linux/fs/xfs/libxfs/xfs_refcount_btree.c
Darrick J. Wong 980faece91 xfs: convert "skip_discard" to a proper flags bitset
Convert the boolean to skip discard on free into a proper flags field so
that we can add more flags in the next patch.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-07-02 11:37:01 -07:00

544 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2016 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_btree_staging.h"
#include "xfs_refcount_btree.h"
#include "xfs_refcount.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_health.h"
#include "xfs_trace.h"
#include "xfs_trans.h"
#include "xfs_bit.h"
#include "xfs_rmap.h"
#include "xfs_ag.h"
static struct kmem_cache *xfs_refcountbt_cur_cache;
static struct xfs_btree_cur *
xfs_refcountbt_dup_cursor(
struct xfs_btree_cur *cur)
{
return xfs_refcountbt_init_cursor(cur->bc_mp, cur->bc_tp,
cur->bc_ag.agbp, cur->bc_ag.pag);
}
STATIC void
xfs_refcountbt_set_root(
struct xfs_btree_cur *cur,
const union xfs_btree_ptr *ptr,
int inc)
{
struct xfs_buf *agbp = cur->bc_ag.agbp;
struct xfs_agf *agf = agbp->b_addr;
struct xfs_perag *pag = agbp->b_pag;
ASSERT(ptr->s != 0);
agf->agf_refcount_root = ptr->s;
be32_add_cpu(&agf->agf_refcount_level, inc);
pag->pagf_refcount_level += inc;
xfs_alloc_log_agf(cur->bc_tp, agbp,
XFS_AGF_REFCOUNT_ROOT | XFS_AGF_REFCOUNT_LEVEL);
}
STATIC int
xfs_refcountbt_alloc_block(
struct xfs_btree_cur *cur,
const union xfs_btree_ptr *start,
union xfs_btree_ptr *new,
int *stat)
{
struct xfs_buf *agbp = cur->bc_ag.agbp;
struct xfs_agf *agf = agbp->b_addr;
struct xfs_alloc_arg args; /* block allocation args */
int error; /* error return value */
memset(&args, 0, sizeof(args));
args.tp = cur->bc_tp;
args.mp = cur->bc_mp;
args.pag = cur->bc_ag.pag;
args.oinfo = XFS_RMAP_OINFO_REFC;
args.minlen = args.maxlen = args.prod = 1;
args.resv = XFS_AG_RESV_METADATA;
error = xfs_alloc_vextent_near_bno(&args,
XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno,
xfs_refc_block(args.mp)));
if (error)
goto out_error;
if (args.fsbno == NULLFSBLOCK) {
*stat = 0;
return 0;
}
ASSERT(args.agno == cur->bc_ag.pag->pag_agno);
ASSERT(args.len == 1);
new->s = cpu_to_be32(args.agbno);
be32_add_cpu(&agf->agf_refcount_blocks, 1);
xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_BLOCKS);
*stat = 1;
return 0;
out_error:
return error;
}
STATIC int
xfs_refcountbt_free_block(
struct xfs_btree_cur *cur,
struct xfs_buf *bp)
{
struct xfs_mount *mp = cur->bc_mp;
struct xfs_buf *agbp = cur->bc_ag.agbp;
struct xfs_agf *agf = agbp->b_addr;
xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
be32_add_cpu(&agf->agf_refcount_blocks, -1);
xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_BLOCKS);
return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
&XFS_RMAP_OINFO_REFC, XFS_AG_RESV_METADATA, 0);
}
STATIC int
xfs_refcountbt_get_minrecs(
struct xfs_btree_cur *cur,
int level)
{
return cur->bc_mp->m_refc_mnr[level != 0];
}
STATIC int
xfs_refcountbt_get_maxrecs(
struct xfs_btree_cur *cur,
int level)
{
return cur->bc_mp->m_refc_mxr[level != 0];
}
STATIC void
xfs_refcountbt_init_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
key->refc.rc_startblock = rec->refc.rc_startblock;
}
STATIC void
xfs_refcountbt_init_high_key_from_rec(
union xfs_btree_key *key,
const union xfs_btree_rec *rec)
{
__u32 x;
x = be32_to_cpu(rec->refc.rc_startblock);
x += be32_to_cpu(rec->refc.rc_blockcount) - 1;
key->refc.rc_startblock = cpu_to_be32(x);
}
STATIC void
xfs_refcountbt_init_rec_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_rec *rec)
{
const struct xfs_refcount_irec *irec = &cur->bc_rec.rc;
uint32_t start;
start = xfs_refcount_encode_startblock(irec->rc_startblock,
irec->rc_domain);
rec->refc.rc_startblock = cpu_to_be32(start);
rec->refc.rc_blockcount = cpu_to_be32(cur->bc_rec.rc.rc_blockcount);
rec->refc.rc_refcount = cpu_to_be32(cur->bc_rec.rc.rc_refcount);
}
STATIC void
xfs_refcountbt_init_ptr_from_cur(
struct xfs_btree_cur *cur,
union xfs_btree_ptr *ptr)
{
struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
ptr->s = agf->agf_refcount_root;
}
STATIC int64_t
xfs_refcountbt_key_diff(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key)
{
const struct xfs_refcount_key *kp = &key->refc;
const struct xfs_refcount_irec *irec = &cur->bc_rec.rc;
uint32_t start;
start = xfs_refcount_encode_startblock(irec->rc_startblock,
irec->rc_domain);
return (int64_t)be32_to_cpu(kp->rc_startblock) - start;
}
STATIC int64_t
xfs_refcountbt_diff_two_keys(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->refc.rc_startblock);
return (int64_t)be32_to_cpu(k1->refc.rc_startblock) -
be32_to_cpu(k2->refc.rc_startblock);
}
STATIC xfs_failaddr_t
xfs_refcountbt_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
struct xfs_perag *pag = bp->b_pag;
xfs_failaddr_t fa;
unsigned int level;
if (!xfs_verify_magic(bp, block->bb_magic))
return __this_address;
if (!xfs_has_reflink(mp))
return __this_address;
fa = xfs_btree_agblock_v5hdr_verify(bp);
if (fa)
return fa;
level = be16_to_cpu(block->bb_level);
if (pag && xfs_perag_initialised_agf(pag)) {
unsigned int maxlevel = pag->pagf_refcount_level;
#ifdef CONFIG_XFS_ONLINE_REPAIR
/*
* Online repair could be rewriting the refcount btree, so
* we'll validate against the larger of either tree while this
* is going on.
*/
maxlevel = max_t(unsigned int, maxlevel,
pag->pagf_repair_refcount_level);
#endif
if (level >= maxlevel)
return __this_address;
} else if (level >= mp->m_refc_maxlevels)
return __this_address;
return xfs_btree_agblock_verify(bp, mp->m_refc_mxr[level != 0]);
}
STATIC void
xfs_refcountbt_read_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
if (!xfs_btree_agblock_verify_crc(bp))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_refcountbt_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
if (bp->b_error)
trace_xfs_btree_corrupt(bp, _RET_IP_);
}
STATIC void
xfs_refcountbt_write_verify(
struct xfs_buf *bp)
{
xfs_failaddr_t fa;
fa = xfs_refcountbt_verify(bp);
if (fa) {
trace_xfs_btree_corrupt(bp, _RET_IP_);
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
xfs_btree_agblock_calc_crc(bp);
}
const struct xfs_buf_ops xfs_refcountbt_buf_ops = {
.name = "xfs_refcountbt",
.magic = { 0, cpu_to_be32(XFS_REFC_CRC_MAGIC) },
.verify_read = xfs_refcountbt_read_verify,
.verify_write = xfs_refcountbt_write_verify,
.verify_struct = xfs_refcountbt_verify,
};
STATIC int
xfs_refcountbt_keys_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_key *k1,
const union xfs_btree_key *k2)
{
return be32_to_cpu(k1->refc.rc_startblock) <
be32_to_cpu(k2->refc.rc_startblock);
}
STATIC int
xfs_refcountbt_recs_inorder(
struct xfs_btree_cur *cur,
const union xfs_btree_rec *r1,
const union xfs_btree_rec *r2)
{
return be32_to_cpu(r1->refc.rc_startblock) +
be32_to_cpu(r1->refc.rc_blockcount) <=
be32_to_cpu(r2->refc.rc_startblock);
}
STATIC enum xbtree_key_contig
xfs_refcountbt_keys_contiguous(
struct xfs_btree_cur *cur,
const union xfs_btree_key *key1,
const union xfs_btree_key *key2,
const union xfs_btree_key *mask)
{
ASSERT(!mask || mask->refc.rc_startblock);
return xbtree_key_contig(be32_to_cpu(key1->refc.rc_startblock),
be32_to_cpu(key2->refc.rc_startblock));
}
const struct xfs_btree_ops xfs_refcountbt_ops = {
.name = "refcount",
.type = XFS_BTREE_TYPE_AG,
.rec_len = sizeof(struct xfs_refcount_rec),
.key_len = sizeof(struct xfs_refcount_key),
.ptr_len = XFS_BTREE_SHORT_PTR_LEN,
.lru_refs = XFS_REFC_BTREE_REF,
.statoff = XFS_STATS_CALC_INDEX(xs_refcbt_2),
.sick_mask = XFS_SICK_AG_REFCNTBT,
.dup_cursor = xfs_refcountbt_dup_cursor,
.set_root = xfs_refcountbt_set_root,
.alloc_block = xfs_refcountbt_alloc_block,
.free_block = xfs_refcountbt_free_block,
.get_minrecs = xfs_refcountbt_get_minrecs,
.get_maxrecs = xfs_refcountbt_get_maxrecs,
.init_key_from_rec = xfs_refcountbt_init_key_from_rec,
.init_high_key_from_rec = xfs_refcountbt_init_high_key_from_rec,
.init_rec_from_cur = xfs_refcountbt_init_rec_from_cur,
.init_ptr_from_cur = xfs_refcountbt_init_ptr_from_cur,
.key_diff = xfs_refcountbt_key_diff,
.buf_ops = &xfs_refcountbt_buf_ops,
.diff_two_keys = xfs_refcountbt_diff_two_keys,
.keys_inorder = xfs_refcountbt_keys_inorder,
.recs_inorder = xfs_refcountbt_recs_inorder,
.keys_contiguous = xfs_refcountbt_keys_contiguous,
};
/*
* Create a new refcount btree cursor.
*
* For staging cursors tp and agbp are NULL.
*/
struct xfs_btree_cur *
xfs_refcountbt_init_cursor(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_buf *agbp,
struct xfs_perag *pag)
{
struct xfs_btree_cur *cur;
ASSERT(pag->pag_agno < mp->m_sb.sb_agcount);
cur = xfs_btree_alloc_cursor(mp, tp, &xfs_refcountbt_ops,
mp->m_refc_maxlevels, xfs_refcountbt_cur_cache);
cur->bc_ag.pag = xfs_perag_hold(pag);
cur->bc_refc.nr_ops = 0;
cur->bc_refc.shape_changes = 0;
cur->bc_ag.agbp = agbp;
if (agbp) {
struct xfs_agf *agf = agbp->b_addr;
cur->bc_nlevels = be32_to_cpu(agf->agf_refcount_level);
}
return cur;
}
/*
* Swap in the new btree root. Once we pass this point the newly rebuilt btree
* is in place and we have to kill off all the old btree blocks.
*/
void
xfs_refcountbt_commit_staged_btree(
struct xfs_btree_cur *cur,
struct xfs_trans *tp,
struct xfs_buf *agbp)
{
struct xfs_agf *agf = agbp->b_addr;
struct xbtree_afakeroot *afake = cur->bc_ag.afake;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
agf->agf_refcount_root = cpu_to_be32(afake->af_root);
agf->agf_refcount_level = cpu_to_be32(afake->af_levels);
agf->agf_refcount_blocks = cpu_to_be32(afake->af_blocks);
xfs_alloc_log_agf(tp, agbp, XFS_AGF_REFCOUNT_BLOCKS |
XFS_AGF_REFCOUNT_ROOT |
XFS_AGF_REFCOUNT_LEVEL);
xfs_btree_commit_afakeroot(cur, tp, agbp);
}
/* Calculate number of records in a refcount btree block. */
static inline unsigned int
xfs_refcountbt_block_maxrecs(
unsigned int blocklen,
bool leaf)
{
if (leaf)
return blocklen / sizeof(struct xfs_refcount_rec);
return blocklen / (sizeof(struct xfs_refcount_key) +
sizeof(xfs_refcount_ptr_t));
}
/*
* Calculate the number of records in a refcount btree block.
*/
int
xfs_refcountbt_maxrecs(
int blocklen,
bool leaf)
{
blocklen -= XFS_REFCOUNT_BLOCK_LEN;
return xfs_refcountbt_block_maxrecs(blocklen, leaf);
}
/* Compute the max possible height of the maximally sized refcount btree. */
unsigned int
xfs_refcountbt_maxlevels_ondisk(void)
{
unsigned int minrecs[2];
unsigned int blocklen;
blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
minrecs[0] = xfs_refcountbt_block_maxrecs(blocklen, true) / 2;
minrecs[1] = xfs_refcountbt_block_maxrecs(blocklen, false) / 2;
return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_CRC_AG_BLOCKS);
}
/* Compute the maximum height of a refcount btree. */
void
xfs_refcountbt_compute_maxlevels(
struct xfs_mount *mp)
{
if (!xfs_has_reflink(mp)) {
mp->m_refc_maxlevels = 0;
return;
}
mp->m_refc_maxlevels = xfs_btree_compute_maxlevels(
mp->m_refc_mnr, mp->m_sb.sb_agblocks);
ASSERT(mp->m_refc_maxlevels <= xfs_refcountbt_maxlevels_ondisk());
}
/* Calculate the refcount btree size for some records. */
xfs_extlen_t
xfs_refcountbt_calc_size(
struct xfs_mount *mp,
unsigned long long len)
{
return xfs_btree_calc_size(mp->m_refc_mnr, len);
}
/*
* Calculate the maximum refcount btree size.
*/
xfs_extlen_t
xfs_refcountbt_max_size(
struct xfs_mount *mp,
xfs_agblock_t agblocks)
{
/* Bail out if we're uninitialized, which can happen in mkfs. */
if (mp->m_refc_mxr[0] == 0)
return 0;
return xfs_refcountbt_calc_size(mp, agblocks);
}
/*
* Figure out how many blocks to reserve and how many are used by this btree.
*/
int
xfs_refcountbt_calc_reserves(
struct xfs_mount *mp,
struct xfs_trans *tp,
struct xfs_perag *pag,
xfs_extlen_t *ask,
xfs_extlen_t *used)
{
struct xfs_buf *agbp;
struct xfs_agf *agf;
xfs_agblock_t agblocks;
xfs_extlen_t tree_len;
int error;
if (!xfs_has_reflink(mp))
return 0;
error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
if (error)
return error;
agf = agbp->b_addr;
agblocks = be32_to_cpu(agf->agf_length);
tree_len = be32_to_cpu(agf->agf_refcount_blocks);
xfs_trans_brelse(tp, agbp);
/*
* The log is permanently allocated, so the space it occupies will
* never be available for the kinds of things that would require btree
* expansion. We therefore can pretend the space isn't there.
*/
if (xfs_ag_contains_log(mp, pag->pag_agno))
agblocks -= mp->m_sb.sb_logblocks;
*ask += xfs_refcountbt_max_size(mp, agblocks);
*used += tree_len;
return error;
}
int __init
xfs_refcountbt_init_cur_cache(void)
{
xfs_refcountbt_cur_cache = kmem_cache_create("xfs_refcbt_cur",
xfs_btree_cur_sizeof(xfs_refcountbt_maxlevels_ondisk()),
0, 0, NULL);
if (!xfs_refcountbt_cur_cache)
return -ENOMEM;
return 0;
}
void
xfs_refcountbt_destroy_cur_cache(void)
{
kmem_cache_destroy(xfs_refcountbt_cur_cache);
xfs_refcountbt_cur_cache = NULL;
}