linux/fs/btrfs/space-info.c
Josef Bacik 844245b454 btrfs: add a flush step for delayed iputs
Delayed iputs could very well free up enough space without needing to
commit the transaction, so make this step it's own step.  This will
allow us to skip the step for evictions in a later patch.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09 14:59:10 +02:00

1076 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "ctree.h"
#include "space-info.h"
#include "sysfs.h"
#include "volumes.h"
#include "free-space-cache.h"
#include "ordered-data.h"
#include "transaction.h"
#include "math.h"
#include "block-group.h"
u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
bool may_use_included)
{
ASSERT(s_info);
return s_info->bytes_used + s_info->bytes_reserved +
s_info->bytes_pinned + s_info->bytes_readonly +
(may_use_included ? s_info->bytes_may_use : 0);
}
/*
* after adding space to the filesystem, we need to clear the full flags
* on all the space infos.
*/
void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list)
found->full = 0;
rcu_read_unlock();
}
static int create_space_info(struct btrfs_fs_info *info, u64 flags)
{
struct btrfs_space_info *space_info;
int i;
int ret;
space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
if (!space_info)
return -ENOMEM;
ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
GFP_KERNEL);
if (ret) {
kfree(space_info);
return ret;
}
for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
INIT_LIST_HEAD(&space_info->block_groups[i]);
init_rwsem(&space_info->groups_sem);
spin_lock_init(&space_info->lock);
space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
init_waitqueue_head(&space_info->wait);
INIT_LIST_HEAD(&space_info->ro_bgs);
INIT_LIST_HEAD(&space_info->tickets);
INIT_LIST_HEAD(&space_info->priority_tickets);
ret = btrfs_sysfs_add_space_info_type(info, space_info);
if (ret)
return ret;
list_add_rcu(&space_info->list, &info->space_info);
if (flags & BTRFS_BLOCK_GROUP_DATA)
info->data_sinfo = space_info;
return ret;
}
int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
{
struct btrfs_super_block *disk_super;
u64 features;
u64 flags;
int mixed = 0;
int ret;
disk_super = fs_info->super_copy;
if (!btrfs_super_root(disk_super))
return -EINVAL;
features = btrfs_super_incompat_flags(disk_super);
if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
mixed = 1;
flags = BTRFS_BLOCK_GROUP_SYSTEM;
ret = create_space_info(fs_info, flags);
if (ret)
goto out;
if (mixed) {
flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
ret = create_space_info(fs_info, flags);
} else {
flags = BTRFS_BLOCK_GROUP_METADATA;
ret = create_space_info(fs_info, flags);
if (ret)
goto out;
flags = BTRFS_BLOCK_GROUP_DATA;
ret = create_space_info(fs_info, flags);
}
out:
return ret;
}
void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
u64 total_bytes, u64 bytes_used,
u64 bytes_readonly,
struct btrfs_space_info **space_info)
{
struct btrfs_space_info *found;
int factor;
factor = btrfs_bg_type_to_factor(flags);
found = btrfs_find_space_info(info, flags);
ASSERT(found);
spin_lock(&found->lock);
found->total_bytes += total_bytes;
found->disk_total += total_bytes * factor;
found->bytes_used += bytes_used;
found->disk_used += bytes_used * factor;
found->bytes_readonly += bytes_readonly;
if (total_bytes > 0)
found->full = 0;
btrfs_space_info_add_new_bytes(info, found,
total_bytes - bytes_used -
bytes_readonly);
spin_unlock(&found->lock);
*space_info = found;
}
struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
u64 flags)
{
struct list_head *head = &info->space_info;
struct btrfs_space_info *found;
flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
rcu_read_lock();
list_for_each_entry_rcu(found, head, list) {
if (found->flags & flags) {
rcu_read_unlock();
return found;
}
}
rcu_read_unlock();
return NULL;
}
static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
{
return (global->size << 1);
}
static int can_overcommit(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info, u64 bytes,
enum btrfs_reserve_flush_enum flush,
bool system_chunk)
{
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
u64 profile;
u64 space_size;
u64 avail;
u64 used;
int factor;
/* Don't overcommit when in mixed mode. */
if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
return 0;
if (system_chunk)
profile = btrfs_system_alloc_profile(fs_info);
else
profile = btrfs_metadata_alloc_profile(fs_info);
used = btrfs_space_info_used(space_info, false);
/*
* We only want to allow over committing if we have lots of actual space
* free, but if we don't have enough space to handle the global reserve
* space then we could end up having a real enospc problem when trying
* to allocate a chunk or some other such important allocation.
*/
spin_lock(&global_rsv->lock);
space_size = calc_global_rsv_need_space(global_rsv);
spin_unlock(&global_rsv->lock);
if (used + space_size >= space_info->total_bytes)
return 0;
used += space_info->bytes_may_use;
avail = atomic64_read(&fs_info->free_chunk_space);
/*
* If we have dup, raid1 or raid10 then only half of the free
* space is actually usable. For raid56, the space info used
* doesn't include the parity drive, so we don't have to
* change the math
*/
factor = btrfs_bg_type_to_factor(profile);
avail = div_u64(avail, factor);
/*
* If we aren't flushing all things, let us overcommit up to
* 1/2th of the space. If we can flush, don't let us overcommit
* too much, let it overcommit up to 1/8 of the space.
*/
if (flush == BTRFS_RESERVE_FLUSH_ALL)
avail >>= 3;
else
avail >>= 1;
if (used + bytes < space_info->total_bytes + avail)
return 1;
return 0;
}
/*
* This is for space we already have accounted in space_info->bytes_may_use, so
* basically when we're returning space from block_rsv's.
*/
void btrfs_space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
u64 num_bytes)
{
struct reserve_ticket *ticket;
struct list_head *head;
u64 used;
enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
bool check_overcommit = false;
spin_lock(&space_info->lock);
head = &space_info->priority_tickets;
/*
* If we are over our limit then we need to check and see if we can
* overcommit, and if we can't then we just need to free up our space
* and not satisfy any requests.
*/
used = btrfs_space_info_used(space_info, true);
if (used - num_bytes >= space_info->total_bytes)
check_overcommit = true;
again:
while (!list_empty(head) && num_bytes) {
ticket = list_first_entry(head, struct reserve_ticket,
list);
/*
* We use 0 bytes because this space is already reserved, so
* adding the ticket space would be a double count.
*/
if (check_overcommit &&
!can_overcommit(fs_info, space_info, 0, flush, false))
break;
if (num_bytes >= ticket->bytes) {
list_del_init(&ticket->list);
num_bytes -= ticket->bytes;
ticket->bytes = 0;
space_info->tickets_id++;
wake_up(&ticket->wait);
} else {
ticket->bytes -= num_bytes;
num_bytes = 0;
}
}
if (num_bytes && head == &space_info->priority_tickets) {
head = &space_info->tickets;
flush = BTRFS_RESERVE_FLUSH_ALL;
goto again;
}
btrfs_space_info_update_bytes_may_use(fs_info, space_info, -num_bytes);
trace_btrfs_space_reservation(fs_info, "space_info",
space_info->flags, num_bytes, 0);
spin_unlock(&space_info->lock);
}
/*
* This is for newly allocated space that isn't accounted in
* space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
* we use this helper.
*/
void btrfs_space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
u64 num_bytes)
{
struct reserve_ticket *ticket;
struct list_head *head = &space_info->priority_tickets;
again:
while (!list_empty(head) && num_bytes) {
ticket = list_first_entry(head, struct reserve_ticket,
list);
if (num_bytes >= ticket->bytes) {
trace_btrfs_space_reservation(fs_info, "space_info",
space_info->flags,
ticket->bytes, 1);
list_del_init(&ticket->list);
num_bytes -= ticket->bytes;
btrfs_space_info_update_bytes_may_use(fs_info,
space_info,
ticket->bytes);
ticket->bytes = 0;
space_info->tickets_id++;
wake_up(&ticket->wait);
} else {
trace_btrfs_space_reservation(fs_info, "space_info",
space_info->flags,
num_bytes, 1);
btrfs_space_info_update_bytes_may_use(fs_info,
space_info,
num_bytes);
ticket->bytes -= num_bytes;
num_bytes = 0;
}
}
if (num_bytes && head == &space_info->priority_tickets) {
head = &space_info->tickets;
goto again;
}
}
#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
do { \
struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
spin_lock(&__rsv->lock); \
btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
__rsv->size, __rsv->reserved); \
spin_unlock(&__rsv->lock); \
} while (0)
void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *info, u64 bytes,
int dump_block_groups)
{
struct btrfs_block_group_cache *cache;
int index = 0;
spin_lock(&info->lock);
btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
info->flags,
info->total_bytes - btrfs_space_info_used(info, true),
info->full ? "" : "not ");
btrfs_info(fs_info,
"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
info->total_bytes, info->bytes_used, info->bytes_pinned,
info->bytes_reserved, info->bytes_may_use,
info->bytes_readonly);
spin_unlock(&info->lock);
DUMP_BLOCK_RSV(fs_info, global_block_rsv);
DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
if (!dump_block_groups)
return;
down_read(&info->groups_sem);
again:
list_for_each_entry(cache, &info->block_groups[index], list) {
spin_lock(&cache->lock);
btrfs_info(fs_info,
"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
cache->key.objectid, cache->key.offset,
btrfs_block_group_used(&cache->item), cache->pinned,
cache->reserved, cache->ro ? "[readonly]" : "");
btrfs_dump_free_space(cache, bytes);
spin_unlock(&cache->lock);
}
if (++index < BTRFS_NR_RAID_TYPES)
goto again;
up_read(&info->groups_sem);
}
static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
unsigned long nr_pages, int nr_items)
{
struct super_block *sb = fs_info->sb;
if (down_read_trylock(&sb->s_umount)) {
writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
up_read(&sb->s_umount);
} else {
/*
* We needn't worry the filesystem going from r/w to r/o though
* we don't acquire ->s_umount mutex, because the filesystem
* should guarantee the delalloc inodes list be empty after
* the filesystem is readonly(all dirty pages are written to
* the disk).
*/
btrfs_start_delalloc_roots(fs_info, nr_items);
if (!current->journal_info)
btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
}
}
static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
u64 to_reclaim)
{
u64 bytes;
u64 nr;
bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
nr = div64_u64(to_reclaim, bytes);
if (!nr)
nr = 1;
return nr;
}
#define EXTENT_SIZE_PER_ITEM SZ_256K
/*
* shrink metadata reservation for delalloc
*/
static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
u64 orig, bool wait_ordered)
{
struct btrfs_space_info *space_info;
struct btrfs_trans_handle *trans;
u64 delalloc_bytes;
u64 dio_bytes;
u64 async_pages;
u64 items;
long time_left;
unsigned long nr_pages;
int loops;
/* Calc the number of the pages we need flush for space reservation */
items = calc_reclaim_items_nr(fs_info, to_reclaim);
to_reclaim = items * EXTENT_SIZE_PER_ITEM;
trans = (struct btrfs_trans_handle *)current->journal_info;
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
delalloc_bytes = percpu_counter_sum_positive(
&fs_info->delalloc_bytes);
dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
if (delalloc_bytes == 0 && dio_bytes == 0) {
if (trans)
return;
if (wait_ordered)
btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
return;
}
/*
* If we are doing more ordered than delalloc we need to just wait on
* ordered extents, otherwise we'll waste time trying to flush delalloc
* that likely won't give us the space back we need.
*/
if (dio_bytes > delalloc_bytes)
wait_ordered = true;
loops = 0;
while ((delalloc_bytes || dio_bytes) && loops < 3) {
nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
/*
* Triggers inode writeback for up to nr_pages. This will invoke
* ->writepages callback and trigger delalloc filling
* (btrfs_run_delalloc_range()).
*/
btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
/*
* We need to wait for the compressed pages to start before
* we continue.
*/
async_pages = atomic_read(&fs_info->async_delalloc_pages);
if (!async_pages)
goto skip_async;
/*
* Calculate how many compressed pages we want to be written
* before we continue. I.e if there are more async pages than we
* require wait_event will wait until nr_pages are written.
*/
if (async_pages <= nr_pages)
async_pages = 0;
else
async_pages -= nr_pages;
wait_event(fs_info->async_submit_wait,
atomic_read(&fs_info->async_delalloc_pages) <=
(int)async_pages);
skip_async:
spin_lock(&space_info->lock);
if (list_empty(&space_info->tickets) &&
list_empty(&space_info->priority_tickets)) {
spin_unlock(&space_info->lock);
break;
}
spin_unlock(&space_info->lock);
loops++;
if (wait_ordered && !trans) {
btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
} else {
time_left = schedule_timeout_killable(1);
if (time_left)
break;
}
delalloc_bytes = percpu_counter_sum_positive(
&fs_info->delalloc_bytes);
dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
}
}
/**
* maybe_commit_transaction - possibly commit the transaction if its ok to
* @root - the root we're allocating for
* @bytes - the number of bytes we want to reserve
* @force - force the commit
*
* This will check to make sure that committing the transaction will actually
* get us somewhere and then commit the transaction if it does. Otherwise it
* will return -ENOSPC.
*/
static int may_commit_transaction(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info)
{
struct reserve_ticket *ticket = NULL;
struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
struct btrfs_trans_handle *trans;
u64 bytes_needed;
u64 reclaim_bytes = 0;
trans = (struct btrfs_trans_handle *)current->journal_info;
if (trans)
return -EAGAIN;
spin_lock(&space_info->lock);
if (!list_empty(&space_info->priority_tickets))
ticket = list_first_entry(&space_info->priority_tickets,
struct reserve_ticket, list);
else if (!list_empty(&space_info->tickets))
ticket = list_first_entry(&space_info->tickets,
struct reserve_ticket, list);
bytes_needed = (ticket) ? ticket->bytes : 0;
spin_unlock(&space_info->lock);
if (!bytes_needed)
return 0;
trans = btrfs_join_transaction(fs_info->extent_root);
if (IS_ERR(trans))
return PTR_ERR(trans);
/*
* See if there is enough pinned space to make this reservation, or if
* we have block groups that are going to be freed, allowing us to
* possibly do a chunk allocation the next loop through.
*/
if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
__percpu_counter_compare(&space_info->total_bytes_pinned,
bytes_needed,
BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
goto commit;
/*
* See if there is some space in the delayed insertion reservation for
* this reservation.
*/
if (space_info != delayed_rsv->space_info)
goto enospc;
spin_lock(&delayed_rsv->lock);
reclaim_bytes += delayed_rsv->reserved;
spin_unlock(&delayed_rsv->lock);
spin_lock(&delayed_refs_rsv->lock);
reclaim_bytes += delayed_refs_rsv->reserved;
spin_unlock(&delayed_refs_rsv->lock);
if (reclaim_bytes >= bytes_needed)
goto commit;
bytes_needed -= reclaim_bytes;
if (__percpu_counter_compare(&space_info->total_bytes_pinned,
bytes_needed,
BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
goto enospc;
commit:
return btrfs_commit_transaction(trans);
enospc:
btrfs_end_transaction(trans);
return -ENOSPC;
}
/*
* Try to flush some data based on policy set by @state. This is only advisory
* and may fail for various reasons. The caller is supposed to examine the
* state of @space_info to detect the outcome.
*/
static void flush_space(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info, u64 num_bytes,
int state)
{
struct btrfs_root *root = fs_info->extent_root;
struct btrfs_trans_handle *trans;
int nr;
int ret = 0;
switch (state) {
case FLUSH_DELAYED_ITEMS_NR:
case FLUSH_DELAYED_ITEMS:
if (state == FLUSH_DELAYED_ITEMS_NR)
nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
else
nr = -1;
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
ret = btrfs_run_delayed_items_nr(trans, nr);
btrfs_end_transaction(trans);
break;
case FLUSH_DELALLOC:
case FLUSH_DELALLOC_WAIT:
shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
state == FLUSH_DELALLOC_WAIT);
break;
case FLUSH_DELAYED_REFS_NR:
case FLUSH_DELAYED_REFS:
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
if (state == FLUSH_DELAYED_REFS_NR)
nr = calc_reclaim_items_nr(fs_info, num_bytes);
else
nr = 0;
btrfs_run_delayed_refs(trans, nr);
btrfs_end_transaction(trans);
break;
case ALLOC_CHUNK:
case ALLOC_CHUNK_FORCE:
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
ret = btrfs_chunk_alloc(trans,
btrfs_metadata_alloc_profile(fs_info),
(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
CHUNK_ALLOC_FORCE);
btrfs_end_transaction(trans);
if (ret > 0 || ret == -ENOSPC)
ret = 0;
break;
case RUN_DELAYED_IPUTS:
/*
* If we have pending delayed iputs then we could free up a
* bunch of pinned space, so make sure we run the iputs before
* we do our pinned bytes check below.
*/
btrfs_run_delayed_iputs(fs_info);
btrfs_wait_on_delayed_iputs(fs_info);
break;
case COMMIT_TRANS:
ret = may_commit_transaction(fs_info, space_info);
break;
default:
ret = -ENOSPC;
break;
}
trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
ret);
return;
}
static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
bool system_chunk)
{
struct reserve_ticket *ticket;
u64 used;
u64 expected;
u64 to_reclaim = 0;
list_for_each_entry(ticket, &space_info->tickets, list)
to_reclaim += ticket->bytes;
list_for_each_entry(ticket, &space_info->priority_tickets, list)
to_reclaim += ticket->bytes;
if (to_reclaim)
return to_reclaim;
to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
if (can_overcommit(fs_info, space_info, to_reclaim,
BTRFS_RESERVE_FLUSH_ALL, system_chunk))
return 0;
used = btrfs_space_info_used(space_info, true);
if (can_overcommit(fs_info, space_info, SZ_1M,
BTRFS_RESERVE_FLUSH_ALL, system_chunk))
expected = div_factor_fine(space_info->total_bytes, 95);
else
expected = div_factor_fine(space_info->total_bytes, 90);
if (used > expected)
to_reclaim = used - expected;
else
to_reclaim = 0;
to_reclaim = min(to_reclaim, space_info->bytes_may_use +
space_info->bytes_reserved);
return to_reclaim;
}
static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
u64 used, bool system_chunk)
{
u64 thresh = div_factor_fine(space_info->total_bytes, 98);
/* If we're just plain full then async reclaim just slows us down. */
if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
return 0;
if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
system_chunk))
return 0;
return (used >= thresh && !btrfs_fs_closing(fs_info) &&
!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
}
static bool wake_all_tickets(struct list_head *head)
{
struct reserve_ticket *ticket;
while (!list_empty(head)) {
ticket = list_first_entry(head, struct reserve_ticket, list);
list_del_init(&ticket->list);
ticket->error = -ENOSPC;
wake_up(&ticket->wait);
if (ticket->bytes != ticket->orig_bytes)
return true;
}
return false;
}
/*
* This is for normal flushers, we can wait all goddamned day if we want to. We
* will loop and continuously try to flush as long as we are making progress.
* We count progress as clearing off tickets each time we have to loop.
*/
static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
{
struct btrfs_fs_info *fs_info;
struct btrfs_space_info *space_info;
u64 to_reclaim;
int flush_state;
int commit_cycles = 0;
u64 last_tickets_id;
fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
spin_lock(&space_info->lock);
to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
false);
if (!to_reclaim) {
space_info->flush = 0;
spin_unlock(&space_info->lock);
return;
}
last_tickets_id = space_info->tickets_id;
spin_unlock(&space_info->lock);
flush_state = FLUSH_DELAYED_ITEMS_NR;
do {
flush_space(fs_info, space_info, to_reclaim, flush_state);
spin_lock(&space_info->lock);
if (list_empty(&space_info->tickets)) {
space_info->flush = 0;
spin_unlock(&space_info->lock);
return;
}
to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
space_info,
false);
if (last_tickets_id == space_info->tickets_id) {
flush_state++;
} else {
last_tickets_id = space_info->tickets_id;
flush_state = FLUSH_DELAYED_ITEMS_NR;
if (commit_cycles)
commit_cycles--;
}
/*
* We don't want to force a chunk allocation until we've tried
* pretty hard to reclaim space. Think of the case where we
* freed up a bunch of space and so have a lot of pinned space
* to reclaim. We would rather use that than possibly create a
* underutilized metadata chunk. So if this is our first run
* through the flushing state machine skip ALLOC_CHUNK_FORCE and
* commit the transaction. If nothing has changed the next go
* around then we can force a chunk allocation.
*/
if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
flush_state++;
if (flush_state > COMMIT_TRANS) {
commit_cycles++;
if (commit_cycles > 2) {
if (wake_all_tickets(&space_info->tickets)) {
flush_state = FLUSH_DELAYED_ITEMS_NR;
commit_cycles--;
} else {
space_info->flush = 0;
}
} else {
flush_state = FLUSH_DELAYED_ITEMS_NR;
}
}
spin_unlock(&space_info->lock);
} while (flush_state <= COMMIT_TRANS);
}
void btrfs_init_async_reclaim_work(struct work_struct *work)
{
INIT_WORK(work, btrfs_async_reclaim_metadata_space);
}
static const enum btrfs_flush_state priority_flush_states[] = {
FLUSH_DELAYED_ITEMS_NR,
FLUSH_DELAYED_ITEMS,
ALLOC_CHUNK,
};
static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
struct reserve_ticket *ticket)
{
u64 to_reclaim;
int flush_state;
spin_lock(&space_info->lock);
to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
false);
if (!to_reclaim) {
spin_unlock(&space_info->lock);
return;
}
spin_unlock(&space_info->lock);
flush_state = 0;
do {
flush_space(fs_info, space_info, to_reclaim,
priority_flush_states[flush_state]);
flush_state++;
spin_lock(&space_info->lock);
if (ticket->bytes == 0) {
spin_unlock(&space_info->lock);
return;
}
spin_unlock(&space_info->lock);
} while (flush_state < ARRAY_SIZE(priority_flush_states));
}
static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
struct reserve_ticket *ticket)
{
DEFINE_WAIT(wait);
u64 reclaim_bytes = 0;
int ret = 0;
spin_lock(&space_info->lock);
while (ticket->bytes > 0 && ticket->error == 0) {
ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
if (ret) {
ret = -EINTR;
break;
}
spin_unlock(&space_info->lock);
schedule();
finish_wait(&ticket->wait, &wait);
spin_lock(&space_info->lock);
}
if (!ret)
ret = ticket->error;
if (!list_empty(&ticket->list))
list_del_init(&ticket->list);
if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
reclaim_bytes = ticket->orig_bytes - ticket->bytes;
spin_unlock(&space_info->lock);
if (reclaim_bytes)
btrfs_space_info_add_old_bytes(fs_info, space_info,
reclaim_bytes);
return ret;
}
/**
* reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
* @root - the root we're allocating for
* @space_info - the space info we want to allocate from
* @orig_bytes - the number of bytes we want
* @flush - whether or not we can flush to make our reservation
*
* This will reserve orig_bytes number of bytes from the space info associated
* with the block_rsv. If there is not enough space it will make an attempt to
* flush out space to make room. It will do this by flushing delalloc if
* possible or committing the transaction. If flush is 0 then no attempts to
* regain reservations will be made and this will fail if there is not enough
* space already.
*/
static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_space_info *space_info,
u64 orig_bytes,
enum btrfs_reserve_flush_enum flush,
bool system_chunk)
{
struct reserve_ticket ticket;
u64 used;
u64 reclaim_bytes = 0;
int ret = 0;
ASSERT(orig_bytes);
ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
spin_lock(&space_info->lock);
ret = -ENOSPC;
used = btrfs_space_info_used(space_info, true);
/*
* Carry on if we have enough space (short-circuit) OR call
* can_overcommit() to ensure we can overcommit to continue.
*/
if ((used + orig_bytes <= space_info->total_bytes) ||
can_overcommit(fs_info, space_info, orig_bytes, flush,
system_chunk)) {
btrfs_space_info_update_bytes_may_use(fs_info, space_info,
orig_bytes);
trace_btrfs_space_reservation(fs_info, "space_info",
space_info->flags, orig_bytes, 1);
ret = 0;
}
/*
* If we couldn't make a reservation then setup our reservation ticket
* and kick the async worker if it's not already running.
*
* If we are a priority flusher then we just need to add our ticket to
* the list and we will do our own flushing further down.
*/
if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
ticket.orig_bytes = orig_bytes;
ticket.bytes = orig_bytes;
ticket.error = 0;
init_waitqueue_head(&ticket.wait);
if (flush == BTRFS_RESERVE_FLUSH_ALL) {
list_add_tail(&ticket.list, &space_info->tickets);
if (!space_info->flush) {
space_info->flush = 1;
trace_btrfs_trigger_flush(fs_info,
space_info->flags,
orig_bytes, flush,
"enospc");
queue_work(system_unbound_wq,
&fs_info->async_reclaim_work);
}
} else {
list_add_tail(&ticket.list,
&space_info->priority_tickets);
}
} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
used += orig_bytes;
/*
* We will do the space reservation dance during log replay,
* which means we won't have fs_info->fs_root set, so don't do
* the async reclaim as we will panic.
*/
if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
need_do_async_reclaim(fs_info, space_info,
used, system_chunk) &&
!work_busy(&fs_info->async_reclaim_work)) {
trace_btrfs_trigger_flush(fs_info, space_info->flags,
orig_bytes, flush, "preempt");
queue_work(system_unbound_wq,
&fs_info->async_reclaim_work);
}
}
spin_unlock(&space_info->lock);
if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
return ret;
if (flush == BTRFS_RESERVE_FLUSH_ALL)
return wait_reserve_ticket(fs_info, space_info, &ticket);
ret = 0;
priority_reclaim_metadata_space(fs_info, space_info, &ticket);
spin_lock(&space_info->lock);
if (ticket.bytes) {
if (ticket.bytes < orig_bytes)
reclaim_bytes = orig_bytes - ticket.bytes;
list_del_init(&ticket.list);
ret = -ENOSPC;
}
spin_unlock(&space_info->lock);
if (reclaim_bytes)
btrfs_space_info_add_old_bytes(fs_info, space_info,
reclaim_bytes);
ASSERT(list_empty(&ticket.list));
return ret;
}
/**
* reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
* @root - the root we're allocating for
* @block_rsv - the block_rsv we're allocating for
* @orig_bytes - the number of bytes we want
* @flush - whether or not we can flush to make our reservation
*
* This will reserve orig_bytes number of bytes from the space info associated
* with the block_rsv. If there is not enough space it will make an attempt to
* flush out space to make room. It will do this by flushing delalloc if
* possible or committing the transaction. If flush is 0 then no attempts to
* regain reservations will be made and this will fail if there is not enough
* space already.
*/
int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
struct btrfs_block_rsv *block_rsv,
u64 orig_bytes,
enum btrfs_reserve_flush_enum flush)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
int ret;
bool system_chunk = (root == fs_info->chunk_root);
ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
orig_bytes, flush, system_chunk);
if (ret == -ENOSPC &&
unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
if (block_rsv != global_rsv &&
!btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
ret = 0;
}
if (ret == -ENOSPC) {
trace_btrfs_space_reservation(fs_info, "space_info:enospc",
block_rsv->space_info->flags,
orig_bytes, 1);
if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
btrfs_dump_space_info(fs_info, block_rsv->space_info,
orig_bytes, 0);
}
return ret;
}