linux/net/sunrpc/xprtrdma/rpc_rdma.c
Chuck Lever 84dff5eb86 rpcrdma: Fix comments about reverse-direction operation
During the final stages of publication of RFC 8167, reviewers
requested that we use the term "reverse direction" rather than
"backwards direction". Update comments to reflect this preference.

Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Reviewed-by: Tom Talpey <tom@talpey.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
2021-02-05 11:16:56 -05:00

1481 lines
39 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (c) 2014-2020, Oracle and/or its affiliates.
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the BSD-type
* license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* Neither the name of the Network Appliance, Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* rpc_rdma.c
*
* This file contains the guts of the RPC RDMA protocol, and
* does marshaling/unmarshaling, etc. It is also where interfacing
* to the Linux RPC framework lives.
*/
#include <linux/highmem.h>
#include <linux/sunrpc/svc_rdma.h>
#include "xprt_rdma.h"
#include <trace/events/rpcrdma.h>
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
/* Returns size of largest RPC-over-RDMA header in a Call message
*
* The largest Call header contains a full-size Read list and a
* minimal Reply chunk.
*/
static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
{
unsigned int size;
/* Fixed header fields and list discriminators */
size = RPCRDMA_HDRLEN_MIN;
/* Maximum Read list size */
size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
/* Minimal Read chunk size */
size += sizeof(__be32); /* segment count */
size += rpcrdma_segment_maxsz * sizeof(__be32);
size += sizeof(__be32); /* list discriminator */
return size;
}
/* Returns size of largest RPC-over-RDMA header in a Reply message
*
* There is only one Write list or one Reply chunk per Reply
* message. The larger list is the Write list.
*/
static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
{
unsigned int size;
/* Fixed header fields and list discriminators */
size = RPCRDMA_HDRLEN_MIN;
/* Maximum Write list size */
size += sizeof(__be32); /* segment count */
size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
size += sizeof(__be32); /* list discriminator */
return size;
}
/**
* rpcrdma_set_max_header_sizes - Initialize inline payload sizes
* @ep: endpoint to initialize
*
* The max_inline fields contain the maximum size of an RPC message
* so the marshaling code doesn't have to repeat this calculation
* for every RPC.
*/
void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep)
{
unsigned int maxsegs = ep->re_max_rdma_segs;
ep->re_max_inline_send =
ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs);
ep->re_max_inline_recv =
ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
}
/* The client can send a request inline as long as the RPCRDMA header
* plus the RPC call fit under the transport's inline limit. If the
* combined call message size exceeds that limit, the client must use
* a Read chunk for this operation.
*
* A Read chunk is also required if sending the RPC call inline would
* exceed this device's max_sge limit.
*/
static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
struct rpc_rqst *rqst)
{
struct xdr_buf *xdr = &rqst->rq_snd_buf;
struct rpcrdma_ep *ep = r_xprt->rx_ep;
unsigned int count, remaining, offset;
if (xdr->len > ep->re_max_inline_send)
return false;
if (xdr->page_len) {
remaining = xdr->page_len;
offset = offset_in_page(xdr->page_base);
count = RPCRDMA_MIN_SEND_SGES;
while (remaining) {
remaining -= min_t(unsigned int,
PAGE_SIZE - offset, remaining);
offset = 0;
if (++count > ep->re_attr.cap.max_send_sge)
return false;
}
}
return true;
}
/* The client can't know how large the actual reply will be. Thus it
* plans for the largest possible reply for that particular ULP
* operation. If the maximum combined reply message size exceeds that
* limit, the client must provide a write list or a reply chunk for
* this request.
*/
static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
struct rpc_rqst *rqst)
{
return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv;
}
/* The client is required to provide a Reply chunk if the maximum
* size of the non-payload part of the RPC Reply is larger than
* the inline threshold.
*/
static bool
rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
const struct rpc_rqst *rqst)
{
const struct xdr_buf *buf = &rqst->rq_rcv_buf;
return (buf->head[0].iov_len + buf->tail[0].iov_len) <
r_xprt->rx_ep->re_max_inline_recv;
}
/* ACL likes to be lazy in allocating pages. For TCP, these
* pages can be allocated during receive processing. Not true
* for RDMA, which must always provision receive buffers
* up front.
*/
static noinline int
rpcrdma_alloc_sparse_pages(struct xdr_buf *buf)
{
struct page **ppages;
int len;
len = buf->page_len;
ppages = buf->pages + (buf->page_base >> PAGE_SHIFT);
while (len > 0) {
if (!*ppages)
*ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
if (!*ppages)
return -ENOBUFS;
ppages++;
len -= PAGE_SIZE;
}
return 0;
}
/* Convert @vec to a single SGL element.
*
* Returns pointer to next available SGE, and bumps the total number
* of SGEs consumed.
*/
static struct rpcrdma_mr_seg *
rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
unsigned int *n)
{
seg->mr_page = virt_to_page(vec->iov_base);
seg->mr_offset = offset_in_page(vec->iov_base);
seg->mr_len = vec->iov_len;
++seg;
++(*n);
return seg;
}
/* Convert @xdrbuf into SGEs no larger than a page each. As they
* are registered, these SGEs are then coalesced into RDMA segments
* when the selected memreg mode supports it.
*
* Returns positive number of SGEs consumed, or a negative errno.
*/
static int
rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
unsigned int pos, enum rpcrdma_chunktype type,
struct rpcrdma_mr_seg *seg)
{
unsigned long page_base;
unsigned int len, n;
struct page **ppages;
n = 0;
if (pos == 0)
seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
len = xdrbuf->page_len;
ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
page_base = offset_in_page(xdrbuf->page_base);
while (len) {
seg->mr_page = *ppages;
seg->mr_offset = page_base;
seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
len -= seg->mr_len;
++ppages;
++seg;
++n;
page_base = 0;
}
/* When encoding a Read chunk, the tail iovec contains an
* XDR pad and may be omitted.
*/
if (type == rpcrdma_readch && r_xprt->rx_ep->re_implicit_roundup)
goto out;
/* When encoding a Write chunk, some servers need to see an
* extra segment for non-XDR-aligned Write chunks. The upper
* layer provides space in the tail iovec that may be used
* for this purpose.
*/
if (type == rpcrdma_writech && r_xprt->rx_ep->re_implicit_roundup)
goto out;
if (xdrbuf->tail[0].iov_len)
rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
out:
if (unlikely(n > RPCRDMA_MAX_SEGS))
return -EIO;
return n;
}
static int
encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
{
__be32 *p;
p = xdr_reserve_space(xdr, 4 * sizeof(*p));
if (unlikely(!p))
return -EMSGSIZE;
xdr_encode_rdma_segment(p, mr->mr_handle, mr->mr_length, mr->mr_offset);
return 0;
}
static int
encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
u32 position)
{
__be32 *p;
p = xdr_reserve_space(xdr, 6 * sizeof(*p));
if (unlikely(!p))
return -EMSGSIZE;
*p++ = xdr_one; /* Item present */
xdr_encode_read_segment(p, position, mr->mr_handle, mr->mr_length,
mr->mr_offset);
return 0;
}
static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct rpcrdma_mr_seg *seg,
int nsegs, bool writing,
struct rpcrdma_mr **mr)
{
*mr = rpcrdma_mr_pop(&req->rl_free_mrs);
if (!*mr) {
*mr = rpcrdma_mr_get(r_xprt);
if (!*mr)
goto out_getmr_err;
(*mr)->mr_req = req;
}
rpcrdma_mr_push(*mr, &req->rl_registered);
return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
out_getmr_err:
trace_xprtrdma_nomrs_err(r_xprt, req);
xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
rpcrdma_mrs_refresh(r_xprt);
return ERR_PTR(-EAGAIN);
}
/* Register and XDR encode the Read list. Supports encoding a list of read
* segments that belong to a single read chunk.
*
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
*
* Read chunklist (a linked list):
* N elements, position P (same P for all chunks of same arg!):
* 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
*
* Returns zero on success, or a negative errno if a failure occurred.
* @xdr is advanced to the next position in the stream.
*
* Only a single @pos value is currently supported.
*/
static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct rpc_rqst *rqst,
enum rpcrdma_chunktype rtype)
{
struct xdr_stream *xdr = &req->rl_stream;
struct rpcrdma_mr_seg *seg;
struct rpcrdma_mr *mr;
unsigned int pos;
int nsegs;
if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
goto done;
pos = rqst->rq_snd_buf.head[0].iov_len;
if (rtype == rpcrdma_areadch)
pos = 0;
seg = req->rl_segments;
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
rtype, seg);
if (nsegs < 0)
return nsegs;
do {
seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
if (IS_ERR(seg))
return PTR_ERR(seg);
if (encode_read_segment(xdr, mr, pos) < 0)
return -EMSGSIZE;
trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
r_xprt->rx_stats.read_chunk_count++;
nsegs -= mr->mr_nents;
} while (nsegs);
done:
if (xdr_stream_encode_item_absent(xdr) < 0)
return -EMSGSIZE;
return 0;
}
/* Register and XDR encode the Write list. Supports encoding a list
* containing one array of plain segments that belong to a single
* write chunk.
*
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
*
* Write chunklist (a list of (one) counted array):
* N elements:
* 1 - N - HLOO - HLOO - ... - HLOO - 0
*
* Returns zero on success, or a negative errno if a failure occurred.
* @xdr is advanced to the next position in the stream.
*
* Only a single Write chunk is currently supported.
*/
static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct rpc_rqst *rqst,
enum rpcrdma_chunktype wtype)
{
struct xdr_stream *xdr = &req->rl_stream;
struct rpcrdma_mr_seg *seg;
struct rpcrdma_mr *mr;
int nsegs, nchunks;
__be32 *segcount;
if (wtype != rpcrdma_writech)
goto done;
seg = req->rl_segments;
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
rqst->rq_rcv_buf.head[0].iov_len,
wtype, seg);
if (nsegs < 0)
return nsegs;
if (xdr_stream_encode_item_present(xdr) < 0)
return -EMSGSIZE;
segcount = xdr_reserve_space(xdr, sizeof(*segcount));
if (unlikely(!segcount))
return -EMSGSIZE;
/* Actual value encoded below */
nchunks = 0;
do {
seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
if (IS_ERR(seg))
return PTR_ERR(seg);
if (encode_rdma_segment(xdr, mr) < 0)
return -EMSGSIZE;
trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
r_xprt->rx_stats.write_chunk_count++;
r_xprt->rx_stats.total_rdma_request += mr->mr_length;
nchunks++;
nsegs -= mr->mr_nents;
} while (nsegs);
/* Update count of segments in this Write chunk */
*segcount = cpu_to_be32(nchunks);
done:
if (xdr_stream_encode_item_absent(xdr) < 0)
return -EMSGSIZE;
return 0;
}
/* Register and XDR encode the Reply chunk. Supports encoding an array
* of plain segments that belong to a single write (reply) chunk.
*
* Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
*
* Reply chunk (a counted array):
* N elements:
* 1 - N - HLOO - HLOO - ... - HLOO
*
* Returns zero on success, or a negative errno if a failure occurred.
* @xdr is advanced to the next position in the stream.
*/
static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct rpc_rqst *rqst,
enum rpcrdma_chunktype wtype)
{
struct xdr_stream *xdr = &req->rl_stream;
struct rpcrdma_mr_seg *seg;
struct rpcrdma_mr *mr;
int nsegs, nchunks;
__be32 *segcount;
if (wtype != rpcrdma_replych) {
if (xdr_stream_encode_item_absent(xdr) < 0)
return -EMSGSIZE;
return 0;
}
seg = req->rl_segments;
nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
if (nsegs < 0)
return nsegs;
if (xdr_stream_encode_item_present(xdr) < 0)
return -EMSGSIZE;
segcount = xdr_reserve_space(xdr, sizeof(*segcount));
if (unlikely(!segcount))
return -EMSGSIZE;
/* Actual value encoded below */
nchunks = 0;
do {
seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
if (IS_ERR(seg))
return PTR_ERR(seg);
if (encode_rdma_segment(xdr, mr) < 0)
return -EMSGSIZE;
trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
r_xprt->rx_stats.reply_chunk_count++;
r_xprt->rx_stats.total_rdma_request += mr->mr_length;
nchunks++;
nsegs -= mr->mr_nents;
} while (nsegs);
/* Update count of segments in the Reply chunk */
*segcount = cpu_to_be32(nchunks);
return 0;
}
static void rpcrdma_sendctx_done(struct kref *kref)
{
struct rpcrdma_req *req =
container_of(kref, struct rpcrdma_req, rl_kref);
struct rpcrdma_rep *rep = req->rl_reply;
rpcrdma_complete_rqst(rep);
rep->rr_rxprt->rx_stats.reply_waits_for_send++;
}
/**
* rpcrdma_sendctx_unmap - DMA-unmap Send buffer
* @sc: sendctx containing SGEs to unmap
*
*/
void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
{
struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
struct ib_sge *sge;
if (!sc->sc_unmap_count)
return;
/* The first two SGEs contain the transport header and
* the inline buffer. These are always left mapped so
* they can be cheaply re-used.
*/
for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
++sge, --sc->sc_unmap_count)
ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
DMA_TO_DEVICE);
kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
}
/* Prepare an SGE for the RPC-over-RDMA transport header.
*/
static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req, u32 len)
{
struct rpcrdma_sendctx *sc = req->rl_sendctx;
struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
sge->addr = rdmab_addr(rb);
sge->length = len;
sge->lkey = rdmab_lkey(rb);
ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
DMA_TO_DEVICE);
}
/* The head iovec is straightforward, as it is usually already
* DMA-mapped. Sync the content that has changed.
*/
static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req, unsigned int len)
{
struct rpcrdma_sendctx *sc = req->rl_sendctx;
struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
struct rpcrdma_regbuf *rb = req->rl_sendbuf;
if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
return false;
sge->addr = rdmab_addr(rb);
sge->length = len;
sge->lkey = rdmab_lkey(rb);
ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
DMA_TO_DEVICE);
return true;
}
/* If there is a page list present, DMA map and prepare an
* SGE for each page to be sent.
*/
static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
struct xdr_buf *xdr)
{
struct rpcrdma_sendctx *sc = req->rl_sendctx;
struct rpcrdma_regbuf *rb = req->rl_sendbuf;
unsigned int page_base, len, remaining;
struct page **ppages;
struct ib_sge *sge;
ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
page_base = offset_in_page(xdr->page_base);
remaining = xdr->page_len;
while (remaining) {
sge = &sc->sc_sges[req->rl_wr.num_sge++];
len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
page_base, len, DMA_TO_DEVICE);
if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
goto out_mapping_err;
sge->length = len;
sge->lkey = rdmab_lkey(rb);
sc->sc_unmap_count++;
ppages++;
remaining -= len;
page_base = 0;
}
return true;
out_mapping_err:
trace_xprtrdma_dma_maperr(sge->addr);
return false;
}
/* The tail iovec may include an XDR pad for the page list,
* as well as additional content, and may not reside in the
* same page as the head iovec.
*/
static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
struct xdr_buf *xdr,
unsigned int page_base, unsigned int len)
{
struct rpcrdma_sendctx *sc = req->rl_sendctx;
struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
struct rpcrdma_regbuf *rb = req->rl_sendbuf;
struct page *page = virt_to_page(xdr->tail[0].iov_base);
sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
DMA_TO_DEVICE);
if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
goto out_mapping_err;
sge->length = len;
sge->lkey = rdmab_lkey(rb);
++sc->sc_unmap_count;
return true;
out_mapping_err:
trace_xprtrdma_dma_maperr(sge->addr);
return false;
}
/* Copy the tail to the end of the head buffer.
*/
static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct xdr_buf *xdr)
{
unsigned char *dst;
dst = (unsigned char *)xdr->head[0].iov_base;
dst += xdr->head[0].iov_len + xdr->page_len;
memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
}
/* Copy pagelist content into the head buffer.
*/
static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct xdr_buf *xdr)
{
unsigned int len, page_base, remaining;
struct page **ppages;
unsigned char *src, *dst;
dst = (unsigned char *)xdr->head[0].iov_base;
dst += xdr->head[0].iov_len;
ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
page_base = offset_in_page(xdr->page_base);
remaining = xdr->page_len;
while (remaining) {
src = page_address(*ppages);
src += page_base;
len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
memcpy(dst, src, len);
r_xprt->rx_stats.pullup_copy_count += len;
ppages++;
dst += len;
remaining -= len;
page_base = 0;
}
}
/* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
* When the head, pagelist, and tail are small, a pull-up copy
* is considerably less costly than DMA mapping the components
* of @xdr.
*
* Assumptions:
* - the caller has already verified that the total length
* of the RPC Call body will fit into @rl_sendbuf.
*/
static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct xdr_buf *xdr)
{
if (unlikely(xdr->tail[0].iov_len))
rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
if (unlikely(xdr->page_len))
rpcrdma_pullup_pagelist(r_xprt, req, xdr);
/* The whole RPC message resides in the head iovec now */
return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
}
static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct xdr_buf *xdr)
{
struct kvec *tail = &xdr->tail[0];
if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
return false;
if (xdr->page_len)
if (!rpcrdma_prepare_pagelist(req, xdr))
return false;
if (tail->iov_len)
if (!rpcrdma_prepare_tail_iov(req, xdr,
offset_in_page(tail->iov_base),
tail->iov_len))
return false;
if (req->rl_sendctx->sc_unmap_count)
kref_get(&req->rl_kref);
return true;
}
static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req,
struct xdr_buf *xdr)
{
if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
return false;
/* If there is a Read chunk, the page list is being handled
* via explicit RDMA, and thus is skipped here.
*/
/* Do not include the tail if it is only an XDR pad */
if (xdr->tail[0].iov_len > 3) {
unsigned int page_base, len;
/* If the content in the page list is an odd length,
* xdr_write_pages() adds a pad at the beginning of
* the tail iovec. Force the tail's non-pad content to
* land at the next XDR position in the Send message.
*/
page_base = offset_in_page(xdr->tail[0].iov_base);
len = xdr->tail[0].iov_len;
page_base += len & 3;
len -= len & 3;
if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
return false;
kref_get(&req->rl_kref);
}
return true;
}
/**
* rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
* @r_xprt: controlling transport
* @req: context of RPC Call being marshalled
* @hdrlen: size of transport header, in bytes
* @xdr: xdr_buf containing RPC Call
* @rtype: chunk type being encoded
*
* Returns 0 on success; otherwise a negative errno is returned.
*/
inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req, u32 hdrlen,
struct xdr_buf *xdr,
enum rpcrdma_chunktype rtype)
{
int ret;
ret = -EAGAIN;
req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
if (!req->rl_sendctx)
goto out_nosc;
req->rl_sendctx->sc_unmap_count = 0;
req->rl_sendctx->sc_req = req;
kref_init(&req->rl_kref);
req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
req->rl_wr.num_sge = 0;
req->rl_wr.opcode = IB_WR_SEND;
rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen);
ret = -EIO;
switch (rtype) {
case rpcrdma_noch_pullup:
if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
goto out_unmap;
break;
case rpcrdma_noch_mapped:
if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
goto out_unmap;
break;
case rpcrdma_readch:
if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
goto out_unmap;
break;
case rpcrdma_areadch:
break;
default:
goto out_unmap;
}
return 0;
out_unmap:
rpcrdma_sendctx_unmap(req->rl_sendctx);
out_nosc:
trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
return ret;
}
/**
* rpcrdma_marshal_req - Marshal and send one RPC request
* @r_xprt: controlling transport
* @rqst: RPC request to be marshaled
*
* For the RPC in "rqst", this function:
* - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
* - Registers Read, Write, and Reply chunks
* - Constructs the transport header
* - Posts a Send WR to send the transport header and request
*
* Returns:
* %0 if the RPC was sent successfully,
* %-ENOTCONN if the connection was lost,
* %-EAGAIN if the caller should call again with the same arguments,
* %-ENOBUFS if the caller should call again after a delay,
* %-EMSGSIZE if the transport header is too small,
* %-EIO if a permanent problem occurred while marshaling.
*/
int
rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
{
struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
struct xdr_stream *xdr = &req->rl_stream;
enum rpcrdma_chunktype rtype, wtype;
struct xdr_buf *buf = &rqst->rq_snd_buf;
bool ddp_allowed;
__be32 *p;
int ret;
if (unlikely(rqst->rq_rcv_buf.flags & XDRBUF_SPARSE_PAGES)) {
ret = rpcrdma_alloc_sparse_pages(&rqst->rq_rcv_buf);
if (ret)
return ret;
}
rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
rqst);
/* Fixed header fields */
ret = -EMSGSIZE;
p = xdr_reserve_space(xdr, 4 * sizeof(*p));
if (!p)
goto out_err;
*p++ = rqst->rq_xid;
*p++ = rpcrdma_version;
*p++ = r_xprt->rx_buf.rb_max_requests;
/* When the ULP employs a GSS flavor that guarantees integrity
* or privacy, direct data placement of individual data items
* is not allowed.
*/
ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH,
&rqst->rq_cred->cr_auth->au_flags);
/*
* Chunks needed for results?
*
* o If the expected result is under the inline threshold, all ops
* return as inline.
* o Large read ops return data as write chunk(s), header as
* inline.
* o Large non-read ops return as a single reply chunk.
*/
if (rpcrdma_results_inline(r_xprt, rqst))
wtype = rpcrdma_noch;
else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
rpcrdma_nonpayload_inline(r_xprt, rqst))
wtype = rpcrdma_writech;
else
wtype = rpcrdma_replych;
/*
* Chunks needed for arguments?
*
* o If the total request is under the inline threshold, all ops
* are sent as inline.
* o Large write ops transmit data as read chunk(s), header as
* inline.
* o Large non-write ops are sent with the entire message as a
* single read chunk (protocol 0-position special case).
*
* This assumes that the upper layer does not present a request
* that both has a data payload, and whose non-data arguments
* by themselves are larger than the inline threshold.
*/
if (rpcrdma_args_inline(r_xprt, rqst)) {
*p++ = rdma_msg;
rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
rpcrdma_noch_pullup : rpcrdma_noch_mapped;
} else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
*p++ = rdma_msg;
rtype = rpcrdma_readch;
} else {
r_xprt->rx_stats.nomsg_call_count++;
*p++ = rdma_nomsg;
rtype = rpcrdma_areadch;
}
/* This implementation supports the following combinations
* of chunk lists in one RPC-over-RDMA Call message:
*
* - Read list
* - Write list
* - Reply chunk
* - Read list + Reply chunk
*
* It might not yet support the following combinations:
*
* - Read list + Write list
*
* It does not support the following combinations:
*
* - Write list + Reply chunk
* - Read list + Write list + Reply chunk
*
* This implementation supports only a single chunk in each
* Read or Write list. Thus for example the client cannot
* send a Call message with a Position Zero Read chunk and a
* regular Read chunk at the same time.
*/
ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
if (ret)
goto out_err;
ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
if (ret)
goto out_err;
ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
if (ret)
goto out_err;
ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
buf, rtype);
if (ret)
goto out_err;
trace_xprtrdma_marshal(req, rtype, wtype);
return 0;
out_err:
trace_xprtrdma_marshal_failed(rqst, ret);
r_xprt->rx_stats.failed_marshal_count++;
frwr_reset(req);
return ret;
}
static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
struct rpcrdma_buffer *buf,
u32 grant)
{
buf->rb_credits = grant;
xprt->cwnd = grant << RPC_CWNDSHIFT;
}
static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
{
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
spin_lock(&xprt->transport_lock);
__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
spin_unlock(&xprt->transport_lock);
}
/**
* rpcrdma_reset_cwnd - Reset the xprt's congestion window
* @r_xprt: controlling transport instance
*
* Prepare @r_xprt for the next connection by reinitializing
* its credit grant to one (see RFC 8166, Section 3.3.3).
*/
void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
{
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
spin_lock(&xprt->transport_lock);
xprt->cong = 0;
__rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
spin_unlock(&xprt->transport_lock);
}
/**
* rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
* @rqst: controlling RPC request
* @srcp: points to RPC message payload in receive buffer
* @copy_len: remaining length of receive buffer content
* @pad: Write chunk pad bytes needed (zero for pure inline)
*
* The upper layer has set the maximum number of bytes it can
* receive in each component of rq_rcv_buf. These values are set in
* the head.iov_len, page_len, tail.iov_len, and buflen fields.
*
* Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
* many cases this function simply updates iov_base pointers in
* rq_rcv_buf to point directly to the received reply data, to
* avoid copying reply data.
*
* Returns the count of bytes which had to be memcopied.
*/
static unsigned long
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
{
unsigned long fixup_copy_count;
int i, npages, curlen;
char *destp;
struct page **ppages;
int page_base;
/* The head iovec is redirected to the RPC reply message
* in the receive buffer, to avoid a memcopy.
*/
rqst->rq_rcv_buf.head[0].iov_base = srcp;
rqst->rq_private_buf.head[0].iov_base = srcp;
/* The contents of the receive buffer that follow
* head.iov_len bytes are copied into the page list.
*/
curlen = rqst->rq_rcv_buf.head[0].iov_len;
if (curlen > copy_len)
curlen = copy_len;
srcp += curlen;
copy_len -= curlen;
ppages = rqst->rq_rcv_buf.pages +
(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
fixup_copy_count = 0;
if (copy_len && rqst->rq_rcv_buf.page_len) {
int pagelist_len;
pagelist_len = rqst->rq_rcv_buf.page_len;
if (pagelist_len > copy_len)
pagelist_len = copy_len;
npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
curlen = PAGE_SIZE - page_base;
if (curlen > pagelist_len)
curlen = pagelist_len;
destp = kmap_atomic(ppages[i]);
memcpy(destp + page_base, srcp, curlen);
flush_dcache_page(ppages[i]);
kunmap_atomic(destp);
srcp += curlen;
copy_len -= curlen;
fixup_copy_count += curlen;
pagelist_len -= curlen;
if (!pagelist_len)
break;
page_base = 0;
}
/* Implicit padding for the last segment in a Write
* chunk is inserted inline at the front of the tail
* iovec. The upper layer ignores the content of
* the pad. Simply ensure inline content in the tail
* that follows the Write chunk is properly aligned.
*/
if (pad)
srcp -= pad;
}
/* The tail iovec is redirected to the remaining data
* in the receive buffer, to avoid a memcopy.
*/
if (copy_len || pad) {
rqst->rq_rcv_buf.tail[0].iov_base = srcp;
rqst->rq_private_buf.tail[0].iov_base = srcp;
}
if (fixup_copy_count)
trace_xprtrdma_fixup(rqst, fixup_copy_count);
return fixup_copy_count;
}
/* By convention, backchannel calls arrive via rdma_msg type
* messages, and never populate the chunk lists. This makes
* the RPC/RDMA header small and fixed in size, so it is
* straightforward to check the RPC header's direction field.
*/
static bool
rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
#if defined(CONFIG_SUNRPC_BACKCHANNEL)
{
struct xdr_stream *xdr = &rep->rr_stream;
__be32 *p;
if (rep->rr_proc != rdma_msg)
return false;
/* Peek at stream contents without advancing. */
p = xdr_inline_decode(xdr, 0);
/* Chunk lists */
if (xdr_item_is_present(p++))
return false;
if (xdr_item_is_present(p++))
return false;
if (xdr_item_is_present(p++))
return false;
/* RPC header */
if (*p++ != rep->rr_xid)
return false;
if (*p != cpu_to_be32(RPC_CALL))
return false;
/* Now that we are sure this is a backchannel call,
* advance to the RPC header.
*/
p = xdr_inline_decode(xdr, 3 * sizeof(*p));
if (unlikely(!p))
return true;
rpcrdma_bc_receive_call(r_xprt, rep);
return true;
}
#else /* CONFIG_SUNRPC_BACKCHANNEL */
{
return false;
}
#endif /* CONFIG_SUNRPC_BACKCHANNEL */
static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
{
u32 handle;
u64 offset;
__be32 *p;
p = xdr_inline_decode(xdr, 4 * sizeof(*p));
if (unlikely(!p))
return -EIO;
xdr_decode_rdma_segment(p, &handle, length, &offset);
trace_xprtrdma_decode_seg(handle, *length, offset);
return 0;
}
static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
{
u32 segcount, seglength;
__be32 *p;
p = xdr_inline_decode(xdr, sizeof(*p));
if (unlikely(!p))
return -EIO;
*length = 0;
segcount = be32_to_cpup(p);
while (segcount--) {
if (decode_rdma_segment(xdr, &seglength))
return -EIO;
*length += seglength;
}
return 0;
}
/* In RPC-over-RDMA Version One replies, a Read list is never
* expected. This decoder is a stub that returns an error if
* a Read list is present.
*/
static int decode_read_list(struct xdr_stream *xdr)
{
__be32 *p;
p = xdr_inline_decode(xdr, sizeof(*p));
if (unlikely(!p))
return -EIO;
if (unlikely(xdr_item_is_present(p)))
return -EIO;
return 0;
}
/* Supports only one Write chunk in the Write list
*/
static int decode_write_list(struct xdr_stream *xdr, u32 *length)
{
u32 chunklen;
bool first;
__be32 *p;
*length = 0;
first = true;
do {
p = xdr_inline_decode(xdr, sizeof(*p));
if (unlikely(!p))
return -EIO;
if (xdr_item_is_absent(p))
break;
if (!first)
return -EIO;
if (decode_write_chunk(xdr, &chunklen))
return -EIO;
*length += chunklen;
first = false;
} while (true);
return 0;
}
static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
{
__be32 *p;
p = xdr_inline_decode(xdr, sizeof(*p));
if (unlikely(!p))
return -EIO;
*length = 0;
if (xdr_item_is_present(p))
if (decode_write_chunk(xdr, length))
return -EIO;
return 0;
}
static int
rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
struct rpc_rqst *rqst)
{
struct xdr_stream *xdr = &rep->rr_stream;
u32 writelist, replychunk, rpclen;
char *base;
/* Decode the chunk lists */
if (decode_read_list(xdr))
return -EIO;
if (decode_write_list(xdr, &writelist))
return -EIO;
if (decode_reply_chunk(xdr, &replychunk))
return -EIO;
/* RDMA_MSG sanity checks */
if (unlikely(replychunk))
return -EIO;
/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
base = (char *)xdr_inline_decode(xdr, 0);
rpclen = xdr_stream_remaining(xdr);
r_xprt->rx_stats.fixup_copy_count +=
rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
r_xprt->rx_stats.total_rdma_reply += writelist;
return rpclen + xdr_align_size(writelist);
}
static noinline int
rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
{
struct xdr_stream *xdr = &rep->rr_stream;
u32 writelist, replychunk;
/* Decode the chunk lists */
if (decode_read_list(xdr))
return -EIO;
if (decode_write_list(xdr, &writelist))
return -EIO;
if (decode_reply_chunk(xdr, &replychunk))
return -EIO;
/* RDMA_NOMSG sanity checks */
if (unlikely(writelist))
return -EIO;
if (unlikely(!replychunk))
return -EIO;
/* Reply chunk buffer already is the reply vector */
r_xprt->rx_stats.total_rdma_reply += replychunk;
return replychunk;
}
static noinline int
rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
struct rpc_rqst *rqst)
{
struct xdr_stream *xdr = &rep->rr_stream;
__be32 *p;
p = xdr_inline_decode(xdr, sizeof(*p));
if (unlikely(!p))
return -EIO;
switch (*p) {
case err_vers:
p = xdr_inline_decode(xdr, 2 * sizeof(*p));
if (!p)
break;
trace_xprtrdma_err_vers(rqst, p, p + 1);
break;
case err_chunk:
trace_xprtrdma_err_chunk(rqst);
break;
default:
trace_xprtrdma_err_unrecognized(rqst, p);
}
return -EIO;
}
/* Perform XID lookup, reconstruction of the RPC reply, and
* RPC completion while holding the transport lock to ensure
* the rep, rqst, and rq_task pointers remain stable.
*/
void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
{
struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
struct rpc_rqst *rqst = rep->rr_rqst;
int status;
switch (rep->rr_proc) {
case rdma_msg:
status = rpcrdma_decode_msg(r_xprt, rep, rqst);
break;
case rdma_nomsg:
status = rpcrdma_decode_nomsg(r_xprt, rep);
break;
case rdma_error:
status = rpcrdma_decode_error(r_xprt, rep, rqst);
break;
default:
status = -EIO;
}
if (status < 0)
goto out_badheader;
out:
spin_lock(&xprt->queue_lock);
xprt_complete_rqst(rqst->rq_task, status);
xprt_unpin_rqst(rqst);
spin_unlock(&xprt->queue_lock);
return;
out_badheader:
trace_xprtrdma_reply_hdr_err(rep);
r_xprt->rx_stats.bad_reply_count++;
rqst->rq_task->tk_status = status;
status = 0;
goto out;
}
static void rpcrdma_reply_done(struct kref *kref)
{
struct rpcrdma_req *req =
container_of(kref, struct rpcrdma_req, rl_kref);
rpcrdma_complete_rqst(req->rl_reply);
}
/**
* rpcrdma_reply_handler - Process received RPC/RDMA messages
* @rep: Incoming rpcrdma_rep object to process
*
* Errors must result in the RPC task either being awakened, or
* allowed to timeout, to discover the errors at that time.
*/
void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
{
struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
struct rpc_xprt *xprt = &r_xprt->rx_xprt;
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
struct rpcrdma_req *req;
struct rpc_rqst *rqst;
u32 credits;
__be32 *p;
/* Any data means we had a useful conversation, so
* then we don't need to delay the next reconnect.
*/
if (xprt->reestablish_timeout)
xprt->reestablish_timeout = 0;
/* Fixed transport header fields */
xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
rep->rr_hdrbuf.head[0].iov_base, NULL);
p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
if (unlikely(!p))
goto out_shortreply;
rep->rr_xid = *p++;
rep->rr_vers = *p++;
credits = be32_to_cpu(*p++);
rep->rr_proc = *p++;
if (rep->rr_vers != rpcrdma_version)
goto out_badversion;
if (rpcrdma_is_bcall(r_xprt, rep))
return;
/* Match incoming rpcrdma_rep to an rpcrdma_req to
* get context for handling any incoming chunks.
*/
spin_lock(&xprt->queue_lock);
rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
if (!rqst)
goto out_norqst;
xprt_pin_rqst(rqst);
spin_unlock(&xprt->queue_lock);
if (credits == 0)
credits = 1; /* don't deadlock */
else if (credits > r_xprt->rx_ep->re_max_requests)
credits = r_xprt->rx_ep->re_max_requests;
if (buf->rb_credits != credits)
rpcrdma_update_cwnd(r_xprt, credits);
rpcrdma_post_recvs(r_xprt, false);
req = rpcr_to_rdmar(rqst);
if (unlikely(req->rl_reply))
rpcrdma_recv_buffer_put(req->rl_reply);
req->rl_reply = rep;
rep->rr_rqst = rqst;
trace_xprtrdma_reply(rqst->rq_task, rep, credits);
if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
frwr_reminv(rep, &req->rl_registered);
if (!list_empty(&req->rl_registered))
frwr_unmap_async(r_xprt, req);
/* LocalInv completion will complete the RPC */
else
kref_put(&req->rl_kref, rpcrdma_reply_done);
return;
out_badversion:
trace_xprtrdma_reply_vers_err(rep);
goto out;
out_norqst:
spin_unlock(&xprt->queue_lock);
trace_xprtrdma_reply_rqst_err(rep);
goto out;
out_shortreply:
trace_xprtrdma_reply_short_err(rep);
out:
rpcrdma_recv_buffer_put(rep);
}