translation. Basically
* the gva_to_gpa functions between mmu and nested_mmu are swapped.
*/
if (!is_paging(vcpu))
g_context->gva_to_gpa = nonpaging_gva_to_gpa;
else if (is_long_mode(vcpu))
g_context->gva_to_gpa = paging64_gva_to_gpa;
else if (is_pae(vcpu))
g_context->gva_to_gpa = paging64_gva_to_gpa;
else
g_context->gva_to_gpa = paging32_gva_to_gpa;
reset_guest_paging_metadata(vcpu, g_context);
}
void kvm_init_mmu(struct kvm_vcpu *vcpu)
{
struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, &regs);
if (mmu_is_nested(vcpu))
init_kvm_nested_mmu(vcpu, cpu_role);
else if (tdp_enabled)
init_kvm_tdp_mmu(vcpu, cpu_role);
else
init_kvm_softmmu(vcpu, cpu_role);
}
EXPORT_SYMBOL_GPL(kvm_init_mmu);
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
/*
* Invalidate all MMU roles to force them to reinitialize as CPUID
* information is factored into reserved bit calculations.
*
* Correctly handling multiple vCPU models with respect to paging and
* physical address properties) in a single VM would require tracking
* all relevant CPUID information in kvm_mmu_page_role. That is very
* undesirable as it would increase the memory requirements for
* gfn_track (see struct kvm_mmu_page_role comments). For now that
* problem is swept under the rug; KVM's CPUID API is horrific and
* it's all but impossible to solve it without introducing a new API.
*/
vcpu->arch.root_mmu.root_role.word = 0;
vcpu->arch.guest_mmu.root_role.word = 0;
vcpu->arch.nested_mmu.root_role.word = 0;
vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
kvm_mmu_reset_context(vcpu);
/*
* Changing guest CPUID after KVM_RUN is forbidden, see the comment in
* kvm_arch_vcpu_ioctl().
*/
KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
}
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
{
kvm_mmu_unload(vcpu);
kvm_init_mmu(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
int kvm_mmu_load(struct kvm_vcpu *vcpu)
{
int r;
r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->root_role.direct);
if (r)
goto out;
r = mmu_alloc_special_roots(vcpu);
if (r)
goto out;
if (vcpu->arch.mmu->root_role.direct)
r = mmu_alloc_direct_roots(vcpu);
else
r = mmu_alloc_shadow_roots(vcpu);
if (r)
goto out;
kvm_mmu_sync_roots(vcpu);
kvm_mmu_load_pgd(vcpu);
/*
* Flush any TLB entries for the new root, the provenance of the root
* is unknown. Even if KVM ensures there are no stale TLB entries
* for a freed root, in theory another hypervisor could have left
* stale entries. Flushing on alloc also allows KVM to skip the TLB
* flush when freeing a root (see kvm_tdp_mmu_put_root()).
*/
static_call(kvm_x86_flush_tlb_current)(vcpu);
out:
return r;
}
void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
}
static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
{
struct kvm_mmu_page *sp;
if (!VALID_PAGE(root_hpa))
return false;
/*
* When freeing obsolete roots, treat roots as obsolete if they don't
* have an associated shadow page. This does mean KVM will get false
* positives and free roots that don't strictly need to be freed, but
* such false positives are relatively rare:
*
* (a) only PAE paging and nested NPT has roots without shadow pages
* (b) remote reloads due to a memslot update obsoletes _all_ roots
* (c) KVM doesn't track previous roots for PAE paging, and the guest
* is unlikely to zap an in-use PGD.
*/
sp = to_shadow_page(root_hpa);
return !sp || is_obsolete_sp(kvm, sp);
}
static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
{
unsigned long roots_to_free = 0;
int i;
if (is_obsolete_root(kvm, mmu->root.hpa))
roots_to_free |= KVM_MMU_ROOT_CURRENT;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
}
if (roots_to_free)
kvm_mmu_free_roots(kvm, mmu, roots_to_free);
}
void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
{
__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
}
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
int *bytes)
{
u64 gentry = 0;
int r;
/*
* Assume that the pte write on a page table of the same type
* as the current vcpu paging mode since we update the sptes only
* when they have the same mode.
*/
if (is_pae(vcpu) && *bytes == 4) {
/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
*gpa &= ~(gpa_t)7;
*bytes = 8;
}
if (*bytes == 4 || *bytes == 8) {
r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
if (r)
gentry = 0;
}
return gentry;
}
/*
* If we're seeing too many writes to a page, it may no longer be a page table,
* or we may be forking, in which case it is better to unmap the page.
*/
static bool detect_write_flooding(struct kvm_mmu_page *sp)
{
/*
* Skip write-flooding detected for the sp whose level is 1, because
* it can become unsync, then the guest page is not write-protected.
*/
if (sp->role.level == PG_LEVEL_4K)
return false;
atomic_inc(&sp->write_flooding_count);
return atomic_read(&sp->write_flooding_count) >= 3;
}
/*
* Misaligned accesses are too much trouble to fix up; also, they usually
* indicate a page is not used as a page table.
*/
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
int bytes)
{
unsigned offset, pte_size, misaligned;
pgprintk("misaligned: gpa %llx bytes %d role %x\n",
gpa, bytes, sp->role.word);
offset = offset_in_page(gpa);
pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
/*
* Sometimes, the OS only writes the last one bytes to update status
* bits, for example, in linux, andb instruction is used in clear_bit().
*/
if (!(offset & (pte_size - 1)) && bytes == 1)
return false;
misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
misaligned |= bytes < 4;
return misaligned;
}
static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
unsigned page_offset, quadrant;
u64 *spte;
int level;
page_offset = offset_in_page(gpa);
level = sp->role.level;
*nspte = 1;
if (sp->role.has_4_byte_gpte) {
page_offset <<= 1; /* 32->64 */
/*
* A 32-bit pde maps 4MB while the shadow pdes map
* only 2MB. So we need to double the offset again
* and zap two pdes instead of one.
*/
if (level == PT32_ROOT_LEVEL) {
page_offset &= ~7; /* kill rounding error */
page_offset <<= 1;
*nspte = 2;
}
quadrant = page_offset >> PAGE_SHIFT;
page_offset &= ~PAGE_MASK;
if (quadrant != sp->role.quadrant)
return NULL;
}
spte = &sp->spt[page_offset / sizeof(*spte)];
return spte;
}
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *new, int bytes,
struct kvm_page_track_notifier_node *node)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
struct kvm_mmu_page *sp;
LIST_HEAD(invalid_list);
u64 entry, gentry, *spte;
int npte;
bool flush = false;
/*
* If we don't have indirect shadow pages, it means no page is
* write-protected, so we can exit simply.
*/
if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
return;
pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
write_lock(&vcpu->kvm->mmu_lock);
gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
++vcpu->kvm->stat.mmu_pte_write;
for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
if (detect_write_misaligned(sp, gpa, bytes) ||
detect_write_flooding(sp)) {
kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
++vcpu->kvm->stat.mmu_flooded;
continue;
}
spte = get_written_sptes(sp, gpa, &npte);
if (!spte)
continue;
while (npte--) {
entry = *spte;
mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
if (gentry && sp->role.level != PG_LEVEL_4K)
++vcpu->kvm->stat.mmu_pde_zapped;
if (is_shadow_present_pte(entry))
flush = true;
++spte;
}
}
kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
write_unlock(&vcpu->kvm->mmu_lock);
}
int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
void *insn, int insn_len)
{
int r, emulation_type = EMULTYPE_PF;
bool direct = vcpu->arch.mmu->root_role.direct;
if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
return RET_PF_RETRY;
r = RET_PF_INVALID;
if (unlikely(error_code & PFERR_RSVD_MASK)) {
r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
if (r == RET_PF_EMULATE)
goto emulate;
}
if (r == RET_PF_INVALID) {
r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
lower_32_bits(error_code), false);
if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
return -EIO;
}
if (r < 0)
return r;
if (r != RET_PF_EMULATE)
return 1;
/*
* Before emulating the instruction, check if the error code
* was due to a RO violation while translating the guest page.
* This can occur when using nested virtualization with nested
* paging in both guests. If true, we simply unprotect the page
* and resume the guest.
*/
if (vcpu->arch.mmu->root_role.direct &&
(error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
return 1;
}
/*
* vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
* optimistically try to just unprotect the page and let the processor
* re-execute the instruction that caused the page fault. Do not allow
* retrying MMIO emulation, as it's not only pointless but could also
* cause us to enter an infinite loop because the processor will keep
* faulting on the non-existent MMIO address. Retrying an instruction
* from a nested guest is also pointless and dangerous as we are only
* explicitly shadowing L1's page tables, i.e. unprotecting something
* for L1 isn't going to magically fix whatever issue cause L2 to fail.
*/
if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
emulate:
return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
insn_len);
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gva_t gva, hpa_t root_hpa)
{
int i;
/* It's actually a GPA for vcpu->arch.guest_mmu. */
if (mmu != &vcpu->arch.guest_mmu) {
/* INVLPG on a non-canonical address is a NOP according to the SDM. */
if (is_noncanonical_address(gva, vcpu))
return;
static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
}
if (!mmu->invlpg)
return;
if (root_hpa == INVALID_PAGE) {
mmu->invlpg(vcpu, gva, mmu->root.hpa);
/*
* INVLPG is required to invalidate any global mappings for the VA,
* irrespective of PCID. Since it would take us roughly similar amount
* of work to determine whether any of the prev_root mappings of the VA
* is marked global, or to just sync it blindly, so we might as well
* just always sync it.
*
* Mappings not reachable via the current cr3 or the prev_roots will be
* synced when switching to that cr3, so nothing needs to be done here
* for them.
*/
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
if (VALID_PAGE(mmu->prev_roots[i].hpa))
mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
} else {
mmu->invlpg(vcpu, gva, root_hpa);
}
}
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
struct kvm_mmu *mmu = vcpu->arch.mmu;
bool tlb_flush = false;
uint i;
if (pcid == kvm_get_active_pcid(vcpu)) {
if (mmu->invlpg)
mmu->invlpg(vcpu, gva, mmu->root.hpa);
tlb_flush = true;
}
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
if (mmu->invlpg)
mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
tlb_flush = true;
}
}
if (tlb_flush)
static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
++vcpu->stat.invlpg;
/*
* Mappings not reachable via the current cr3 or the prev_roots will be
* synced when switching to that cr3, so nothing needs to be done here
* for them.
*/
}
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
int tdp_max_root_level, int tdp_huge_page_level)
{
tdp_enabled = enable_tdp;
tdp_root_level = tdp_forced_root_level;
max_tdp_level = tdp_max_root_level;
#ifdef CONFIG_X86_64
tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
#endif
/*
* max_huge_page_level reflects KVM's MMU capabilities irrespective
* of kernel support, e.g. KVM may be capable of using 1GB pages when
* the kernel is not. But, KVM never creates a page size greater than
* what is used by the kernel for any given HVA, i.e. the kernel's
* capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
*/
if (tdp_enabled)
max_huge_page_level = tdp_huge_page_level;
else if (boot_cpu_has(X86_FEATURE_GBPAGES))
max_huge_page_level = PG_LEVEL_1G;
else
max_huge_page_level = PG_LEVEL_2M;
}
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm,
struct kvm_rmap_head *rmap_head,
const struct kvm_memory_slot *slot);
/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
slot_level_handler fn, int start_level, int end_level,
gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
bool flush)
{
struct slot_rmap_walk_iterator iterator;
for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
end_gfn, &iterator) {
if (iterator.rmap)
flush |= fn(kvm, iterator.rmap, memslot);
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
if (flush && flush_on_yield) {
kvm_flush_remote_tlbs_with_address(kvm,
start_gfn,
iterator.gfn - start_gfn + 1);
flush = false;
}
cond_resched_rwlock_write(&kvm->mmu_lock);
}
}
return flush;
}
static __always_inline bool
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
slot_level_handler fn, int start_level, int end_level,
bool flush_on_yield)
{
return slot_handle_level_range(kvm, memslot, fn, start_level,
end_level, memslot->base_gfn,
memslot->base_gfn + memslot->npages - 1,
flush_on_yield, false);
}
static __always_inline bool
slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
slot_level_handler fn, bool flush_on_yield)
{
return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
PG_LEVEL_4K, flush_on_yield);
}
static void free_mmu_pages(struct kvm_mmu *mmu)
{
if (!tdp_enabled && mmu->pae_root)
set_memory_encrypted((unsigned long)mmu->pae_root, 1);
free_page((unsigned long)mmu->pae_root);
free_page((unsigned long)mmu->pml4_root);
free_page((unsigned long)mmu->pml5_root);
}
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
struct page *page;
int i;
mmu->root.hpa = INVALID_PAGE;
mmu->root.pgd = 0;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
return 0;
/*
* When using PAE paging, the four PDPTEs are treated as 'root' pages,
* while the PDP table is a per-vCPU construct that's allocated at MMU
* creation. When emulating 32-bit mode, cr3 is only 32 bits even on
* x86_64. Therefore we need to allocate the PDP table in the first
* 4GB of memory, which happens to fit the DMA32 zone. TDP paging
* generally doesn't use PAE paging and can skip allocating the PDP
* table. The main exception, handled here, is SVM's 32-bit NPT. The
* other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
* KVM; that horror is handled on-demand by mmu_alloc_special_roots().
*/
if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
return 0;
page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
if (!page)
return -ENOMEM;
mmu->pae_root = page_address(page);
/*
* CR3 is only 32 bits when PAE paging is used, thus it's impossible to
* get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
* that KVM's writes and the CPU's reads get along. Note, this is
* only necessary when using shadow paging, as 64-bit NPT can get at
* the C-bit even when shadowing 32-bit NPT, and SME isn't supported
* by 32-bit kernels (when KVM itself uses 32-bit NPT).
*/
if (!tdp_enabled)
set_memory_decrypted((unsigned long)mmu->pae_root, 1);
else
WARN_ON_ONCE(shadow_me_value);
for (i = 0; i < 4; ++i)
mmu->pae_root[i] = INVALID_PAE_ROOT;
return 0;
}
int kvm_mmu_create(struct kvm_vcpu *vcpu)
{
int ret;
vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
if (ret)
return ret;
ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
if (ret)
goto fail_allocate_root;
return ret;
fail_allocate_root:
free_mmu_pages(&vcpu->arch.guest_mmu);
return ret;
}
#define BATCH_ZAP_PAGES 10
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
struct kvm_mmu_page *sp, *node;
int nr_zapped, batch = 0;
bool unstable;
restart:
list_for_each_entry_safe_reverse(sp, node,
&kvm->arch.active_mmu_pages, link) {
/*
* No obsolete valid page exists before a newly created page
* since active_mmu_pages is a FIFO list.
*/
if (!is_obsolete_sp(kvm, sp))
break;
/*
* Invalid pages should never land back on the list of active
* pages. Skip the bogus page, otherwise we'll get stuck in an
* infinite loop if the page gets put back on the list (again).
*/
if (WARN_ON(sp->role.invalid))
continue;
/*
* No need to flush the TLB since we're only zapping shadow
* pages with an obsolete generation number and all vCPUS have
* loaded a new root, i.e. the shadow pages being zapped cannot
* be in active use by the guest.
*/
if (batch >= BATCH_ZAP_PAGES &&
cond_resched_rwlock_write(&kvm->mmu_lock)) {
batch = 0;
goto restart;
}
unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
&kvm->arch.zapped_obsolete_pages, &nr_zapped);
batch += nr_zapped;
if (unstable)
goto restart;
}
/*
* Kick all vCPUs (via remote TLB flush) before freeing the page tables
* to ensure KVM is not in the middle of a lockless shadow page table
* walk, which may reference the pages. The remote TLB flush itself is
* not required and is simply a convenient way to kick vCPUs as needed.
* KVM performs a local TLB flush when allocating a new root (see
* kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
* running with an obsolete MMU.
*/
kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
}
/*
* Fast invalidate all shadow pages and use lock-break technique
* to zap obsolete pages.
*
* It's required when memslot is being deleted or VM is being
* destroyed, in these cases, we should ensure that KVM MMU does
* not use any resource of the being-deleted slot or all slots
* after calling the function.
*/
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
lockdep_assert_held(&kvm->slots_lock);
write_lock(&kvm->mmu_lock);
trace_kvm_mmu_zap_all_fast(kvm);
/*
* Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
* held for the entire duration of zapping obsolete pages, it's
* impossible for there to be multiple invalid generations associated
* with *valid* shadow pages at any given time, i.e. there is exactly
* one valid generation and (at most) one invalid generation.
*/
kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
/*
* In order to ensure all vCPUs drop their soon-to-be invalid roots,
* invalidating TDP MMU roots must be done while holding mmu_lock for
* write and in the same critical section as making the reload request,
* e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
*/
if (tdp_mmu_enabled)
kvm_tdp_mmu_invalidate_all_roots(kvm);
/*
* Notify all vcpus to reload its shadow page table and flush TLB.
* Then all vcpus will switch to new shadow page table with the new
* mmu_valid_gen.
*
* Note: we need to do this under the protection of mmu_lock,
* otherwise, vcpu would purge shadow page but miss tlb flush.
*/
kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
kvm_zap_obsolete_pages(kvm);
write_unlock(&kvm->mmu_lock);
/*
* Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
* returning to the caller, e.g. if the zap is in response to a memslot
* deletion, mmu_notifier callbacks will be unable to reach the SPTEs
* associated with the deleted memslot once the update completes, and
* Deferring the zap until the final reference to the root is put would
* lead to use-after-free.
*/
if (tdp_mmu_enabled)
kvm_tdp_mmu_zap_invalidated_roots(kvm);
}
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
struct kvm_memory_slot *slot,
struct kvm_page_track_notifier_node *node)
{
kvm_mmu_zap_all_fast(kvm);
}
int kvm_mmu_init_vm(struct kvm *kvm)
{
struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
int r;
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
INIT_LIST_HEAD(&kvm->arch.possible_nx_huge_pages);
spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
if (tdp_mmu_enabled) {
r = kvm_mmu_init_tdp_mmu(kvm);
if (r < 0)
return r;
}
node->track_write = kvm_mmu_pte_write;
node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
kvm_page_track_register_notifier(kvm, node);
kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
return 0;
}
static void mmu_free_vm_memory_caches(struct kvm *kvm)
{
kvm_mmu_free_memory_cache(&kvm->arch.split_desc_cache);
kvm_mmu_free_memory_cache(&kvm->arch.split_page_header_cache);
kvm_mmu_free_memory_cache(&kvm->arch.split_shadow_page_cache);
}
void kvm_mmu_uninit_vm(struct kvm *kvm)
{
struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
kvm_page_track_unregister_notifier(kvm, node);
if (tdp_mmu_enabled)
kvm_mmu_uninit_tdp_mmu(kvm);
mmu_free_vm_memory_caches(kvm);
}
static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
const struct kvm_memory_slot *memslot;
struct kvm_memslots *slots;
struct kvm_memslot_iter iter;
bool flush = false;
gfn_t start, end;
int i;
if (!kvm_memslots_have_rmaps(kvm))
return flush;
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
slots = __kvm_memslots(kvm, i);
kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
memslot = iter.slot;
start = max(gfn_start, memslot->base_gfn);
end = min(gfn_end, memslot->base_gfn + memslot->npages);
if (WARN_ON_ONCE(start >= end))
continue;
flush = slot_handle_level_range(kvm, memslot, __kvm_zap_rmap,
PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
start, end - 1, true, flush);
}
}
return flush;
}
/*
* Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
* (not including it)
*/
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
bool flush;
int i;
if (WARN_ON_ONCE(gfn_end <= gfn_start))
return;
write_lock(&kvm->mmu_lock);
kvm_mmu_invalidate_begin(kvm, 0, -1ul);
flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
if (tdp_mmu_enabled) {
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
gfn_end, true, flush);
}
if (flush)
kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
gfn_end - gfn_start);
kvm_mmu_invalidate_end(kvm, 0, -1ul);
write_unlock(&kvm->mmu_lock);
}
static bool slot_rmap_write_protect(struct kvm *kvm,
struct kvm_rmap_head *rmap_head,
const struct kvm_memory_slot *slot)
{
return rmap_write_protect(rmap_head, false);
}
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
int start_level)
{
if (kvm_memslots_have_rmaps(kvm)) {
write_lock(&kvm->mmu_lock);
slot_handle_level(kvm, memslot, slot_rmap_write_protect,
start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
write_unlock(&kvm->mmu_lock);
}
if (tdp_mmu_enabled) {
read_lock(&kvm->mmu_lock);
kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
read_unlock(&kvm->mmu_lock);
}
}
static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
{
return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
}
static bool need_topup_split_caches_or_resched(struct kvm *kvm)
{
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
return true;
/*
* In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
* to split a single huge page. Calculating how many are actually needed
* is possible but not worth the complexity.
*/
return need_topup(&kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
need_topup(&kvm->arch.split_page_header_cache, 1) ||
need_topup(&kvm->arch.split_shadow_page_cache, 1);
}
static int topup_split_caches(struct kvm *kvm)
{
/*
* Allocating rmap list entries when splitting huge pages for nested
* MMUs is uncommon as KVM needs to use a list if and only if there is
* more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
* aliased by multiple L2 gfns and/or from multiple nested roots with
* different roles. Aliasing gfns when using TDP is atypical for VMMs;
* a few gfns are often aliased during boot, e.g. when remapping BIOS,
* but aliasing rarely occurs post-boot or for many gfns. If there is
* only one rmap entry, rmap->val points directly at that one entry and
* doesn't need to allocate a list. Buffer the cache by the default
* capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
* encounters an aliased gfn or two.
*/
const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
int r;
lockdep_assert_held(&kvm->slots_lock);
r = __kvm_mmu_topup_memory_cache(&kvm->arch.split_desc_cache, capacity,
SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
if (r)
return r;
r = kvm_mmu_topup_memory_cache(&kvm->arch.split_page_header_cache, 1);
if (r)
return r;
return kvm_mmu_topup_memory_cache(&kvm->arch.split_shadow_page_cache, 1);
}
static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
{
struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
struct shadow_page_caches caches = {};
union kvm_mmu_page_role role;
unsigned int access;
gfn_t gfn;
gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
access = kvm_mmu_page_get_access(huge_sp, spte_index(huge_sptep));
/*
* Note, huge page splitting always uses direct shadow pages, regardless
* of whether the huge page itself is mapped by a direct or indirect
* shadow page, since the huge page region itself is being directly
* mapped with smaller pages.
*/
role = kvm_mmu_child_role(huge_sptep, /*direct=*/true, access);
/* Direct SPs do not require a shadowed_info_cache. */
caches.page_header_cache = &kvm->arch.split_page_header_cache;
caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
/* Safe to pass NULL for vCPU since requesting a direct SP. */
return __kvm_mmu_get_shadow_page(kvm, NULL, &caches, gfn, role);
}
static void shadow_mmu_split_huge_page(struct kvm *kvm,
const struct kvm_memory_slot *slot,
u64 *huge_sptep)
{
struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
u64 huge_spte = READ_ONCE(*huge_sptep);
struct kvm_mmu_page *sp;
bool flush = false;
u64 *sptep, spte;
gfn_t gfn;
int index;
sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
sptep = &sp->spt[index];
gfn = kvm_mmu_page_get_gfn(sp, index);
/*
* The SP may already have populated SPTEs, e.g. if this huge
* page is aliased by multiple sptes with the same access
* permissions. These entries are guaranteed to map the same
* gfn-to-pfn translation since the SP is direct, so no need to
* modify them.
*
* However, if a given SPTE points to a lower level page table,
* that lower level page table may only be partially populated.
* Installing such SPTEs would effectively unmap a potion of the
* huge page. Unmapping guest memory always requires a TLB flush
* since a subsequent operation on the unmapped regions would
* fail to detect the need to flush.
*/
if (is_shadow_present_pte(*sptep)) {
flush |= !is_last_spte(*sptep, sp->role.level);
continue;
}
spte = make_huge_page_split_spte(kvm, huge_spte, sp->role, index);
mmu_spte_set(sptep, spte);
__rmap_add(kvm, cache, slot, sptep, gfn, sp->role.access);
}
__link_shadow_page(kvm, cache, huge_sptep, sp, flush);
}
static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
const struct kvm_memory_slot *slot,
u64 *huge_sptep)
{
struct kvm_mmu_page *huge_sp = sptep_to_sp(huge_sptep);
int level, r = 0;
gfn_t gfn;
u64 spte;
/* Grab information for the tracepoint before dropping the MMU lock. */
gfn = kvm_mmu_page_get_gfn(huge_sp, spte_index(huge_sptep));
level = huge_sp->role.level;
spte = *huge_sptep;
if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
r = -ENOSPC;
goto out;
}
if (need_topup_split_caches_or_resched(kvm)) {
write_unlock(&kvm->mmu_lock);
cond_resched();
/*
* If the topup succeeds, return -EAGAIN to indicate that the
* rmap iterator should be restarted because the MMU lock was
* dropped.
*/
r = topup_split_caches(kvm) ?: -EAGAIN;
write_lock(&kvm->mmu_lock);
goto out;
}
shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
out:
trace_kvm_mmu_split_huge_page(gfn, spte, level, r);
return r;
}
static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
struct kvm_rmap_head *rmap_head,
const struct kvm_memory_slot *slot)
{
struct rmap_iterator iter;
struct kvm_mmu_page *sp;
u64 *huge_sptep;
int r;
restart:
for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
sp = sptep_to_sp(huge_sptep);
/* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
if (WARN_ON_ONCE(!sp->role.guest_mode))
continue;
/* The rmaps should never contain non-leaf SPTEs. */
if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
continue;
/* SPs with level >PG_LEVEL_4K should never by unsync. */
if (WARN_ON_ONCE(sp->unsync))
continue;
/* Don't bother splitting huge pages on invalid SPs. */
if (sp->role.invalid)
continue;
r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
/*
* The split succeeded or needs to be retried because the MMU
* lock was dropped. Either way, restart the iterator to get it
* back into a consistent state.
*/
if (!r || r == -EAGAIN)
goto restart;
/* The split failed and shouldn't be retried (e.g. -ENOMEM). */
break;
}
return false;
}
static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
const struct kvm_memory_slot *slot,
gfn_t start, gfn_t end,
int target_level)
{
int level;
/*
* Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
* down to the target level. This ensures pages are recursively split
* all the way to the target level. There's no need to split pages
* already at the target level.
*/
for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--) {
slot_handle_level_range(kvm, slot, shadow_mmu_try_split_huge_pages,
level, level, start, end - 1, true, false);
}
}
/* Must be called with the mmu_lock held in write-mode. */
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
u64 start, u64 end,
int target_level)
{
if (!tdp_mmu_enabled)
return;
if (kvm_memslots_have_rmaps(kvm))
kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, false);
/*
* A TLB flush is unnecessary at this point for the same resons as in
* kvm_mmu_slot_try_split_huge_pages().
*/
}
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
int target_level)
{
u64 start = memslot->base_gfn;
u64 end = start + memslot->npages;
if (!tdp_mmu_enabled)
return;
if (kvm_memslots_have_rmaps(kvm)) {
write_lock(&kvm->mmu_lock);
kvm_shadow_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level);
write_unlock(&kvm->mmu_lock);
}
read_lock(&kvm->mmu_lock);
kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
read_unlock(&kvm->mmu_lock);
/*
* No TLB flush is necessary here. KVM will flush TLBs after
* write-protecting and/or clearing dirty on the newly split SPTEs to
* ensure that guest writes are reflected in the dirty log before the
* ioctl to enable dirty logging on this memslot completes. Since the
* split SPTEs retain the write and dirty bits of the huge SPTE, it is
* safe for KVM to decide if a TLB flush is necessary based on the split
* SPTEs.
*/
}
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
struct kvm_rmap_head *rmap_head,
const struct kvm_memory_slot *slot)
{
u64 *sptep;
struct rmap_iterator iter;
int need_tlb_flush = 0;
struct kvm_mmu_page *sp;
restart:
for_each_rmap_spte(rmap_head, &iter, sptep) {
sp = sptep_to_sp(sptep);
/*
* We cannot do huge page mapping for indirect shadow pages,
* which are found on the last rmap (level = 1) when not using
* tdp; such shadow pages are synced with the page table in
* the guest, and the guest page table is using 4K page size
* mapping if the indirect sp has level = 1.
*/
if (sp->role.direct &&
sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
PG_LEVEL_NUM)) {
kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
if (kvm_available_flush_tlb_with_range())
kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
KVM_PAGES_PER_HPAGE(sp->role.level));
else
need_tlb_flush = 1;
goto restart;
}
}
return need_tlb_flush;
}
static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
const struct kvm_memory_slot *slot)
{
/*
* Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
* pages that are already mapped at the maximum hugepage level.
*/
if (slot_handle_level(kvm, slot, kvm_mmu_zap_collapsible_spte,
PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, true))
kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
}
void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
const struct kvm_memory_slot *slot)
{
if (kvm_memslots_have_rmaps(kvm)) {
write_lock(&kvm->mmu_lock);
kvm_rmap_zap_collapsible_sptes(kvm, slot);
write_unlock(&kvm->mmu_lock);
}
if (tdp_mmu_enabled) {
read_lock(&kvm->mmu_lock);
kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
read_unlock(&kvm->mmu_lock);
}
}
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
/*
* All current use cases for flushing the TLBs for a specific memslot
* related to dirty logging, and many do the TLB flush out of mmu_lock.
* The interaction between the various operations on memslot must be
* serialized by slots_locks to ensure the TLB flush from one operation
* is observed by any other operation on the same memslot.
*/
lockdep_assert_held(&kvm->slots_lock);
kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
memslot->npages);
}
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
const struct kvm_memory_slot *memslot)
{
if (kvm_memslots_have_rmaps(kvm)) {
write_lock(&kvm->mmu_lock);
/*
* Clear dirty bits only on 4k SPTEs since the legacy MMU only
* support dirty logging at a 4k granularity.
*/
slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
write_unlock(&kvm->mmu_lock);
}
if (tdp_mmu_enabled) {
read_lock(&kvm->mmu_lock);
kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
read_unlock(&kvm->mmu_lock);
}
/*
* The caller will flush the TLBs after this function returns.
*
* It's also safe to flush TLBs out of mmu lock here as currently this
* function is only used for dirty logging, in which case flushing TLB
* out of mmu lock also guarantees no dirty pages will be lost in
* dirty_bitmap.
*/
}
void kvm_mmu_zap_all(struct kvm *kvm)
{
struct kvm_mmu_page *sp, *node;
LIST_HEAD(invalid_list);
int ign;
write_lock(&kvm->mmu_lock);
restart:
list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
if (WARN_ON(sp->role.invalid))
continue;
if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
goto restart;
if (cond_resched_rwlock_write(&kvm->mmu_lock))
goto restart;
}
kvm_mmu_commit_zap_page(kvm, &invalid_list);
if (tdp_mmu_enabled)
kvm_tdp_mmu_zap_all(kvm);
write_unlock(&kvm->mmu_lock);
}
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
{
WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
gen &= MMIO_SPTE_GEN_MASK;
/*
* Generation numbers are incremented in multiples of the number of
* address spaces in order to provide unique generations across all
* address spaces. Strip what is effectively the address space
* modifier prior to checking for a wrap of the MMIO generation so
* that a wrap in any address space is detected.
*/
gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
/*
* The very rare case: if the MMIO generation number has wrapped,
* zap all shadow pages.
*/
if (unlikely(gen == 0)) {
kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
kvm_mmu_zap_all_fast(kvm);
}
}
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
struct kvm *kvm;
int nr_to_scan = sc->nr_to_scan;
unsigned long freed = 0;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
int idx;
LIST_HEAD(invalid_list);
/*
* Never scan more than sc->nr_to_scan VM instances.
* Will not hit this condition practically since we do not try
* to shrink more than one VM and it is very unlikely to see
* !n_used_mmu_pages so many times.
*/
if (!nr_to_scan--)
break;
/*
* n_used_mmu_pages is accessed without holding kvm->mmu_lock
* here. We may skip a VM instance errorneosly, but we do not
* want to shrink a VM that only started to populate its MMU
* anyway.
*/
if (!kvm->arch.n_used_mmu_pages &&
!kvm_has_zapped_obsolete_pages(kvm))
continue;
idx = srcu_read_lock(&kvm->srcu);
write_lock(&kvm->mmu_lock);
if (kvm_has_zapped_obsolete_pages(kvm)) {
kvm_mmu_commit_zap_page(kvm,
&kvm->arch.zapped_obsolete_pages);
goto unlock;
}
freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
unlock:
write_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
/*
* unfair on small ones
* per-vm shrinkers cry out
* sadness comes quickly
*/
list_move_tail(&kvm->vm_list, &vm_list);
break;
}
mutex_unlock(&kvm_lock);
return freed;
}
static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
}
static struct shrinker mmu_shrinker = {
.count_objects = mmu_shrink_count,
.scan_objects = mmu_shrink_scan,
.seeks = DEFAULT_SEEKS * 10,
};
static void mmu_destroy_caches(void)
{
kmem_cache_destroy(pte_list_desc_cache);
kmem_cache_destroy(mmu_page_header_cache);
}
static bool get_nx_auto_mode(void)
{
/* Return true when CPU has the bug, and mitigations are ON */
return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}
static void __set_nx_huge_pages(bool val)
{
nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}
static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
bool old_val = nx_huge_pages;
bool new_val;
/* In "auto" mode deploy workaround only if CPU has the bug. */
if (sysfs_streq(val, "off"))
new_val = 0;
else if (sysfs_streq(val, "force"))
new_val = 1;
else if (sysfs_streq(val, "auto"))
new_val = get_nx_auto_mode();
else if (strtobool(val, &new_val) < 0)
return -EINVAL;
__set_nx_huge_pages(new_val);
if (new_val != old_val) {
struct kvm *kvm;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list) {
mutex_lock(&kvm->slots_lock);
kvm_mmu_zap_all_fast(kvm);
mutex_unlock(&kvm->slots_lock);
wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
}
mutex_unlock(&kvm_lock);
}
return 0;
}
/*
* nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
* its default value of -1 is technically undefined behavior for a boolean.
* Forward the module init call to SPTE code so that it too can handle module
* params that need to be resolved/snapshot.
*/
void __init kvm_mmu_x86_module_init(void)
{
if (nx_huge_pages == -1)
__set_nx_huge_pages(get_nx_auto_mode());
/*
* Snapshot userspace's desire to enable the TDP MMU. Whether or not the
* TDP MMU is actually enabled is determined in kvm_configure_mmu()
* when the vendor module is loaded.
*/
tdp_mmu_allowed = tdp_mmu_enabled;
kvm_mmu_spte_module_init();
}
/*
* The bulk of the MMU initialization is deferred until the vendor module is
* loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
* to be reset when a potentially different vendor module is loaded.
*/
int kvm_mmu_vendor_module_init(void)
{
int ret = -ENOMEM;
/*
* MMU roles use union aliasing which is, generally speaking, an
* undefined behavior. However, we supposedly know how compilers behave
* and the current status quo is unlikely to change. Guardians below are
* supposed to let us know if the assumption becomes false.
*/
BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
kvm_mmu_reset_all_pte_masks();
pte_list_desc_cache = kmem_cache_create("pte_list_desc",
sizeof(struct pte_list_desc),
0, SLAB_ACCOUNT, NULL);
if (!pte_list_desc_cache)
goto out;
mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
sizeof(struct kvm_mmu_page),
0, SLAB_ACCOUNT, NULL);
if (!mmu_page_header_cache)
goto out;
if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
goto out;
ret = register_shrinker(&mmu_shrinker, "x86-mmu");
if (ret)
goto out_shrinker;
return 0;
out_shrinker:
percpu_counter_destroy(&kvm_total_used_mmu_pages);
out:
mmu_destroy_caches();
return ret;
}
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
kvm_mmu_unload(vcpu);
free_mmu_pages(&vcpu->arch.root_mmu);
free_mmu_pages(&vcpu->arch.guest_mmu);
mmu_free_memory_caches(vcpu);
}
void kvm_mmu_vendor_module_exit(void)
{
mmu_destroy_caches();
percpu_counter_destroy(&kvm_total_used_mmu_pages);
unregister_shrinker(&mmu_shrinker);
}
/*
* Calculate the effective recovery period, accounting for '0' meaning "let KVM
* select a halving time of 1 hour". Returns true if recovery is enabled.
*/
static bool calc_nx_huge_pages_recovery_period(uint *period)
{
/*
* Use READ_ONCE to get the params, this may be called outside of the
* param setters, e.g. by the kthread to compute its next timeout.
*/
bool enabled = READ_ONCE(nx_huge_pages);
uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
if (!enabled || !ratio)
return false;
*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
if (!*period) {
/* Make sure the period is not less than one second. */
ratio = min(ratio, 3600u);
*period = 60 * 60 * 1000 / ratio;
}
return true;
}
static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
{
bool was_recovery_enabled, is_recovery_enabled;
uint old_period, new_period;
int err;
was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
err = param_set_uint(val, kp);
if (err)
return err;
is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
if (is_recovery_enabled &&
(!was_recovery_enabled || old_period > new_period)) {
struct kvm *kvm;
mutex_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
wake_up_process(kvm->arch.nx_huge_page_recovery_thread);
mutex_unlock(&kvm_lock);
}
return err;
}
static void kvm_recover_nx_huge_pages(struct kvm *kvm)
{
unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
struct kvm_memory_slot *slot;
int rcu_idx;
struct kvm_mmu_page *sp;
unsigned int ratio;
LIST_HEAD(invalid_list);
bool flush = false;
ulong to_zap;
rcu_idx = srcu_read_lock(&kvm->srcu);
write_lock(&kvm->mmu_lock);
/*
* Zapping TDP MMU shadow pages, including the remote TLB flush, must
* be done under RCU protection, because the pages are freed via RCU
* callback.
*/
rcu_read_lock();
ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
for ( ; to_zap; --to_zap) {
if (list_empty(&kvm->arch.possible_nx_huge_pages))
break;
/*
* We use a separate list instead of just using active_mmu_pages
* because the number of shadow pages that be replaced with an
* NX huge page is expected to be relatively small compared to
* the total number of shadow pages. And because the TDP MMU
* doesn't use active_mmu_pages.
*/
sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
struct kvm_mmu_page,
possible_nx_huge_page_link);
WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
WARN_ON_ONCE(!sp->role.direct);
/*
* Unaccount and do not attempt to recover any NX Huge Pages
* that are being dirty tracked, as they would just be faulted
* back in as 4KiB pages. The NX Huge Pages in this slot will be
* recovered, along with all the other huge pages in the slot,
* when dirty logging is disabled.
*
* Since gfn_to_memslot() is relatively expensive, it helps to
* skip it if it the test cannot possibly return true. On the
* other hand, if any memslot has logging enabled, chances are
* good that all of them do, in which case unaccount_nx_huge_page()
* is much cheaper than zapping the page.
*
* If a memslot update is in progress, reading an incorrect value
* of kvm->nr_memslots_dirty_logging is not a problem: if it is
* becoming zero, gfn_to_memslot() will be done unnecessarily; if
* it is becoming nonzero, the page will be zapped unnecessarily.
* Either way, this only affects efficiency in racy situations,
* and not correctness.
*/
slot = NULL;
if (atomic_read(&kvm->nr_memslots_dirty_logging)) {
slot = gfn_to_memslot(kvm, sp->gfn);
WARN_ON_ONCE(!slot);
}
if (slot && kvm_slot_dirty_track_enabled(slot))
unaccount_nx_huge_page(kvm, sp);
else if (is_tdp_mmu_page(sp))
flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
else
kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
WARN_ON_ONCE(sp->nx_huge_page_disallowed);
if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
rcu_read_unlock();
cond_resched_rwlock_write(&kvm->mmu_lock);
flush = false;
rcu_read_lock();
}
}
kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
rcu_read_unlock();
write_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, rcu_idx);
}
static long get_nx_huge_page_recovery_timeout(u64 start_time)
{
bool enabled;
uint period;
enabled = calc_nx_huge_pages_recovery_period(&period);
return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
: MAX_SCHEDULE_TIMEOUT;
}
static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
{
u64 start_time;
long remaining_time;
while (true) {
start_time = get_jiffies_64();
remaining_time = get_nx_huge_page_recovery_timeout(start_time);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop() && remaining_time > 0) {
schedule_timeout(remaining_time);
remaining_time = get_nx_huge_page_recovery_timeout(start_time);
set_current_state(TASK_INTERRUPTIBLE);
}
set_current_state(TASK_RUNNING);
if (kthread_should_stop())
return 0;
kvm_recover_nx_huge_pages(kvm);
}
}
int kvm_mmu_post_init_vm(struct kvm *kvm)
{
int err;
err = kvm_vm_create_worker_thread(kvm, kvm_nx_huge_page_recovery_worker, 0,
"kvm-nx-lpage-recovery",
&kvm->arch.nx_huge_page_recovery_thread);
if (!err)
kthread_unpark(kvm->arch.nx_huge_page_recovery_thread);
return err;
}
void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
if (kvm->arch.nx_huge_page_recovery_thread)
kthread_stop(kvm->arch.nx_huge_page_recovery_thread);
}