linux/kernel/locking/qspinlock.c
Waiman Long 75d2270280 locking/pvqspinlock: Only kick CPU at unlock time
For an over-committed guest with more vCPUs than physical CPUs
available, it is possible that a vCPU may be kicked twice before
getting the lock - once before it becomes queue head and once again
before it gets the lock. All these CPU kicking and halting (VMEXIT)
can be expensive and slow down system performance.

This patch adds a new vCPU state (vcpu_hashed) which enables the code
to delay CPU kicking until at unlock time. Once this state is set,
the new lock holder will set _Q_SLOW_VAL and fill in the hash table
on behalf of the halted queue head vCPU. The original vcpu_halted
state will be used by pv_wait_node() only to differentiate other
queue nodes from the qeue head.

Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1436647018-49734-2-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-03 10:57:11 +02:00

474 lines
12 KiB
C

/*
* Queued spinlock
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
* (C) Copyright 2013-2014 Red Hat, Inc.
* (C) Copyright 2015 Intel Corp.
*
* Authors: Waiman Long <waiman.long@hp.com>
* Peter Zijlstra <peterz@infradead.org>
*/
#ifndef _GEN_PV_LOCK_SLOWPATH
#include <linux/smp.h>
#include <linux/bug.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/mutex.h>
#include <asm/byteorder.h>
#include <asm/qspinlock.h>
/*
* The basic principle of a queue-based spinlock can best be understood
* by studying a classic queue-based spinlock implementation called the
* MCS lock. The paper below provides a good description for this kind
* of lock.
*
* http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
*
* This queued spinlock implementation is based on the MCS lock, however to make
* it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
* API, we must modify it somehow.
*
* In particular; where the traditional MCS lock consists of a tail pointer
* (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
* unlock the next pending (next->locked), we compress both these: {tail,
* next->locked} into a single u32 value.
*
* Since a spinlock disables recursion of its own context and there is a limit
* to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
* are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
* we can encode the tail by combining the 2-bit nesting level with the cpu
* number. With one byte for the lock value and 3 bytes for the tail, only a
* 32-bit word is now needed. Even though we only need 1 bit for the lock,
* we extend it to a full byte to achieve better performance for architectures
* that support atomic byte write.
*
* We also change the first spinner to spin on the lock bit instead of its
* node; whereby avoiding the need to carry a node from lock to unlock, and
* preserving existing lock API. This also makes the unlock code simpler and
* faster.
*
* N.B. The current implementation only supports architectures that allow
* atomic operations on smaller 8-bit and 16-bit data types.
*
*/
#include "mcs_spinlock.h"
#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define MAX_NODES 8
#else
#define MAX_NODES 4
#endif
/*
* Per-CPU queue node structures; we can never have more than 4 nested
* contexts: task, softirq, hardirq, nmi.
*
* Exactly fits one 64-byte cacheline on a 64-bit architecture.
*
* PV doubles the storage and uses the second cacheline for PV state.
*/
static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
/*
* We must be able to distinguish between no-tail and the tail at 0:0,
* therefore increment the cpu number by one.
*/
static inline u32 encode_tail(int cpu, int idx)
{
u32 tail;
#ifdef CONFIG_DEBUG_SPINLOCK
BUG_ON(idx > 3);
#endif
tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
return tail;
}
static inline struct mcs_spinlock *decode_tail(u32 tail)
{
int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
return per_cpu_ptr(&mcs_nodes[idx], cpu);
}
#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
/*
* By using the whole 2nd least significant byte for the pending bit, we
* can allow better optimization of the lock acquisition for the pending
* bit holder.
*
* This internal structure is also used by the set_locked function which
* is not restricted to _Q_PENDING_BITS == 8.
*/
struct __qspinlock {
union {
atomic_t val;
#ifdef __LITTLE_ENDIAN
struct {
u8 locked;
u8 pending;
};
struct {
u16 locked_pending;
u16 tail;
};
#else
struct {
u16 tail;
u16 locked_pending;
};
struct {
u8 reserved[2];
u8 pending;
u8 locked;
};
#endif
};
};
#if _Q_PENDING_BITS == 8
/**
* clear_pending_set_locked - take ownership and clear the pending bit.
* @lock: Pointer to queued spinlock structure
*
* *,1,0 -> *,0,1
*
* Lock stealing is not allowed if this function is used.
*/
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
struct __qspinlock *l = (void *)lock;
WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
}
/*
* xchg_tail - Put in the new queue tail code word & retrieve previous one
* @lock : Pointer to queued spinlock structure
* @tail : The new queue tail code word
* Return: The previous queue tail code word
*
* xchg(lock, tail)
*
* p,*,* -> n,*,* ; prev = xchg(lock, node)
*/
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
struct __qspinlock *l = (void *)lock;
return (u32)xchg(&l->tail, tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
}
#else /* _Q_PENDING_BITS == 8 */
/**
* clear_pending_set_locked - take ownership and clear the pending bit.
* @lock: Pointer to queued spinlock structure
*
* *,1,0 -> *,0,1
*/
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
}
/**
* xchg_tail - Put in the new queue tail code word & retrieve previous one
* @lock : Pointer to queued spinlock structure
* @tail : The new queue tail code word
* Return: The previous queue tail code word
*
* xchg(lock, tail)
*
* p,*,* -> n,*,* ; prev = xchg(lock, node)
*/
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
u32 old, new, val = atomic_read(&lock->val);
for (;;) {
new = (val & _Q_LOCKED_PENDING_MASK) | tail;
old = atomic_cmpxchg(&lock->val, val, new);
if (old == val)
break;
val = old;
}
return old;
}
#endif /* _Q_PENDING_BITS == 8 */
/**
* set_locked - Set the lock bit and own the lock
* @lock: Pointer to queued spinlock structure
*
* *,*,0 -> *,0,1
*/
static __always_inline void set_locked(struct qspinlock *lock)
{
struct __qspinlock *l = (void *)lock;
WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
}
/*
* Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
* all the PV callbacks.
*/
static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
static __always_inline void __pv_wait_node(struct mcs_spinlock *node) { }
static __always_inline void __pv_kick_node(struct qspinlock *lock,
struct mcs_spinlock *node) { }
static __always_inline void __pv_wait_head(struct qspinlock *lock,
struct mcs_spinlock *node) { }
#define pv_enabled() false
#define pv_init_node __pv_init_node
#define pv_wait_node __pv_wait_node
#define pv_kick_node __pv_kick_node
#define pv_wait_head __pv_wait_head
#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
#endif
#endif /* _GEN_PV_LOCK_SLOWPATH */
/**
* queued_spin_lock_slowpath - acquire the queued spinlock
* @lock: Pointer to queued spinlock structure
* @val: Current value of the queued spinlock 32-bit word
*
* (queue tail, pending bit, lock value)
*
* fast : slow : unlock
* : :
* uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
* : | ^--------.------. / :
* : v \ \ | :
* pending : (0,1,1) +--> (0,1,0) \ | :
* : | ^--' | | :
* : v | | :
* uncontended : (n,x,y) +--> (n,0,0) --' | :
* queue : | ^--' | :
* : v | :
* contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
* queue : ^--' :
*/
void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
{
struct mcs_spinlock *prev, *next, *node;
u32 new, old, tail;
int idx;
BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
if (pv_enabled())
goto queue;
if (virt_queued_spin_lock(lock))
return;
/*
* wait for in-progress pending->locked hand-overs
*
* 0,1,0 -> 0,0,1
*/
if (val == _Q_PENDING_VAL) {
while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
cpu_relax();
}
/*
* trylock || pending
*
* 0,0,0 -> 0,0,1 ; trylock
* 0,0,1 -> 0,1,1 ; pending
*/
for (;;) {
/*
* If we observe any contention; queue.
*/
if (val & ~_Q_LOCKED_MASK)
goto queue;
new = _Q_LOCKED_VAL;
if (val == new)
new |= _Q_PENDING_VAL;
old = atomic_cmpxchg(&lock->val, val, new);
if (old == val)
break;
val = old;
}
/*
* we won the trylock
*/
if (new == _Q_LOCKED_VAL)
return;
/*
* we're pending, wait for the owner to go away.
*
* *,1,1 -> *,1,0
*
* this wait loop must be a load-acquire such that we match the
* store-release that clears the locked bit and create lock
* sequentiality; this is because not all clear_pending_set_locked()
* implementations imply full barriers.
*/
while ((val = smp_load_acquire(&lock->val.counter)) & _Q_LOCKED_MASK)
cpu_relax();
/*
* take ownership and clear the pending bit.
*
* *,1,0 -> *,0,1
*/
clear_pending_set_locked(lock);
return;
/*
* End of pending bit optimistic spinning and beginning of MCS
* queuing.
*/
queue:
node = this_cpu_ptr(&mcs_nodes[0]);
idx = node->count++;
tail = encode_tail(smp_processor_id(), idx);
node += idx;
node->locked = 0;
node->next = NULL;
pv_init_node(node);
/*
* We touched a (possibly) cold cacheline in the per-cpu queue node;
* attempt the trylock once more in the hope someone let go while we
* weren't watching.
*/
if (queued_spin_trylock(lock))
goto release;
/*
* We have already touched the queueing cacheline; don't bother with
* pending stuff.
*
* p,*,* -> n,*,*
*/
old = xchg_tail(lock, tail);
/*
* if there was a previous node; link it and wait until reaching the
* head of the waitqueue.
*/
if (old & _Q_TAIL_MASK) {
prev = decode_tail(old);
WRITE_ONCE(prev->next, node);
pv_wait_node(node);
arch_mcs_spin_lock_contended(&node->locked);
}
/*
* we're at the head of the waitqueue, wait for the owner & pending to
* go away.
*
* *,x,y -> *,0,0
*
* this wait loop must use a load-acquire such that we match the
* store-release that clears the locked bit and create lock
* sequentiality; this is because the set_locked() function below
* does not imply a full barrier.
*
*/
pv_wait_head(lock, node);
while ((val = smp_load_acquire(&lock->val.counter)) & _Q_LOCKED_PENDING_MASK)
cpu_relax();
/*
* claim the lock:
*
* n,0,0 -> 0,0,1 : lock, uncontended
* *,0,0 -> *,0,1 : lock, contended
*
* If the queue head is the only one in the queue (lock value == tail),
* clear the tail code and grab the lock. Otherwise, we only need
* to grab the lock.
*/
for (;;) {
if (val != tail) {
set_locked(lock);
break;
}
old = atomic_cmpxchg(&lock->val, val, _Q_LOCKED_VAL);
if (old == val)
goto release; /* No contention */
val = old;
}
/*
* contended path; wait for next, release.
*/
while (!(next = READ_ONCE(node->next)))
cpu_relax();
arch_mcs_spin_unlock_contended(&next->locked);
pv_kick_node(lock, next);
release:
/*
* release the node
*/
this_cpu_dec(mcs_nodes[0].count);
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);
/*
* Generate the paravirt code for queued_spin_unlock_slowpath().
*/
#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
#define _GEN_PV_LOCK_SLOWPATH
#undef pv_enabled
#define pv_enabled() true
#undef pv_init_node
#undef pv_wait_node
#undef pv_kick_node
#undef pv_wait_head
#undef queued_spin_lock_slowpath
#define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
#include "qspinlock_paravirt.h"
#include "qspinlock.c"
#endif