linux/drivers/video/omap2/dss/dsi.c
Tomi Valkeinen 828c48f8c5 OMAP: DSS2: DSI: add helpers for DCS read/write
Add helper functions for most common DCS read and write operations.

Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
2010-02-15 15:14:41 +02:00

3876 lines
86 KiB
C

/*
* linux/drivers/video/omap2/dss/dsi.c
*
* Copyright (C) 2009 Nokia Corporation
* Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "DSI"
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/seq_file.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <plat/display.h>
#include <plat/clock.h>
#include "dss.h"
/*#define VERBOSE_IRQ*/
#define DSI_CATCH_MISSING_TE
#define DSI_BASE 0x4804FC00
struct dsi_reg { u16 idx; };
#define DSI_REG(idx) ((const struct dsi_reg) { idx })
#define DSI_SZ_REGS SZ_1K
/* DSI Protocol Engine */
#define DSI_REVISION DSI_REG(0x0000)
#define DSI_SYSCONFIG DSI_REG(0x0010)
#define DSI_SYSSTATUS DSI_REG(0x0014)
#define DSI_IRQSTATUS DSI_REG(0x0018)
#define DSI_IRQENABLE DSI_REG(0x001C)
#define DSI_CTRL DSI_REG(0x0040)
#define DSI_COMPLEXIO_CFG1 DSI_REG(0x0048)
#define DSI_COMPLEXIO_IRQ_STATUS DSI_REG(0x004C)
#define DSI_COMPLEXIO_IRQ_ENABLE DSI_REG(0x0050)
#define DSI_CLK_CTRL DSI_REG(0x0054)
#define DSI_TIMING1 DSI_REG(0x0058)
#define DSI_TIMING2 DSI_REG(0x005C)
#define DSI_VM_TIMING1 DSI_REG(0x0060)
#define DSI_VM_TIMING2 DSI_REG(0x0064)
#define DSI_VM_TIMING3 DSI_REG(0x0068)
#define DSI_CLK_TIMING DSI_REG(0x006C)
#define DSI_TX_FIFO_VC_SIZE DSI_REG(0x0070)
#define DSI_RX_FIFO_VC_SIZE DSI_REG(0x0074)
#define DSI_COMPLEXIO_CFG2 DSI_REG(0x0078)
#define DSI_RX_FIFO_VC_FULLNESS DSI_REG(0x007C)
#define DSI_VM_TIMING4 DSI_REG(0x0080)
#define DSI_TX_FIFO_VC_EMPTINESS DSI_REG(0x0084)
#define DSI_VM_TIMING5 DSI_REG(0x0088)
#define DSI_VM_TIMING6 DSI_REG(0x008C)
#define DSI_VM_TIMING7 DSI_REG(0x0090)
#define DSI_STOPCLK_TIMING DSI_REG(0x0094)
#define DSI_VC_CTRL(n) DSI_REG(0x0100 + (n * 0x20))
#define DSI_VC_TE(n) DSI_REG(0x0104 + (n * 0x20))
#define DSI_VC_LONG_PACKET_HEADER(n) DSI_REG(0x0108 + (n * 0x20))
#define DSI_VC_LONG_PACKET_PAYLOAD(n) DSI_REG(0x010C + (n * 0x20))
#define DSI_VC_SHORT_PACKET_HEADER(n) DSI_REG(0x0110 + (n * 0x20))
#define DSI_VC_IRQSTATUS(n) DSI_REG(0x0118 + (n * 0x20))
#define DSI_VC_IRQENABLE(n) DSI_REG(0x011C + (n * 0x20))
/* DSIPHY_SCP */
#define DSI_DSIPHY_CFG0 DSI_REG(0x200 + 0x0000)
#define DSI_DSIPHY_CFG1 DSI_REG(0x200 + 0x0004)
#define DSI_DSIPHY_CFG2 DSI_REG(0x200 + 0x0008)
#define DSI_DSIPHY_CFG5 DSI_REG(0x200 + 0x0014)
/* DSI_PLL_CTRL_SCP */
#define DSI_PLL_CONTROL DSI_REG(0x300 + 0x0000)
#define DSI_PLL_STATUS DSI_REG(0x300 + 0x0004)
#define DSI_PLL_GO DSI_REG(0x300 + 0x0008)
#define DSI_PLL_CONFIGURATION1 DSI_REG(0x300 + 0x000C)
#define DSI_PLL_CONFIGURATION2 DSI_REG(0x300 + 0x0010)
#define REG_GET(idx, start, end) \
FLD_GET(dsi_read_reg(idx), start, end)
#define REG_FLD_MOD(idx, val, start, end) \
dsi_write_reg(idx, FLD_MOD(dsi_read_reg(idx), val, start, end))
/* Global interrupts */
#define DSI_IRQ_VC0 (1 << 0)
#define DSI_IRQ_VC1 (1 << 1)
#define DSI_IRQ_VC2 (1 << 2)
#define DSI_IRQ_VC3 (1 << 3)
#define DSI_IRQ_WAKEUP (1 << 4)
#define DSI_IRQ_RESYNC (1 << 5)
#define DSI_IRQ_PLL_LOCK (1 << 7)
#define DSI_IRQ_PLL_UNLOCK (1 << 8)
#define DSI_IRQ_PLL_RECALL (1 << 9)
#define DSI_IRQ_COMPLEXIO_ERR (1 << 10)
#define DSI_IRQ_HS_TX_TIMEOUT (1 << 14)
#define DSI_IRQ_LP_RX_TIMEOUT (1 << 15)
#define DSI_IRQ_TE_TRIGGER (1 << 16)
#define DSI_IRQ_ACK_TRIGGER (1 << 17)
#define DSI_IRQ_SYNC_LOST (1 << 18)
#define DSI_IRQ_LDO_POWER_GOOD (1 << 19)
#define DSI_IRQ_TA_TIMEOUT (1 << 20)
#define DSI_IRQ_ERROR_MASK \
(DSI_IRQ_HS_TX_TIMEOUT | DSI_IRQ_LP_RX_TIMEOUT | DSI_IRQ_SYNC_LOST | \
DSI_IRQ_TA_TIMEOUT)
#define DSI_IRQ_CHANNEL_MASK 0xf
/* Virtual channel interrupts */
#define DSI_VC_IRQ_CS (1 << 0)
#define DSI_VC_IRQ_ECC_CORR (1 << 1)
#define DSI_VC_IRQ_PACKET_SENT (1 << 2)
#define DSI_VC_IRQ_FIFO_TX_OVF (1 << 3)
#define DSI_VC_IRQ_FIFO_RX_OVF (1 << 4)
#define DSI_VC_IRQ_BTA (1 << 5)
#define DSI_VC_IRQ_ECC_NO_CORR (1 << 6)
#define DSI_VC_IRQ_FIFO_TX_UDF (1 << 7)
#define DSI_VC_IRQ_PP_BUSY_CHANGE (1 << 8)
#define DSI_VC_IRQ_ERROR_MASK \
(DSI_VC_IRQ_CS | DSI_VC_IRQ_ECC_CORR | DSI_VC_IRQ_FIFO_TX_OVF | \
DSI_VC_IRQ_FIFO_RX_OVF | DSI_VC_IRQ_ECC_NO_CORR | \
DSI_VC_IRQ_FIFO_TX_UDF)
/* ComplexIO interrupts */
#define DSI_CIO_IRQ_ERRSYNCESC1 (1 << 0)
#define DSI_CIO_IRQ_ERRSYNCESC2 (1 << 1)
#define DSI_CIO_IRQ_ERRSYNCESC3 (1 << 2)
#define DSI_CIO_IRQ_ERRESC1 (1 << 5)
#define DSI_CIO_IRQ_ERRESC2 (1 << 6)
#define DSI_CIO_IRQ_ERRESC3 (1 << 7)
#define DSI_CIO_IRQ_ERRCONTROL1 (1 << 10)
#define DSI_CIO_IRQ_ERRCONTROL2 (1 << 11)
#define DSI_CIO_IRQ_ERRCONTROL3 (1 << 12)
#define DSI_CIO_IRQ_STATEULPS1 (1 << 15)
#define DSI_CIO_IRQ_STATEULPS2 (1 << 16)
#define DSI_CIO_IRQ_STATEULPS3 (1 << 17)
#define DSI_CIO_IRQ_ERRCONTENTIONLP0_1 (1 << 20)
#define DSI_CIO_IRQ_ERRCONTENTIONLP1_1 (1 << 21)
#define DSI_CIO_IRQ_ERRCONTENTIONLP0_2 (1 << 22)
#define DSI_CIO_IRQ_ERRCONTENTIONLP1_2 (1 << 23)
#define DSI_CIO_IRQ_ERRCONTENTIONLP0_3 (1 << 24)
#define DSI_CIO_IRQ_ERRCONTENTIONLP1_3 (1 << 25)
#define DSI_CIO_IRQ_ULPSACTIVENOT_ALL0 (1 << 30)
#define DSI_CIO_IRQ_ULPSACTIVENOT_ALL1 (1 << 31)
#define DSI_DT_DCS_SHORT_WRITE_0 0x05
#define DSI_DT_DCS_SHORT_WRITE_1 0x15
#define DSI_DT_DCS_READ 0x06
#define DSI_DT_SET_MAX_RET_PKG_SIZE 0x37
#define DSI_DT_NULL_PACKET 0x09
#define DSI_DT_DCS_LONG_WRITE 0x39
#define DSI_DT_RX_ACK_WITH_ERR 0x02
#define DSI_DT_RX_DCS_LONG_READ 0x1c
#define DSI_DT_RX_SHORT_READ_1 0x21
#define DSI_DT_RX_SHORT_READ_2 0x22
#define FINT_MAX 2100000
#define FINT_MIN 750000
#define REGN_MAX (1 << 7)
#define REGM_MAX ((1 << 11) - 1)
#define REGM3_MAX (1 << 4)
#define REGM4_MAX (1 << 4)
#define LP_DIV_MAX ((1 << 13) - 1)
enum fifo_size {
DSI_FIFO_SIZE_0 = 0,
DSI_FIFO_SIZE_32 = 1,
DSI_FIFO_SIZE_64 = 2,
DSI_FIFO_SIZE_96 = 3,
DSI_FIFO_SIZE_128 = 4,
};
enum dsi_vc_mode {
DSI_VC_MODE_L4 = 0,
DSI_VC_MODE_VP,
};
struct dsi_update_region {
bool dirty;
u16 x, y, w, h;
struct omap_dss_device *device;
};
struct dsi_irq_stats {
unsigned long last_reset;
unsigned irq_count;
unsigned dsi_irqs[32];
unsigned vc_irqs[4][32];
unsigned cio_irqs[32];
};
static struct
{
void __iomem *base;
struct dsi_clock_info current_cinfo;
struct regulator *vdds_dsi_reg;
struct {
enum dsi_vc_mode mode;
struct omap_dss_device *dssdev;
enum fifo_size fifo_size;
int dest_per; /* destination peripheral 0-3 */
} vc[4];
struct mutex lock;
struct mutex bus_lock;
unsigned pll_locked;
struct completion bta_completion;
struct task_struct *thread;
wait_queue_head_t waitqueue;
spinlock_t update_lock;
bool framedone_received;
struct dsi_update_region update_region;
struct dsi_update_region active_update_region;
struct completion update_completion;
enum omap_dss_update_mode user_update_mode;
enum omap_dss_update_mode update_mode;
bool te_enabled;
bool use_ext_te;
#ifdef DSI_CATCH_MISSING_TE
struct timer_list te_timer;
#endif
unsigned long cache_req_pck;
unsigned long cache_clk_freq;
struct dsi_clock_info cache_cinfo;
u32 errors;
spinlock_t errors_lock;
#ifdef DEBUG
ktime_t perf_setup_time;
ktime_t perf_start_time;
ktime_t perf_start_time_auto;
int perf_measure_frames;
#endif
int debug_read;
int debug_write;
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
spinlock_t irq_stats_lock;
struct dsi_irq_stats irq_stats;
#endif
} dsi;
#ifdef DEBUG
static unsigned int dsi_perf;
module_param_named(dsi_perf, dsi_perf, bool, 0644);
#endif
static inline void dsi_write_reg(const struct dsi_reg idx, u32 val)
{
__raw_writel(val, dsi.base + idx.idx);
}
static inline u32 dsi_read_reg(const struct dsi_reg idx)
{
return __raw_readl(dsi.base + idx.idx);
}
void dsi_save_context(void)
{
}
void dsi_restore_context(void)
{
}
void dsi_bus_lock(void)
{
mutex_lock(&dsi.bus_lock);
}
EXPORT_SYMBOL(dsi_bus_lock);
void dsi_bus_unlock(void)
{
mutex_unlock(&dsi.bus_lock);
}
EXPORT_SYMBOL(dsi_bus_unlock);
static bool dsi_bus_is_locked(void)
{
return mutex_is_locked(&dsi.bus_lock);
}
static inline int wait_for_bit_change(const struct dsi_reg idx, int bitnum,
int value)
{
int t = 100000;
while (REG_GET(idx, bitnum, bitnum) != value) {
if (--t == 0)
return !value;
}
return value;
}
#ifdef DEBUG
static void dsi_perf_mark_setup(void)
{
dsi.perf_setup_time = ktime_get();
}
static void dsi_perf_mark_start(void)
{
dsi.perf_start_time = ktime_get();
}
static void dsi_perf_mark_start_auto(void)
{
dsi.perf_measure_frames = 0;
dsi.perf_start_time_auto = ktime_get();
}
static void dsi_perf_show(const char *name)
{
ktime_t t, setup_time, trans_time;
u32 total_bytes;
u32 setup_us, trans_us, total_us;
if (!dsi_perf)
return;
if (dsi.update_mode == OMAP_DSS_UPDATE_DISABLED)
return;
t = ktime_get();
setup_time = ktime_sub(dsi.perf_start_time, dsi.perf_setup_time);
setup_us = (u32)ktime_to_us(setup_time);
if (setup_us == 0)
setup_us = 1;
trans_time = ktime_sub(t, dsi.perf_start_time);
trans_us = (u32)ktime_to_us(trans_time);
if (trans_us == 0)
trans_us = 1;
total_us = setup_us + trans_us;
total_bytes = dsi.active_update_region.w *
dsi.active_update_region.h *
dsi.active_update_region.device->ctrl.pixel_size / 8;
if (dsi.update_mode == OMAP_DSS_UPDATE_AUTO) {
static u32 s_total_trans_us, s_total_setup_us;
static u32 s_min_trans_us = 0xffffffff, s_min_setup_us;
static u32 s_max_trans_us, s_max_setup_us;
const int numframes = 100;
ktime_t total_time_auto;
u32 total_time_auto_us;
dsi.perf_measure_frames++;
if (setup_us < s_min_setup_us)
s_min_setup_us = setup_us;
if (setup_us > s_max_setup_us)
s_max_setup_us = setup_us;
s_total_setup_us += setup_us;
if (trans_us < s_min_trans_us)
s_min_trans_us = trans_us;
if (trans_us > s_max_trans_us)
s_max_trans_us = trans_us;
s_total_trans_us += trans_us;
if (dsi.perf_measure_frames < numframes)
return;
total_time_auto = ktime_sub(t, dsi.perf_start_time_auto);
total_time_auto_us = (u32)ktime_to_us(total_time_auto);
printk(KERN_INFO "DSI(%s): %u fps, setup %u/%u/%u, "
"trans %u/%u/%u\n",
name,
1000 * 1000 * numframes / total_time_auto_us,
s_min_setup_us,
s_max_setup_us,
s_total_setup_us / numframes,
s_min_trans_us,
s_max_trans_us,
s_total_trans_us / numframes);
s_total_setup_us = 0;
s_min_setup_us = 0xffffffff;
s_max_setup_us = 0;
s_total_trans_us = 0;
s_min_trans_us = 0xffffffff;
s_max_trans_us = 0;
dsi_perf_mark_start_auto();
} else {
printk(KERN_INFO "DSI(%s): %u us + %u us = %u us (%uHz), "
"%u bytes, %u kbytes/sec\n",
name,
setup_us,
trans_us,
total_us,
1000*1000 / total_us,
total_bytes,
total_bytes * 1000 / total_us);
}
}
#else
#define dsi_perf_mark_setup()
#define dsi_perf_mark_start()
#define dsi_perf_mark_start_auto()
#define dsi_perf_show(x)
#endif
static void print_irq_status(u32 status)
{
#ifndef VERBOSE_IRQ
if ((status & ~DSI_IRQ_CHANNEL_MASK) == 0)
return;
#endif
printk(KERN_DEBUG "DSI IRQ: 0x%x: ", status);
#define PIS(x) \
if (status & DSI_IRQ_##x) \
printk(#x " ");
#ifdef VERBOSE_IRQ
PIS(VC0);
PIS(VC1);
PIS(VC2);
PIS(VC3);
#endif
PIS(WAKEUP);
PIS(RESYNC);
PIS(PLL_LOCK);
PIS(PLL_UNLOCK);
PIS(PLL_RECALL);
PIS(COMPLEXIO_ERR);
PIS(HS_TX_TIMEOUT);
PIS(LP_RX_TIMEOUT);
PIS(TE_TRIGGER);
PIS(ACK_TRIGGER);
PIS(SYNC_LOST);
PIS(LDO_POWER_GOOD);
PIS(TA_TIMEOUT);
#undef PIS
printk("\n");
}
static void print_irq_status_vc(int channel, u32 status)
{
#ifndef VERBOSE_IRQ
if ((status & ~DSI_VC_IRQ_PACKET_SENT) == 0)
return;
#endif
printk(KERN_DEBUG "DSI VC(%d) IRQ 0x%x: ", channel, status);
#define PIS(x) \
if (status & DSI_VC_IRQ_##x) \
printk(#x " ");
PIS(CS);
PIS(ECC_CORR);
#ifdef VERBOSE_IRQ
PIS(PACKET_SENT);
#endif
PIS(FIFO_TX_OVF);
PIS(FIFO_RX_OVF);
PIS(BTA);
PIS(ECC_NO_CORR);
PIS(FIFO_TX_UDF);
PIS(PP_BUSY_CHANGE);
#undef PIS
printk("\n");
}
static void print_irq_status_cio(u32 status)
{
printk(KERN_DEBUG "DSI CIO IRQ 0x%x: ", status);
#define PIS(x) \
if (status & DSI_CIO_IRQ_##x) \
printk(#x " ");
PIS(ERRSYNCESC1);
PIS(ERRSYNCESC2);
PIS(ERRSYNCESC3);
PIS(ERRESC1);
PIS(ERRESC2);
PIS(ERRESC3);
PIS(ERRCONTROL1);
PIS(ERRCONTROL2);
PIS(ERRCONTROL3);
PIS(STATEULPS1);
PIS(STATEULPS2);
PIS(STATEULPS3);
PIS(ERRCONTENTIONLP0_1);
PIS(ERRCONTENTIONLP1_1);
PIS(ERRCONTENTIONLP0_2);
PIS(ERRCONTENTIONLP1_2);
PIS(ERRCONTENTIONLP0_3);
PIS(ERRCONTENTIONLP1_3);
PIS(ULPSACTIVENOT_ALL0);
PIS(ULPSACTIVENOT_ALL1);
#undef PIS
printk("\n");
}
static int debug_irq;
/* called from dss */
void dsi_irq_handler(void)
{
u32 irqstatus, vcstatus, ciostatus;
int i;
irqstatus = dsi_read_reg(DSI_IRQSTATUS);
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
spin_lock(&dsi.irq_stats_lock);
dsi.irq_stats.irq_count++;
dss_collect_irq_stats(irqstatus, dsi.irq_stats.dsi_irqs);
#endif
if (irqstatus & DSI_IRQ_ERROR_MASK) {
DSSERR("DSI error, irqstatus %x\n", irqstatus);
print_irq_status(irqstatus);
spin_lock(&dsi.errors_lock);
dsi.errors |= irqstatus & DSI_IRQ_ERROR_MASK;
spin_unlock(&dsi.errors_lock);
} else if (debug_irq) {
print_irq_status(irqstatus);
}
#ifdef DSI_CATCH_MISSING_TE
if (irqstatus & DSI_IRQ_TE_TRIGGER)
del_timer(&dsi.te_timer);
#endif
for (i = 0; i < 4; ++i) {
if ((irqstatus & (1<<i)) == 0)
continue;
vcstatus = dsi_read_reg(DSI_VC_IRQSTATUS(i));
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
dss_collect_irq_stats(vcstatus, dsi.irq_stats.vc_irqs[i]);
#endif
if (vcstatus & DSI_VC_IRQ_BTA)
complete(&dsi.bta_completion);
if (vcstatus & DSI_VC_IRQ_ERROR_MASK) {
DSSERR("DSI VC(%d) error, vc irqstatus %x\n",
i, vcstatus);
print_irq_status_vc(i, vcstatus);
} else if (debug_irq) {
print_irq_status_vc(i, vcstatus);
}
dsi_write_reg(DSI_VC_IRQSTATUS(i), vcstatus);
/* flush posted write */
dsi_read_reg(DSI_VC_IRQSTATUS(i));
}
if (irqstatus & DSI_IRQ_COMPLEXIO_ERR) {
ciostatus = dsi_read_reg(DSI_COMPLEXIO_IRQ_STATUS);
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
dss_collect_irq_stats(ciostatus, dsi.irq_stats.cio_irqs);
#endif
dsi_write_reg(DSI_COMPLEXIO_IRQ_STATUS, ciostatus);
/* flush posted write */
dsi_read_reg(DSI_COMPLEXIO_IRQ_STATUS);
DSSERR("DSI CIO error, cio irqstatus %x\n", ciostatus);
print_irq_status_cio(ciostatus);
}
dsi_write_reg(DSI_IRQSTATUS, irqstatus & ~DSI_IRQ_CHANNEL_MASK);
/* flush posted write */
dsi_read_reg(DSI_IRQSTATUS);
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
spin_unlock(&dsi.irq_stats_lock);
#endif
}
static void _dsi_initialize_irq(void)
{
u32 l;
int i;
/* disable all interrupts */
dsi_write_reg(DSI_IRQENABLE, 0);
for (i = 0; i < 4; ++i)
dsi_write_reg(DSI_VC_IRQENABLE(i), 0);
dsi_write_reg(DSI_COMPLEXIO_IRQ_ENABLE, 0);
/* clear interrupt status */
l = dsi_read_reg(DSI_IRQSTATUS);
dsi_write_reg(DSI_IRQSTATUS, l & ~DSI_IRQ_CHANNEL_MASK);
for (i = 0; i < 4; ++i) {
l = dsi_read_reg(DSI_VC_IRQSTATUS(i));
dsi_write_reg(DSI_VC_IRQSTATUS(i), l);
}
l = dsi_read_reg(DSI_COMPLEXIO_IRQ_STATUS);
dsi_write_reg(DSI_COMPLEXIO_IRQ_STATUS, l);
/* enable error irqs */
l = DSI_IRQ_ERROR_MASK;
#ifdef DSI_CATCH_MISSING_TE
l |= DSI_IRQ_TE_TRIGGER;
#endif
dsi_write_reg(DSI_IRQENABLE, l);
l = DSI_VC_IRQ_ERROR_MASK;
for (i = 0; i < 4; ++i)
dsi_write_reg(DSI_VC_IRQENABLE(i), l);
/* XXX zonda responds incorrectly, causing control error:
Exit from LP-ESC mode to LP11 uses wrong transition states on the
data lines LP0 and LN0. */
dsi_write_reg(DSI_COMPLEXIO_IRQ_ENABLE,
-1 & (~DSI_CIO_IRQ_ERRCONTROL2));
}
static u32 dsi_get_errors(void)
{
unsigned long flags;
u32 e;
spin_lock_irqsave(&dsi.errors_lock, flags);
e = dsi.errors;
dsi.errors = 0;
spin_unlock_irqrestore(&dsi.errors_lock, flags);
return e;
}
static void dsi_vc_enable_bta_irq(int channel)
{
u32 l;
dsi_write_reg(DSI_VC_IRQSTATUS(channel), DSI_VC_IRQ_BTA);
l = dsi_read_reg(DSI_VC_IRQENABLE(channel));
l |= DSI_VC_IRQ_BTA;
dsi_write_reg(DSI_VC_IRQENABLE(channel), l);
}
static void dsi_vc_disable_bta_irq(int channel)
{
u32 l;
l = dsi_read_reg(DSI_VC_IRQENABLE(channel));
l &= ~DSI_VC_IRQ_BTA;
dsi_write_reg(DSI_VC_IRQENABLE(channel), l);
}
/* DSI func clock. this could also be DSI2_PLL_FCLK */
static inline void enable_clocks(bool enable)
{
if (enable)
dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
else
dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
}
/* source clock for DSI PLL. this could also be PCLKFREE */
static inline void dsi_enable_pll_clock(bool enable)
{
if (enable)
dss_clk_enable(DSS_CLK_FCK2);
else
dss_clk_disable(DSS_CLK_FCK2);
if (enable && dsi.pll_locked) {
if (wait_for_bit_change(DSI_PLL_STATUS, 1, 1) != 1)
DSSERR("cannot lock PLL when enabling clocks\n");
}
}
#ifdef DEBUG
static void _dsi_print_reset_status(void)
{
u32 l;
if (!dss_debug)
return;
/* A dummy read using the SCP interface to any DSIPHY register is
* required after DSIPHY reset to complete the reset of the DSI complex
* I/O. */
l = dsi_read_reg(DSI_DSIPHY_CFG5);
printk(KERN_DEBUG "DSI resets: ");
l = dsi_read_reg(DSI_PLL_STATUS);
printk("PLL (%d) ", FLD_GET(l, 0, 0));
l = dsi_read_reg(DSI_COMPLEXIO_CFG1);
printk("CIO (%d) ", FLD_GET(l, 29, 29));
l = dsi_read_reg(DSI_DSIPHY_CFG5);
printk("PHY (%x, %d, %d, %d)\n",
FLD_GET(l, 28, 26),
FLD_GET(l, 29, 29),
FLD_GET(l, 30, 30),
FLD_GET(l, 31, 31));
}
#else
#define _dsi_print_reset_status()
#endif
static inline int dsi_if_enable(bool enable)
{
DSSDBG("dsi_if_enable(%d)\n", enable);
enable = enable ? 1 : 0;
REG_FLD_MOD(DSI_CTRL, enable, 0, 0); /* IF_EN */
if (wait_for_bit_change(DSI_CTRL, 0, enable) != enable) {
DSSERR("Failed to set dsi_if_enable to %d\n", enable);
return -EIO;
}
return 0;
}
unsigned long dsi_get_dsi1_pll_rate(void)
{
return dsi.current_cinfo.dsi1_pll_fclk;
}
static unsigned long dsi_get_dsi2_pll_rate(void)
{
return dsi.current_cinfo.dsi2_pll_fclk;
}
static unsigned long dsi_get_txbyteclkhs(void)
{
return dsi.current_cinfo.clkin4ddr / 16;
}
static unsigned long dsi_fclk_rate(void)
{
unsigned long r;
if (dss_get_dsi_clk_source() == 0) {
/* DSI FCLK source is DSS1_ALWON_FCK, which is dss1_fck */
r = dss_clk_get_rate(DSS_CLK_FCK1);
} else {
/* DSI FCLK source is DSI2_PLL_FCLK */
r = dsi_get_dsi2_pll_rate();
}
return r;
}
static int dsi_set_lp_clk_divisor(struct omap_dss_device *dssdev)
{
unsigned long dsi_fclk;
unsigned lp_clk_div;
unsigned long lp_clk;
lp_clk_div = dssdev->phy.dsi.div.lp_clk_div;
if (lp_clk_div == 0 || lp_clk_div > LP_DIV_MAX)
return -EINVAL;
dsi_fclk = dsi_fclk_rate();
lp_clk = dsi_fclk / 2 / lp_clk_div;
DSSDBG("LP_CLK_DIV %u, LP_CLK %lu\n", lp_clk_div, lp_clk);
dsi.current_cinfo.lp_clk = lp_clk;
dsi.current_cinfo.lp_clk_div = lp_clk_div;
REG_FLD_MOD(DSI_CLK_CTRL, lp_clk_div, 12, 0); /* LP_CLK_DIVISOR */
REG_FLD_MOD(DSI_CLK_CTRL, dsi_fclk > 30000000 ? 1 : 0,
21, 21); /* LP_RX_SYNCHRO_ENABLE */
return 0;
}
enum dsi_pll_power_state {
DSI_PLL_POWER_OFF = 0x0,
DSI_PLL_POWER_ON_HSCLK = 0x1,
DSI_PLL_POWER_ON_ALL = 0x2,
DSI_PLL_POWER_ON_DIV = 0x3,
};
static int dsi_pll_power(enum dsi_pll_power_state state)
{
int t = 0;
REG_FLD_MOD(DSI_CLK_CTRL, state, 31, 30); /* PLL_PWR_CMD */
/* PLL_PWR_STATUS */
while (FLD_GET(dsi_read_reg(DSI_CLK_CTRL), 29, 28) != state) {
if (++t > 1000) {
DSSERR("Failed to set DSI PLL power mode to %d\n",
state);
return -ENODEV;
}
udelay(1);
}
return 0;
}
/* calculate clock rates using dividers in cinfo */
static int dsi_calc_clock_rates(struct dsi_clock_info *cinfo)
{
if (cinfo->regn == 0 || cinfo->regn > REGN_MAX)
return -EINVAL;
if (cinfo->regm == 0 || cinfo->regm > REGM_MAX)
return -EINVAL;
if (cinfo->regm3 > REGM3_MAX)
return -EINVAL;
if (cinfo->regm4 > REGM4_MAX)
return -EINVAL;
if (cinfo->use_dss2_fck) {
cinfo->clkin = dss_clk_get_rate(DSS_CLK_FCK2);
/* XXX it is unclear if highfreq should be used
* with DSS2_FCK source also */
cinfo->highfreq = 0;
} else {
cinfo->clkin = dispc_pclk_rate();
if (cinfo->clkin < 32000000)
cinfo->highfreq = 0;
else
cinfo->highfreq = 1;
}
cinfo->fint = cinfo->clkin / (cinfo->regn * (cinfo->highfreq ? 2 : 1));
if (cinfo->fint > FINT_MAX || cinfo->fint < FINT_MIN)
return -EINVAL;
cinfo->clkin4ddr = 2 * cinfo->regm * cinfo->fint;
if (cinfo->clkin4ddr > 1800 * 1000 * 1000)
return -EINVAL;
if (cinfo->regm3 > 0)
cinfo->dsi1_pll_fclk = cinfo->clkin4ddr / cinfo->regm3;
else
cinfo->dsi1_pll_fclk = 0;
if (cinfo->regm4 > 0)
cinfo->dsi2_pll_fclk = cinfo->clkin4ddr / cinfo->regm4;
else
cinfo->dsi2_pll_fclk = 0;
return 0;
}
int dsi_pll_calc_clock_div_pck(bool is_tft, unsigned long req_pck,
struct dsi_clock_info *dsi_cinfo,
struct dispc_clock_info *dispc_cinfo)
{
struct dsi_clock_info cur, best;
struct dispc_clock_info best_dispc;
int min_fck_per_pck;
int match = 0;
unsigned long dss_clk_fck2;
dss_clk_fck2 = dss_clk_get_rate(DSS_CLK_FCK2);
if (req_pck == dsi.cache_req_pck &&
dsi.cache_cinfo.clkin == dss_clk_fck2) {
DSSDBG("DSI clock info found from cache\n");
*dsi_cinfo = dsi.cache_cinfo;
dispc_find_clk_divs(is_tft, req_pck, dsi_cinfo->dsi1_pll_fclk,
dispc_cinfo);
return 0;
}
min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
if (min_fck_per_pck &&
req_pck * min_fck_per_pck > DISPC_MAX_FCK) {
DSSERR("Requested pixel clock not possible with the current "
"OMAP2_DSS_MIN_FCK_PER_PCK setting. Turning "
"the constraint off.\n");
min_fck_per_pck = 0;
}
DSSDBG("dsi_pll_calc\n");
retry:
memset(&best, 0, sizeof(best));
memset(&best_dispc, 0, sizeof(best_dispc));
memset(&cur, 0, sizeof(cur));
cur.clkin = dss_clk_fck2;
cur.use_dss2_fck = 1;
cur.highfreq = 0;
/* no highfreq: 0.75MHz < Fint = clkin / regn < 2.1MHz */
/* highfreq: 0.75MHz < Fint = clkin / (2*regn) < 2.1MHz */
/* To reduce PLL lock time, keep Fint high (around 2 MHz) */
for (cur.regn = 1; cur.regn < REGN_MAX; ++cur.regn) {
if (cur.highfreq == 0)
cur.fint = cur.clkin / cur.regn;
else
cur.fint = cur.clkin / (2 * cur.regn);
if (cur.fint > FINT_MAX || cur.fint < FINT_MIN)
continue;
/* DSIPHY(MHz) = (2 * regm / regn) * (clkin / (highfreq + 1)) */
for (cur.regm = 1; cur.regm < REGM_MAX; ++cur.regm) {
unsigned long a, b;
a = 2 * cur.regm * (cur.clkin/1000);
b = cur.regn * (cur.highfreq + 1);
cur.clkin4ddr = a / b * 1000;
if (cur.clkin4ddr > 1800 * 1000 * 1000)
break;
/* DSI1_PLL_FCLK(MHz) = DSIPHY(MHz) / regm3 < 173MHz */
for (cur.regm3 = 1; cur.regm3 < REGM3_MAX;
++cur.regm3) {
struct dispc_clock_info cur_dispc;
cur.dsi1_pll_fclk = cur.clkin4ddr / cur.regm3;
/* this will narrow down the search a bit,
* but still give pixclocks below what was
* requested */
if (cur.dsi1_pll_fclk < req_pck)
break;
if (cur.dsi1_pll_fclk > DISPC_MAX_FCK)
continue;
if (min_fck_per_pck &&
cur.dsi1_pll_fclk <
req_pck * min_fck_per_pck)
continue;
match = 1;
dispc_find_clk_divs(is_tft, req_pck,
cur.dsi1_pll_fclk,
&cur_dispc);
if (abs(cur_dispc.pck - req_pck) <
abs(best_dispc.pck - req_pck)) {
best = cur;
best_dispc = cur_dispc;
if (cur_dispc.pck == req_pck)
goto found;
}
}
}
}
found:
if (!match) {
if (min_fck_per_pck) {
DSSERR("Could not find suitable clock settings.\n"
"Turning FCK/PCK constraint off and"
"trying again.\n");
min_fck_per_pck = 0;
goto retry;
}
DSSERR("Could not find suitable clock settings.\n");
return -EINVAL;
}
/* DSI2_PLL_FCLK (regm4) is not used */
best.regm4 = 0;
best.dsi2_pll_fclk = 0;
if (dsi_cinfo)
*dsi_cinfo = best;
if (dispc_cinfo)
*dispc_cinfo = best_dispc;
dsi.cache_req_pck = req_pck;
dsi.cache_clk_freq = 0;
dsi.cache_cinfo = best;
return 0;
}
int dsi_pll_set_clock_div(struct dsi_clock_info *cinfo)
{
int r = 0;
u32 l;
int f;
DSSDBGF();
dsi.current_cinfo.fint = cinfo->fint;
dsi.current_cinfo.clkin4ddr = cinfo->clkin4ddr;
dsi.current_cinfo.dsi1_pll_fclk = cinfo->dsi1_pll_fclk;
dsi.current_cinfo.dsi2_pll_fclk = cinfo->dsi2_pll_fclk;
dsi.current_cinfo.regn = cinfo->regn;
dsi.current_cinfo.regm = cinfo->regm;
dsi.current_cinfo.regm3 = cinfo->regm3;
dsi.current_cinfo.regm4 = cinfo->regm4;
DSSDBG("DSI Fint %ld\n", cinfo->fint);
DSSDBG("clkin (%s) rate %ld, highfreq %d\n",
cinfo->use_dss2_fck ? "dss2_fck" : "pclkfree",
cinfo->clkin,
cinfo->highfreq);
/* DSIPHY == CLKIN4DDR */
DSSDBG("CLKIN4DDR = 2 * %d / %d * %lu / %d = %lu\n",
cinfo->regm,
cinfo->regn,
cinfo->clkin,
cinfo->highfreq + 1,
cinfo->clkin4ddr);
DSSDBG("Data rate on 1 DSI lane %ld Mbps\n",
cinfo->clkin4ddr / 1000 / 1000 / 2);
DSSDBG("Clock lane freq %ld Hz\n", cinfo->clkin4ddr / 4);
DSSDBG("regm3 = %d, dsi1_pll_fclk = %lu\n",
cinfo->regm3, cinfo->dsi1_pll_fclk);
DSSDBG("regm4 = %d, dsi2_pll_fclk = %lu\n",
cinfo->regm4, cinfo->dsi2_pll_fclk);
REG_FLD_MOD(DSI_PLL_CONTROL, 0, 0, 0); /* DSI_PLL_AUTOMODE = manual */
l = dsi_read_reg(DSI_PLL_CONFIGURATION1);
l = FLD_MOD(l, 1, 0, 0); /* DSI_PLL_STOPMODE */
l = FLD_MOD(l, cinfo->regn - 1, 7, 1); /* DSI_PLL_REGN */
l = FLD_MOD(l, cinfo->regm, 18, 8); /* DSI_PLL_REGM */
l = FLD_MOD(l, cinfo->regm3 > 0 ? cinfo->regm3 - 1 : 0,
22, 19); /* DSI_CLOCK_DIV */
l = FLD_MOD(l, cinfo->regm4 > 0 ? cinfo->regm4 - 1 : 0,
26, 23); /* DSIPROTO_CLOCK_DIV */
dsi_write_reg(DSI_PLL_CONFIGURATION1, l);
BUG_ON(cinfo->fint < 750000 || cinfo->fint > 2100000);
if (cinfo->fint < 1000000)
f = 0x3;
else if (cinfo->fint < 1250000)
f = 0x4;
else if (cinfo->fint < 1500000)
f = 0x5;
else if (cinfo->fint < 1750000)
f = 0x6;
else
f = 0x7;
l = dsi_read_reg(DSI_PLL_CONFIGURATION2);
l = FLD_MOD(l, f, 4, 1); /* DSI_PLL_FREQSEL */
l = FLD_MOD(l, cinfo->use_dss2_fck ? 0 : 1,
11, 11); /* DSI_PLL_CLKSEL */
l = FLD_MOD(l, cinfo->highfreq,
12, 12); /* DSI_PLL_HIGHFREQ */
l = FLD_MOD(l, 1, 13, 13); /* DSI_PLL_REFEN */
l = FLD_MOD(l, 0, 14, 14); /* DSIPHY_CLKINEN */
l = FLD_MOD(l, 1, 20, 20); /* DSI_HSDIVBYPASS */
dsi_write_reg(DSI_PLL_CONFIGURATION2, l);
REG_FLD_MOD(DSI_PLL_GO, 1, 0, 0); /* DSI_PLL_GO */
if (wait_for_bit_change(DSI_PLL_GO, 0, 0) != 0) {
DSSERR("dsi pll go bit not going down.\n");
r = -EIO;
goto err;
}
if (wait_for_bit_change(DSI_PLL_STATUS, 1, 1) != 1) {
DSSERR("cannot lock PLL\n");
r = -EIO;
goto err;
}
dsi.pll_locked = 1;
l = dsi_read_reg(DSI_PLL_CONFIGURATION2);
l = FLD_MOD(l, 0, 0, 0); /* DSI_PLL_IDLE */
l = FLD_MOD(l, 0, 5, 5); /* DSI_PLL_PLLLPMODE */
l = FLD_MOD(l, 0, 6, 6); /* DSI_PLL_LOWCURRSTBY */
l = FLD_MOD(l, 0, 7, 7); /* DSI_PLL_TIGHTPHASELOCK */
l = FLD_MOD(l, 0, 8, 8); /* DSI_PLL_DRIFTGUARDEN */
l = FLD_MOD(l, 0, 10, 9); /* DSI_PLL_LOCKSEL */
l = FLD_MOD(l, 1, 13, 13); /* DSI_PLL_REFEN */
l = FLD_MOD(l, 1, 14, 14); /* DSIPHY_CLKINEN */
l = FLD_MOD(l, 0, 15, 15); /* DSI_BYPASSEN */
l = FLD_MOD(l, 1, 16, 16); /* DSS_CLOCK_EN */
l = FLD_MOD(l, 0, 17, 17); /* DSS_CLOCK_PWDN */
l = FLD_MOD(l, 1, 18, 18); /* DSI_PROTO_CLOCK_EN */
l = FLD_MOD(l, 0, 19, 19); /* DSI_PROTO_CLOCK_PWDN */
l = FLD_MOD(l, 0, 20, 20); /* DSI_HSDIVBYPASS */
dsi_write_reg(DSI_PLL_CONFIGURATION2, l);
DSSDBG("PLL config done\n");
err:
return r;
}
int dsi_pll_init(struct omap_dss_device *dssdev, bool enable_hsclk,
bool enable_hsdiv)
{
int r = 0;
enum dsi_pll_power_state pwstate;
DSSDBG("PLL init\n");
enable_clocks(1);
dsi_enable_pll_clock(1);
r = regulator_enable(dsi.vdds_dsi_reg);
if (r)
goto err0;
/* XXX PLL does not come out of reset without this... */
dispc_pck_free_enable(1);
if (wait_for_bit_change(DSI_PLL_STATUS, 0, 1) != 1) {
DSSERR("PLL not coming out of reset.\n");
r = -ENODEV;
goto err1;
}
/* XXX ... but if left on, we get problems when planes do not
* fill the whole display. No idea about this */
dispc_pck_free_enable(0);
if (enable_hsclk && enable_hsdiv)
pwstate = DSI_PLL_POWER_ON_ALL;
else if (enable_hsclk)
pwstate = DSI_PLL_POWER_ON_HSCLK;
else if (enable_hsdiv)
pwstate = DSI_PLL_POWER_ON_DIV;
else
pwstate = DSI_PLL_POWER_OFF;
r = dsi_pll_power(pwstate);
if (r)
goto err1;
DSSDBG("PLL init done\n");
return 0;
err1:
regulator_disable(dsi.vdds_dsi_reg);
err0:
enable_clocks(0);
dsi_enable_pll_clock(0);
return r;
}
void dsi_pll_uninit(void)
{
enable_clocks(0);
dsi_enable_pll_clock(0);
dsi.pll_locked = 0;
dsi_pll_power(DSI_PLL_POWER_OFF);
regulator_disable(dsi.vdds_dsi_reg);
DSSDBG("PLL uninit done\n");
}
void dsi_dump_clocks(struct seq_file *s)
{
int clksel;
struct dsi_clock_info *cinfo = &dsi.current_cinfo;
enable_clocks(1);
clksel = REG_GET(DSI_PLL_CONFIGURATION2, 11, 11);
seq_printf(s, "- DSI PLL -\n");
seq_printf(s, "dsi pll source = %s\n",
clksel == 0 ?
"dss2_alwon_fclk" : "pclkfree");
seq_printf(s, "Fint\t\t%-16luregn %u\n", cinfo->fint, cinfo->regn);
seq_printf(s, "CLKIN4DDR\t%-16luregm %u\n",
cinfo->clkin4ddr, cinfo->regm);
seq_printf(s, "dsi1_pll_fck\t%-16luregm3 %u\t(%s)\n",
cinfo->dsi1_pll_fclk,
cinfo->regm3,
dss_get_dispc_clk_source() == 0 ? "off" : "on");
seq_printf(s, "dsi2_pll_fck\t%-16luregm4 %u\t(%s)\n",
cinfo->dsi2_pll_fclk,
cinfo->regm4,
dss_get_dsi_clk_source() == 0 ? "off" : "on");
seq_printf(s, "- DSI -\n");
seq_printf(s, "dsi fclk source = %s\n",
dss_get_dsi_clk_source() == 0 ?
"dss1_alwon_fclk" : "dsi2_pll_fclk");
seq_printf(s, "DSI_FCLK\t%lu\n", dsi_fclk_rate());
seq_printf(s, "DDR_CLK\t\t%lu\n",
cinfo->clkin4ddr / 4);
seq_printf(s, "TxByteClkHS\t%lu\n", dsi_get_txbyteclkhs());
seq_printf(s, "LP_CLK\t\t%lu\n", cinfo->lp_clk);
seq_printf(s, "VP_CLK\t\t%lu\n"
"VP_PCLK\t\t%lu\n",
dispc_lclk_rate(),
dispc_pclk_rate());
enable_clocks(0);
}
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
void dsi_dump_irqs(struct seq_file *s)
{
unsigned long flags;
struct dsi_irq_stats stats;
spin_lock_irqsave(&dsi.irq_stats_lock, flags);
stats = dsi.irq_stats;
memset(&dsi.irq_stats, 0, sizeof(dsi.irq_stats));
dsi.irq_stats.last_reset = jiffies;
spin_unlock_irqrestore(&dsi.irq_stats_lock, flags);
seq_printf(s, "period %u ms\n",
jiffies_to_msecs(jiffies - stats.last_reset));
seq_printf(s, "irqs %d\n", stats.irq_count);
#define PIS(x) \
seq_printf(s, "%-20s %10d\n", #x, stats.dsi_irqs[ffs(DSI_IRQ_##x)-1]);
seq_printf(s, "-- DSI interrupts --\n");
PIS(VC0);
PIS(VC1);
PIS(VC2);
PIS(VC3);
PIS(WAKEUP);
PIS(RESYNC);
PIS(PLL_LOCK);
PIS(PLL_UNLOCK);
PIS(PLL_RECALL);
PIS(COMPLEXIO_ERR);
PIS(HS_TX_TIMEOUT);
PIS(LP_RX_TIMEOUT);
PIS(TE_TRIGGER);
PIS(ACK_TRIGGER);
PIS(SYNC_LOST);
PIS(LDO_POWER_GOOD);
PIS(TA_TIMEOUT);
#undef PIS
#define PIS(x) \
seq_printf(s, "%-20s %10d %10d %10d %10d\n", #x, \
stats.vc_irqs[0][ffs(DSI_VC_IRQ_##x)-1], \
stats.vc_irqs[1][ffs(DSI_VC_IRQ_##x)-1], \
stats.vc_irqs[2][ffs(DSI_VC_IRQ_##x)-1], \
stats.vc_irqs[3][ffs(DSI_VC_IRQ_##x)-1]);
seq_printf(s, "-- VC interrupts --\n");
PIS(CS);
PIS(ECC_CORR);
PIS(PACKET_SENT);
PIS(FIFO_TX_OVF);
PIS(FIFO_RX_OVF);
PIS(BTA);
PIS(ECC_NO_CORR);
PIS(FIFO_TX_UDF);
PIS(PP_BUSY_CHANGE);
#undef PIS
#define PIS(x) \
seq_printf(s, "%-20s %10d\n", #x, \
stats.cio_irqs[ffs(DSI_CIO_IRQ_##x)-1]);
seq_printf(s, "-- CIO interrupts --\n");
PIS(ERRSYNCESC1);
PIS(ERRSYNCESC2);
PIS(ERRSYNCESC3);
PIS(ERRESC1);
PIS(ERRESC2);
PIS(ERRESC3);
PIS(ERRCONTROL1);
PIS(ERRCONTROL2);
PIS(ERRCONTROL3);
PIS(STATEULPS1);
PIS(STATEULPS2);
PIS(STATEULPS3);
PIS(ERRCONTENTIONLP0_1);
PIS(ERRCONTENTIONLP1_1);
PIS(ERRCONTENTIONLP0_2);
PIS(ERRCONTENTIONLP1_2);
PIS(ERRCONTENTIONLP0_3);
PIS(ERRCONTENTIONLP1_3);
PIS(ULPSACTIVENOT_ALL0);
PIS(ULPSACTIVENOT_ALL1);
#undef PIS
}
#endif
void dsi_dump_regs(struct seq_file *s)
{
#define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dsi_read_reg(r))
dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
DUMPREG(DSI_REVISION);
DUMPREG(DSI_SYSCONFIG);
DUMPREG(DSI_SYSSTATUS);
DUMPREG(DSI_IRQSTATUS);
DUMPREG(DSI_IRQENABLE);
DUMPREG(DSI_CTRL);
DUMPREG(DSI_COMPLEXIO_CFG1);
DUMPREG(DSI_COMPLEXIO_IRQ_STATUS);
DUMPREG(DSI_COMPLEXIO_IRQ_ENABLE);
DUMPREG(DSI_CLK_CTRL);
DUMPREG(DSI_TIMING1);
DUMPREG(DSI_TIMING2);
DUMPREG(DSI_VM_TIMING1);
DUMPREG(DSI_VM_TIMING2);
DUMPREG(DSI_VM_TIMING3);
DUMPREG(DSI_CLK_TIMING);
DUMPREG(DSI_TX_FIFO_VC_SIZE);
DUMPREG(DSI_RX_FIFO_VC_SIZE);
DUMPREG(DSI_COMPLEXIO_CFG2);
DUMPREG(DSI_RX_FIFO_VC_FULLNESS);
DUMPREG(DSI_VM_TIMING4);
DUMPREG(DSI_TX_FIFO_VC_EMPTINESS);
DUMPREG(DSI_VM_TIMING5);
DUMPREG(DSI_VM_TIMING6);
DUMPREG(DSI_VM_TIMING7);
DUMPREG(DSI_STOPCLK_TIMING);
DUMPREG(DSI_VC_CTRL(0));
DUMPREG(DSI_VC_TE(0));
DUMPREG(DSI_VC_LONG_PACKET_HEADER(0));
DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(0));
DUMPREG(DSI_VC_SHORT_PACKET_HEADER(0));
DUMPREG(DSI_VC_IRQSTATUS(0));
DUMPREG(DSI_VC_IRQENABLE(0));
DUMPREG(DSI_VC_CTRL(1));
DUMPREG(DSI_VC_TE(1));
DUMPREG(DSI_VC_LONG_PACKET_HEADER(1));
DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(1));
DUMPREG(DSI_VC_SHORT_PACKET_HEADER(1));
DUMPREG(DSI_VC_IRQSTATUS(1));
DUMPREG(DSI_VC_IRQENABLE(1));
DUMPREG(DSI_VC_CTRL(2));
DUMPREG(DSI_VC_TE(2));
DUMPREG(DSI_VC_LONG_PACKET_HEADER(2));
DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(2));
DUMPREG(DSI_VC_SHORT_PACKET_HEADER(2));
DUMPREG(DSI_VC_IRQSTATUS(2));
DUMPREG(DSI_VC_IRQENABLE(2));
DUMPREG(DSI_VC_CTRL(3));
DUMPREG(DSI_VC_TE(3));
DUMPREG(DSI_VC_LONG_PACKET_HEADER(3));
DUMPREG(DSI_VC_LONG_PACKET_PAYLOAD(3));
DUMPREG(DSI_VC_SHORT_PACKET_HEADER(3));
DUMPREG(DSI_VC_IRQSTATUS(3));
DUMPREG(DSI_VC_IRQENABLE(3));
DUMPREG(DSI_DSIPHY_CFG0);
DUMPREG(DSI_DSIPHY_CFG1);
DUMPREG(DSI_DSIPHY_CFG2);
DUMPREG(DSI_DSIPHY_CFG5);
DUMPREG(DSI_PLL_CONTROL);
DUMPREG(DSI_PLL_STATUS);
DUMPREG(DSI_PLL_GO);
DUMPREG(DSI_PLL_CONFIGURATION1);
DUMPREG(DSI_PLL_CONFIGURATION2);
dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
#undef DUMPREG
}
enum dsi_complexio_power_state {
DSI_COMPLEXIO_POWER_OFF = 0x0,
DSI_COMPLEXIO_POWER_ON = 0x1,
DSI_COMPLEXIO_POWER_ULPS = 0x2,
};
static int dsi_complexio_power(enum dsi_complexio_power_state state)
{
int t = 0;
/* PWR_CMD */
REG_FLD_MOD(DSI_COMPLEXIO_CFG1, state, 28, 27);
/* PWR_STATUS */
while (FLD_GET(dsi_read_reg(DSI_COMPLEXIO_CFG1), 26, 25) != state) {
if (++t > 1000) {
DSSERR("failed to set complexio power state to "
"%d\n", state);
return -ENODEV;
}
udelay(1);
}
return 0;
}
static void dsi_complexio_config(struct omap_dss_device *dssdev)
{
u32 r;
int clk_lane = dssdev->phy.dsi.clk_lane;
int data1_lane = dssdev->phy.dsi.data1_lane;
int data2_lane = dssdev->phy.dsi.data2_lane;
int clk_pol = dssdev->phy.dsi.clk_pol;
int data1_pol = dssdev->phy.dsi.data1_pol;
int data2_pol = dssdev->phy.dsi.data2_pol;
r = dsi_read_reg(DSI_COMPLEXIO_CFG1);
r = FLD_MOD(r, clk_lane, 2, 0);
r = FLD_MOD(r, clk_pol, 3, 3);
r = FLD_MOD(r, data1_lane, 6, 4);
r = FLD_MOD(r, data1_pol, 7, 7);
r = FLD_MOD(r, data2_lane, 10, 8);
r = FLD_MOD(r, data2_pol, 11, 11);
dsi_write_reg(DSI_COMPLEXIO_CFG1, r);
/* The configuration of the DSI complex I/O (number of data lanes,
position, differential order) should not be changed while
DSS.DSI_CLK_CRTRL[20] LP_CLK_ENABLE bit is set to 1. In order for
the hardware to take into account a new configuration of the complex
I/O (done in DSS.DSI_COMPLEXIO_CFG1 register), it is recommended to
follow this sequence: First set the DSS.DSI_CTRL[0] IF_EN bit to 1,
then reset the DSS.DSI_CTRL[0] IF_EN to 0, then set
DSS.DSI_CLK_CTRL[20] LP_CLK_ENABLE to 1 and finally set again the
DSS.DSI_CTRL[0] IF_EN bit to 1. If the sequence is not followed, the
DSI complex I/O configuration is unknown. */
/*
REG_FLD_MOD(DSI_CTRL, 1, 0, 0);
REG_FLD_MOD(DSI_CTRL, 0, 0, 0);
REG_FLD_MOD(DSI_CLK_CTRL, 1, 20, 20);
REG_FLD_MOD(DSI_CTRL, 1, 0, 0);
*/
}
static inline unsigned ns2ddr(unsigned ns)
{
/* convert time in ns to ddr ticks, rounding up */
unsigned long ddr_clk = dsi.current_cinfo.clkin4ddr / 4;
return (ns * (ddr_clk / 1000 / 1000) + 999) / 1000;
}
static inline unsigned ddr2ns(unsigned ddr)
{
unsigned long ddr_clk = dsi.current_cinfo.clkin4ddr / 4;
return ddr * 1000 * 1000 / (ddr_clk / 1000);
}
static void dsi_complexio_timings(void)
{
u32 r;
u32 ths_prepare, ths_prepare_ths_zero, ths_trail, ths_exit;
u32 tlpx_half, tclk_trail, tclk_zero;
u32 tclk_prepare;
/* calculate timings */
/* 1 * DDR_CLK = 2 * UI */
/* min 40ns + 4*UI max 85ns + 6*UI */
ths_prepare = ns2ddr(70) + 2;
/* min 145ns + 10*UI */
ths_prepare_ths_zero = ns2ddr(175) + 2;
/* min max(8*UI, 60ns+4*UI) */
ths_trail = ns2ddr(60) + 5;
/* min 100ns */
ths_exit = ns2ddr(145);
/* tlpx min 50n */
tlpx_half = ns2ddr(25);
/* min 60ns */
tclk_trail = ns2ddr(60) + 2;
/* min 38ns, max 95ns */
tclk_prepare = ns2ddr(65);
/* min tclk-prepare + tclk-zero = 300ns */
tclk_zero = ns2ddr(260);
DSSDBG("ths_prepare %u (%uns), ths_prepare_ths_zero %u (%uns)\n",
ths_prepare, ddr2ns(ths_prepare),
ths_prepare_ths_zero, ddr2ns(ths_prepare_ths_zero));
DSSDBG("ths_trail %u (%uns), ths_exit %u (%uns)\n",
ths_trail, ddr2ns(ths_trail),
ths_exit, ddr2ns(ths_exit));
DSSDBG("tlpx_half %u (%uns), tclk_trail %u (%uns), "
"tclk_zero %u (%uns)\n",
tlpx_half, ddr2ns(tlpx_half),
tclk_trail, ddr2ns(tclk_trail),
tclk_zero, ddr2ns(tclk_zero));
DSSDBG("tclk_prepare %u (%uns)\n",
tclk_prepare, ddr2ns(tclk_prepare));
/* program timings */
r = dsi_read_reg(DSI_DSIPHY_CFG0);
r = FLD_MOD(r, ths_prepare, 31, 24);
r = FLD_MOD(r, ths_prepare_ths_zero, 23, 16);
r = FLD_MOD(r, ths_trail, 15, 8);
r = FLD_MOD(r, ths_exit, 7, 0);
dsi_write_reg(DSI_DSIPHY_CFG0, r);
r = dsi_read_reg(DSI_DSIPHY_CFG1);
r = FLD_MOD(r, tlpx_half, 22, 16);
r = FLD_MOD(r, tclk_trail, 15, 8);
r = FLD_MOD(r, tclk_zero, 7, 0);
dsi_write_reg(DSI_DSIPHY_CFG1, r);
r = dsi_read_reg(DSI_DSIPHY_CFG2);
r = FLD_MOD(r, tclk_prepare, 7, 0);
dsi_write_reg(DSI_DSIPHY_CFG2, r);
}
static int dsi_complexio_init(struct omap_dss_device *dssdev)
{
int r = 0;
DSSDBG("dsi_complexio_init\n");
/* CIO_CLK_ICG, enable L3 clk to CIO */
REG_FLD_MOD(DSI_CLK_CTRL, 1, 14, 14);
/* A dummy read using the SCP interface to any DSIPHY register is
* required after DSIPHY reset to complete the reset of the DSI complex
* I/O. */
dsi_read_reg(DSI_DSIPHY_CFG5);
if (wait_for_bit_change(DSI_DSIPHY_CFG5, 30, 1) != 1) {
DSSERR("ComplexIO PHY not coming out of reset.\n");
r = -ENODEV;
goto err;
}
dsi_complexio_config(dssdev);
r = dsi_complexio_power(DSI_COMPLEXIO_POWER_ON);
if (r)
goto err;
if (wait_for_bit_change(DSI_COMPLEXIO_CFG1, 29, 1) != 1) {
DSSERR("ComplexIO not coming out of reset.\n");
r = -ENODEV;
goto err;
}
if (wait_for_bit_change(DSI_COMPLEXIO_CFG1, 21, 1) != 1) {
DSSERR("ComplexIO LDO power down.\n");
r = -ENODEV;
goto err;
}
dsi_complexio_timings();
/*
The configuration of the DSI complex I/O (number of data lanes,
position, differential order) should not be changed while
DSS.DSI_CLK_CRTRL[20] LP_CLK_ENABLE bit is set to 1. For the
hardware to recognize a new configuration of the complex I/O (done
in DSS.DSI_COMPLEXIO_CFG1 register), it is recommended to follow
this sequence: First set the DSS.DSI_CTRL[0] IF_EN bit to 1, next
reset the DSS.DSI_CTRL[0] IF_EN to 0, then set DSS.DSI_CLK_CTRL[20]
LP_CLK_ENABLE to 1, and finally, set again the DSS.DSI_CTRL[0] IF_EN
bit to 1. If the sequence is not followed, the DSi complex I/O
configuration is undetermined.
*/
dsi_if_enable(1);
dsi_if_enable(0);
REG_FLD_MOD(DSI_CLK_CTRL, 1, 20, 20); /* LP_CLK_ENABLE */
dsi_if_enable(1);
dsi_if_enable(0);
DSSDBG("CIO init done\n");
err:
return r;
}
static void dsi_complexio_uninit(void)
{
dsi_complexio_power(DSI_COMPLEXIO_POWER_OFF);
}
static int _dsi_wait_reset(void)
{
int t = 0;
while (REG_GET(DSI_SYSSTATUS, 0, 0) == 0) {
if (++t > 5) {
DSSERR("soft reset failed\n");
return -ENODEV;
}
udelay(1);
}
return 0;
}
static int _dsi_reset(void)
{
/* Soft reset */
REG_FLD_MOD(DSI_SYSCONFIG, 1, 1, 1);
return _dsi_wait_reset();
}
static void dsi_reset_tx_fifo(int channel)
{
u32 mask;
u32 l;
/* set fifosize of the channel to 0, then return the old size */
l = dsi_read_reg(DSI_TX_FIFO_VC_SIZE);
mask = FLD_MASK((8 * channel) + 7, (8 * channel) + 4);
dsi_write_reg(DSI_TX_FIFO_VC_SIZE, l & ~mask);
dsi_write_reg(DSI_TX_FIFO_VC_SIZE, l);
}
static void dsi_config_tx_fifo(enum fifo_size size1, enum fifo_size size2,
enum fifo_size size3, enum fifo_size size4)
{
u32 r = 0;
int add = 0;
int i;
dsi.vc[0].fifo_size = size1;
dsi.vc[1].fifo_size = size2;
dsi.vc[2].fifo_size = size3;
dsi.vc[3].fifo_size = size4;
for (i = 0; i < 4; i++) {
u8 v;
int size = dsi.vc[i].fifo_size;
if (add + size > 4) {
DSSERR("Illegal FIFO configuration\n");
BUG();
}
v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
r |= v << (8 * i);
/*DSSDBG("TX FIFO vc %d: size %d, add %d\n", i, size, add); */
add += size;
}
dsi_write_reg(DSI_TX_FIFO_VC_SIZE, r);
}
static void dsi_config_rx_fifo(enum fifo_size size1, enum fifo_size size2,
enum fifo_size size3, enum fifo_size size4)
{
u32 r = 0;
int add = 0;
int i;
dsi.vc[0].fifo_size = size1;
dsi.vc[1].fifo_size = size2;
dsi.vc[2].fifo_size = size3;
dsi.vc[3].fifo_size = size4;
for (i = 0; i < 4; i++) {
u8 v;
int size = dsi.vc[i].fifo_size;
if (add + size > 4) {
DSSERR("Illegal FIFO configuration\n");
BUG();
}
v = FLD_VAL(add, 2, 0) | FLD_VAL(size, 7, 4);
r |= v << (8 * i);
/*DSSDBG("RX FIFO vc %d: size %d, add %d\n", i, size, add); */
add += size;
}
dsi_write_reg(DSI_RX_FIFO_VC_SIZE, r);
}
static int dsi_force_tx_stop_mode_io(void)
{
u32 r;
r = dsi_read_reg(DSI_TIMING1);
r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
dsi_write_reg(DSI_TIMING1, r);
if (wait_for_bit_change(DSI_TIMING1, 15, 0) != 0) {
DSSERR("TX_STOP bit not going down\n");
return -EIO;
}
return 0;
}
static void dsi_vc_print_status(int channel)
{
u32 r;
r = dsi_read_reg(DSI_VC_CTRL(channel));
DSSDBG("vc %d: TX_FIFO_NOT_EMPTY %d, BTA_EN %d, VC_BUSY %d, "
"TX_FIFO_FULL %d, RX_FIFO_NOT_EMPTY %d, ",
channel,
FLD_GET(r, 5, 5),
FLD_GET(r, 6, 6),
FLD_GET(r, 15, 15),
FLD_GET(r, 16, 16),
FLD_GET(r, 20, 20));
r = dsi_read_reg(DSI_TX_FIFO_VC_EMPTINESS);
DSSDBG("EMPTINESS %d\n", (r >> (8 * channel)) & 0xff);
}
static int dsi_vc_enable(int channel, bool enable)
{
if (dsi.update_mode != OMAP_DSS_UPDATE_AUTO)
DSSDBG("dsi_vc_enable channel %d, enable %d\n",
channel, enable);
enable = enable ? 1 : 0;
REG_FLD_MOD(DSI_VC_CTRL(channel), enable, 0, 0);
if (wait_for_bit_change(DSI_VC_CTRL(channel), 0, enable) != enable) {
DSSERR("Failed to set dsi_vc_enable to %d\n", enable);
return -EIO;
}
return 0;
}
static void dsi_vc_initial_config(int channel)
{
u32 r;
DSSDBGF("%d", channel);
r = dsi_read_reg(DSI_VC_CTRL(channel));
if (FLD_GET(r, 15, 15)) /* VC_BUSY */
DSSERR("VC(%d) busy when trying to configure it!\n",
channel);
r = FLD_MOD(r, 0, 1, 1); /* SOURCE, 0 = L4 */
r = FLD_MOD(r, 0, 2, 2); /* BTA_SHORT_EN */
r = FLD_MOD(r, 0, 3, 3); /* BTA_LONG_EN */
r = FLD_MOD(r, 0, 4, 4); /* MODE, 0 = command */
r = FLD_MOD(r, 1, 7, 7); /* CS_TX_EN */
r = FLD_MOD(r, 1, 8, 8); /* ECC_TX_EN */
r = FLD_MOD(r, 0, 9, 9); /* MODE_SPEED, high speed on/off */
r = FLD_MOD(r, 4, 29, 27); /* DMA_RX_REQ_NB = no dma */
r = FLD_MOD(r, 4, 23, 21); /* DMA_TX_REQ_NB = no dma */
dsi_write_reg(DSI_VC_CTRL(channel), r);
dsi.vc[channel].mode = DSI_VC_MODE_L4;
}
static void dsi_vc_config_l4(int channel)
{
if (dsi.vc[channel].mode == DSI_VC_MODE_L4)
return;
DSSDBGF("%d", channel);
dsi_vc_enable(channel, 0);
if (REG_GET(DSI_VC_CTRL(channel), 15, 15)) /* VC_BUSY */
DSSERR("vc(%d) busy when trying to config for L4\n", channel);
REG_FLD_MOD(DSI_VC_CTRL(channel), 0, 1, 1); /* SOURCE, 0 = L4 */
dsi_vc_enable(channel, 1);
dsi.vc[channel].mode = DSI_VC_MODE_L4;
}
static void dsi_vc_config_vp(int channel)
{
if (dsi.vc[channel].mode == DSI_VC_MODE_VP)
return;
DSSDBGF("%d", channel);
dsi_vc_enable(channel, 0);
if (REG_GET(DSI_VC_CTRL(channel), 15, 15)) /* VC_BUSY */
DSSERR("vc(%d) busy when trying to config for VP\n", channel);
REG_FLD_MOD(DSI_VC_CTRL(channel), 1, 1, 1); /* SOURCE, 1 = video port */
dsi_vc_enable(channel, 1);
dsi.vc[channel].mode = DSI_VC_MODE_VP;
}
static void dsi_vc_enable_hs(int channel, bool enable)
{
DSSDBG("dsi_vc_enable_hs(%d, %d)\n", channel, enable);
dsi_vc_enable(channel, 0);
dsi_if_enable(0);
REG_FLD_MOD(DSI_VC_CTRL(channel), enable, 9, 9);
dsi_vc_enable(channel, 1);
dsi_if_enable(1);
dsi_force_tx_stop_mode_io();
}
static void dsi_vc_flush_long_data(int channel)
{
while (REG_GET(DSI_VC_CTRL(channel), 20, 20)) {
u32 val;
val = dsi_read_reg(DSI_VC_SHORT_PACKET_HEADER(channel));
DSSDBG("\t\tb1 %#02x b2 %#02x b3 %#02x b4 %#02x\n",
(val >> 0) & 0xff,
(val >> 8) & 0xff,
(val >> 16) & 0xff,
(val >> 24) & 0xff);
}
}
static void dsi_show_rx_ack_with_err(u16 err)
{
DSSERR("\tACK with ERROR (%#x):\n", err);
if (err & (1 << 0))
DSSERR("\t\tSoT Error\n");
if (err & (1 << 1))
DSSERR("\t\tSoT Sync Error\n");
if (err & (1 << 2))
DSSERR("\t\tEoT Sync Error\n");
if (err & (1 << 3))
DSSERR("\t\tEscape Mode Entry Command Error\n");
if (err & (1 << 4))
DSSERR("\t\tLP Transmit Sync Error\n");
if (err & (1 << 5))
DSSERR("\t\tHS Receive Timeout Error\n");
if (err & (1 << 6))
DSSERR("\t\tFalse Control Error\n");
if (err & (1 << 7))
DSSERR("\t\t(reserved7)\n");
if (err & (1 << 8))
DSSERR("\t\tECC Error, single-bit (corrected)\n");
if (err & (1 << 9))
DSSERR("\t\tECC Error, multi-bit (not corrected)\n");
if (err & (1 << 10))
DSSERR("\t\tChecksum Error\n");
if (err & (1 << 11))
DSSERR("\t\tData type not recognized\n");
if (err & (1 << 12))
DSSERR("\t\tInvalid VC ID\n");
if (err & (1 << 13))
DSSERR("\t\tInvalid Transmission Length\n");
if (err & (1 << 14))
DSSERR("\t\t(reserved14)\n");
if (err & (1 << 15))
DSSERR("\t\tDSI Protocol Violation\n");
}
static u16 dsi_vc_flush_receive_data(int channel)
{
/* RX_FIFO_NOT_EMPTY */
while (REG_GET(DSI_VC_CTRL(channel), 20, 20)) {
u32 val;
u8 dt;
val = dsi_read_reg(DSI_VC_SHORT_PACKET_HEADER(channel));
DSSDBG("\trawval %#08x\n", val);
dt = FLD_GET(val, 5, 0);
if (dt == DSI_DT_RX_ACK_WITH_ERR) {
u16 err = FLD_GET(val, 23, 8);
dsi_show_rx_ack_with_err(err);
} else if (dt == DSI_DT_RX_SHORT_READ_1) {
DSSDBG("\tDCS short response, 1 byte: %#x\n",
FLD_GET(val, 23, 8));
} else if (dt == DSI_DT_RX_SHORT_READ_2) {
DSSDBG("\tDCS short response, 2 byte: %#x\n",
FLD_GET(val, 23, 8));
} else if (dt == DSI_DT_RX_DCS_LONG_READ) {
DSSDBG("\tDCS long response, len %d\n",
FLD_GET(val, 23, 8));
dsi_vc_flush_long_data(channel);
} else {
DSSERR("\tunknown datatype 0x%02x\n", dt);
}
}
return 0;
}
static int dsi_vc_send_bta(int channel)
{
if (dsi.update_mode != OMAP_DSS_UPDATE_AUTO &&
(dsi.debug_write || dsi.debug_read))
DSSDBG("dsi_vc_send_bta %d\n", channel);
WARN_ON(!dsi_bus_is_locked());
if (REG_GET(DSI_VC_CTRL(channel), 20, 20)) { /* RX_FIFO_NOT_EMPTY */
DSSERR("rx fifo not empty when sending BTA, dumping data:\n");
dsi_vc_flush_receive_data(channel);
}
REG_FLD_MOD(DSI_VC_CTRL(channel), 1, 6, 6); /* BTA_EN */
return 0;
}
int dsi_vc_send_bta_sync(int channel)
{
int r = 0;
u32 err;
INIT_COMPLETION(dsi.bta_completion);
dsi_vc_enable_bta_irq(channel);
r = dsi_vc_send_bta(channel);
if (r)
goto err;
if (wait_for_completion_timeout(&dsi.bta_completion,
msecs_to_jiffies(500)) == 0) {
DSSERR("Failed to receive BTA\n");
r = -EIO;
goto err;
}
err = dsi_get_errors();
if (err) {
DSSERR("Error while sending BTA: %x\n", err);
r = -EIO;
goto err;
}
err:
dsi_vc_disable_bta_irq(channel);
return r;
}
EXPORT_SYMBOL(dsi_vc_send_bta_sync);
static inline void dsi_vc_write_long_header(int channel, u8 data_type,
u16 len, u8 ecc)
{
u32 val;
u8 data_id;
WARN_ON(!dsi_bus_is_locked());
/*data_id = data_type | channel << 6; */
data_id = data_type | dsi.vc[channel].dest_per << 6;
val = FLD_VAL(data_id, 7, 0) | FLD_VAL(len, 23, 8) |
FLD_VAL(ecc, 31, 24);
dsi_write_reg(DSI_VC_LONG_PACKET_HEADER(channel), val);
}
static inline void dsi_vc_write_long_payload(int channel,
u8 b1, u8 b2, u8 b3, u8 b4)
{
u32 val;
val = b4 << 24 | b3 << 16 | b2 << 8 | b1 << 0;
/* DSSDBG("\twriting %02x, %02x, %02x, %02x (%#010x)\n",
b1, b2, b3, b4, val); */
dsi_write_reg(DSI_VC_LONG_PACKET_PAYLOAD(channel), val);
}
static int dsi_vc_send_long(int channel, u8 data_type, u8 *data, u16 len,
u8 ecc)
{
/*u32 val; */
int i;
u8 *p;
int r = 0;
u8 b1, b2, b3, b4;
if (dsi.debug_write)
DSSDBG("dsi_vc_send_long, %d bytes\n", len);
/* len + header */
if (dsi.vc[channel].fifo_size * 32 * 4 < len + 4) {
DSSERR("unable to send long packet: packet too long.\n");
return -EINVAL;
}
dsi_vc_config_l4(channel);
dsi_vc_write_long_header(channel, data_type, len, ecc);
/*dsi_vc_print_status(0); */
p = data;
for (i = 0; i < len >> 2; i++) {
if (dsi.debug_write)
DSSDBG("\tsending full packet %d\n", i);
/*dsi_vc_print_status(0); */
b1 = *p++;
b2 = *p++;
b3 = *p++;
b4 = *p++;
dsi_vc_write_long_payload(channel, b1, b2, b3, b4);
}
i = len % 4;
if (i) {
b1 = 0; b2 = 0; b3 = 0;
if (dsi.debug_write)
DSSDBG("\tsending remainder bytes %d\n", i);
switch (i) {
case 3:
b1 = *p++;
b2 = *p++;
b3 = *p++;
break;
case 2:
b1 = *p++;
b2 = *p++;
break;
case 1:
b1 = *p++;
break;
}
dsi_vc_write_long_payload(channel, b1, b2, b3, 0);
}
return r;
}
static int dsi_vc_send_short(int channel, u8 data_type, u16 data, u8 ecc)
{
u32 r;
u8 data_id;
WARN_ON(!dsi_bus_is_locked());
if (dsi.debug_write)
DSSDBG("dsi_vc_send_short(ch%d, dt %#x, b1 %#x, b2 %#x)\n",
channel,
data_type, data & 0xff, (data >> 8) & 0xff);
dsi_vc_config_l4(channel);
if (FLD_GET(dsi_read_reg(DSI_VC_CTRL(channel)), 16, 16)) {
DSSERR("ERROR FIFO FULL, aborting transfer\n");
return -EINVAL;
}
data_id = data_type | dsi.vc[channel].dest_per << 6;
r = (data_id << 0) | (data << 8) | (ecc << 24);
dsi_write_reg(DSI_VC_SHORT_PACKET_HEADER(channel), r);
return 0;
}
int dsi_vc_send_null(int channel)
{
u8 nullpkg[] = {0, 0, 0, 0};
return dsi_vc_send_long(channel, DSI_DT_NULL_PACKET, nullpkg, 4, 0);
}
EXPORT_SYMBOL(dsi_vc_send_null);
int dsi_vc_dcs_write_nosync(int channel, u8 *data, int len)
{
int r;
BUG_ON(len == 0);
if (len == 1) {
r = dsi_vc_send_short(channel, DSI_DT_DCS_SHORT_WRITE_0,
data[0], 0);
} else if (len == 2) {
r = dsi_vc_send_short(channel, DSI_DT_DCS_SHORT_WRITE_1,
data[0] | (data[1] << 8), 0);
} else {
/* 0x39 = DCS Long Write */
r = dsi_vc_send_long(channel, DSI_DT_DCS_LONG_WRITE,
data, len, 0);
}
return r;
}
EXPORT_SYMBOL(dsi_vc_dcs_write_nosync);
int dsi_vc_dcs_write(int channel, u8 *data, int len)
{
int r;
r = dsi_vc_dcs_write_nosync(channel, data, len);
if (r)
return r;
r = dsi_vc_send_bta_sync(channel);
return r;
}
EXPORT_SYMBOL(dsi_vc_dcs_write);
int dsi_vc_dcs_write_0(int channel, u8 dcs_cmd)
{
return dsi_vc_dcs_write(channel, &dcs_cmd, 1);
}
EXPORT_SYMBOL(dsi_vc_dcs_write_0);
int dsi_vc_dcs_write_1(int channel, u8 dcs_cmd, u8 param)
{
u8 buf[2];
buf[0] = dcs_cmd;
buf[1] = param;
return dsi_vc_dcs_write(channel, buf, 2);
}
EXPORT_SYMBOL(dsi_vc_dcs_write_1);
int dsi_vc_dcs_read(int channel, u8 dcs_cmd, u8 *buf, int buflen)
{
u32 val;
u8 dt;
int r;
if (dsi.debug_read)
DSSDBG("dsi_vc_dcs_read(ch%d, dcs_cmd %x)\n", channel, dcs_cmd);
r = dsi_vc_send_short(channel, DSI_DT_DCS_READ, dcs_cmd, 0);
if (r)
return r;
r = dsi_vc_send_bta_sync(channel);
if (r)
return r;
/* RX_FIFO_NOT_EMPTY */
if (REG_GET(DSI_VC_CTRL(channel), 20, 20) == 0) {
DSSERR("RX fifo empty when trying to read.\n");
return -EIO;
}
val = dsi_read_reg(DSI_VC_SHORT_PACKET_HEADER(channel));
if (dsi.debug_read)
DSSDBG("\theader: %08x\n", val);
dt = FLD_GET(val, 5, 0);
if (dt == DSI_DT_RX_ACK_WITH_ERR) {
u16 err = FLD_GET(val, 23, 8);
dsi_show_rx_ack_with_err(err);
return -EIO;
} else if (dt == DSI_DT_RX_SHORT_READ_1) {
u8 data = FLD_GET(val, 15, 8);
if (dsi.debug_read)
DSSDBG("\tDCS short response, 1 byte: %02x\n", data);
if (buflen < 1)
return -EIO;
buf[0] = data;
return 1;
} else if (dt == DSI_DT_RX_SHORT_READ_2) {
u16 data = FLD_GET(val, 23, 8);
if (dsi.debug_read)
DSSDBG("\tDCS short response, 2 byte: %04x\n", data);
if (buflen < 2)
return -EIO;
buf[0] = data & 0xff;
buf[1] = (data >> 8) & 0xff;
return 2;
} else if (dt == DSI_DT_RX_DCS_LONG_READ) {
int w;
int len = FLD_GET(val, 23, 8);
if (dsi.debug_read)
DSSDBG("\tDCS long response, len %d\n", len);
if (len > buflen)
return -EIO;
/* two byte checksum ends the packet, not included in len */
for (w = 0; w < len + 2;) {
int b;
val = dsi_read_reg(DSI_VC_SHORT_PACKET_HEADER(channel));
if (dsi.debug_read)
DSSDBG("\t\t%02x %02x %02x %02x\n",
(val >> 0) & 0xff,
(val >> 8) & 0xff,
(val >> 16) & 0xff,
(val >> 24) & 0xff);
for (b = 0; b < 4; ++b) {
if (w < len)
buf[w] = (val >> (b * 8)) & 0xff;
/* we discard the 2 byte checksum */
++w;
}
}
return len;
} else {
DSSERR("\tunknown datatype 0x%02x\n", dt);
return -EIO;
}
}
EXPORT_SYMBOL(dsi_vc_dcs_read);
int dsi_vc_dcs_read_1(int channel, u8 dcs_cmd, u8 *data)
{
int r;
r = dsi_vc_dcs_read(channel, dcs_cmd, data, 1);
if (r < 0)
return r;
if (r != 1)
return -EIO;
return 0;
}
EXPORT_SYMBOL(dsi_vc_dcs_read_1);
int dsi_vc_set_max_rx_packet_size(int channel, u16 len)
{
int r;
r = dsi_vc_send_short(channel, DSI_DT_SET_MAX_RET_PKG_SIZE,
len, 0);
if (r)
return r;
r = dsi_vc_send_bta_sync(channel);
return r;
}
EXPORT_SYMBOL(dsi_vc_set_max_rx_packet_size);
static void dsi_set_lp_rx_timeout(unsigned long ns)
{
u32 r;
unsigned x4, x16;
unsigned long fck;
unsigned long ticks;
/* ticks in DSI_FCK */
fck = dsi_fclk_rate();
ticks = (fck / 1000 / 1000) * ns / 1000;
x4 = 0;
x16 = 0;
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / 4;
x4 = 1;
x16 = 0;
}
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / 16;
x4 = 0;
x16 = 1;
}
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / (4 * 16);
x4 = 1;
x16 = 1;
}
if (ticks > 0x1fff) {
DSSWARN("LP_TX_TO over limit, setting it to max\n");
ticks = 0x1fff;
x4 = 1;
x16 = 1;
}
r = dsi_read_reg(DSI_TIMING2);
r = FLD_MOD(r, 1, 15, 15); /* LP_RX_TO */
r = FLD_MOD(r, x16, 14, 14); /* LP_RX_TO_X16 */
r = FLD_MOD(r, x4, 13, 13); /* LP_RX_TO_X4 */
r = FLD_MOD(r, ticks, 12, 0); /* LP_RX_COUNTER */
dsi_write_reg(DSI_TIMING2, r);
DSSDBG("LP_RX_TO %lu ns (%#lx ticks%s%s)\n",
(ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1) * 1000) /
(fck / 1000 / 1000),
ticks, x4 ? " x4" : "", x16 ? " x16" : "");
}
static void dsi_set_ta_timeout(unsigned long ns)
{
u32 r;
unsigned x8, x16;
unsigned long fck;
unsigned long ticks;
/* ticks in DSI_FCK */
fck = dsi_fclk_rate();
ticks = (fck / 1000 / 1000) * ns / 1000;
x8 = 0;
x16 = 0;
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / 8;
x8 = 1;
x16 = 0;
}
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / 16;
x8 = 0;
x16 = 1;
}
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / (8 * 16);
x8 = 1;
x16 = 1;
}
if (ticks > 0x1fff) {
DSSWARN("TA_TO over limit, setting it to max\n");
ticks = 0x1fff;
x8 = 1;
x16 = 1;
}
r = dsi_read_reg(DSI_TIMING1);
r = FLD_MOD(r, 1, 31, 31); /* TA_TO */
r = FLD_MOD(r, x16, 30, 30); /* TA_TO_X16 */
r = FLD_MOD(r, x8, 29, 29); /* TA_TO_X8 */
r = FLD_MOD(r, ticks, 28, 16); /* TA_TO_COUNTER */
dsi_write_reg(DSI_TIMING1, r);
DSSDBG("TA_TO %lu ns (%#lx ticks%s%s)\n",
(ticks * (x16 ? 16 : 1) * (x8 ? 8 : 1) * 1000) /
(fck / 1000 / 1000),
ticks, x8 ? " x8" : "", x16 ? " x16" : "");
}
static void dsi_set_stop_state_counter(unsigned long ns)
{
u32 r;
unsigned x4, x16;
unsigned long fck;
unsigned long ticks;
/* ticks in DSI_FCK */
fck = dsi_fclk_rate();
ticks = (fck / 1000 / 1000) * ns / 1000;
x4 = 0;
x16 = 0;
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / 4;
x4 = 1;
x16 = 0;
}
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / 16;
x4 = 0;
x16 = 1;
}
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / (4 * 16);
x4 = 1;
x16 = 1;
}
if (ticks > 0x1fff) {
DSSWARN("STOP_STATE_COUNTER_IO over limit, "
"setting it to max\n");
ticks = 0x1fff;
x4 = 1;
x16 = 1;
}
r = dsi_read_reg(DSI_TIMING1);
r = FLD_MOD(r, 1, 15, 15); /* FORCE_TX_STOP_MODE_IO */
r = FLD_MOD(r, x16, 14, 14); /* STOP_STATE_X16_IO */
r = FLD_MOD(r, x4, 13, 13); /* STOP_STATE_X4_IO */
r = FLD_MOD(r, ticks, 12, 0); /* STOP_STATE_COUNTER_IO */
dsi_write_reg(DSI_TIMING1, r);
DSSDBG("STOP_STATE_COUNTER %lu ns (%#lx ticks%s%s)\n",
(ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1) * 1000) /
(fck / 1000 / 1000),
ticks, x4 ? " x4" : "", x16 ? " x16" : "");
}
static void dsi_set_hs_tx_timeout(unsigned long ns)
{
u32 r;
unsigned x4, x16;
unsigned long fck;
unsigned long ticks;
/* ticks in TxByteClkHS */
fck = dsi_get_txbyteclkhs();
ticks = (fck / 1000 / 1000) * ns / 1000;
x4 = 0;
x16 = 0;
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / 4;
x4 = 1;
x16 = 0;
}
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / 16;
x4 = 0;
x16 = 1;
}
if (ticks > 0x1fff) {
ticks = (fck / 1000 / 1000) * ns / 1000 / (4 * 16);
x4 = 1;
x16 = 1;
}
if (ticks > 0x1fff) {
DSSWARN("HS_TX_TO over limit, setting it to max\n");
ticks = 0x1fff;
x4 = 1;
x16 = 1;
}
r = dsi_read_reg(DSI_TIMING2);
r = FLD_MOD(r, 1, 31, 31); /* HS_TX_TO */
r = FLD_MOD(r, x16, 30, 30); /* HS_TX_TO_X16 */
r = FLD_MOD(r, x4, 29, 29); /* HS_TX_TO_X8 (4 really) */
r = FLD_MOD(r, ticks, 28, 16); /* HS_TX_TO_COUNTER */
dsi_write_reg(DSI_TIMING2, r);
DSSDBG("HS_TX_TO %lu ns (%#lx ticks%s%s)\n",
(ticks * (x16 ? 16 : 1) * (x4 ? 4 : 1) * 1000) /
(fck / 1000 / 1000),
ticks, x4 ? " x4" : "", x16 ? " x16" : "");
}
static int dsi_proto_config(struct omap_dss_device *dssdev)
{
u32 r;
int buswidth = 0;
dsi_config_tx_fifo(DSI_FIFO_SIZE_128,
DSI_FIFO_SIZE_0,
DSI_FIFO_SIZE_0,
DSI_FIFO_SIZE_0);
dsi_config_rx_fifo(DSI_FIFO_SIZE_128,
DSI_FIFO_SIZE_0,
DSI_FIFO_SIZE_0,
DSI_FIFO_SIZE_0);
/* XXX what values for the timeouts? */
dsi_set_stop_state_counter(1000);
dsi_set_ta_timeout(6400000);
dsi_set_lp_rx_timeout(48000);
dsi_set_hs_tx_timeout(1000000);
switch (dssdev->ctrl.pixel_size) {
case 16:
buswidth = 0;
break;
case 18:
buswidth = 1;
break;
case 24:
buswidth = 2;
break;
default:
BUG();
}
r = dsi_read_reg(DSI_CTRL);
r = FLD_MOD(r, 1, 1, 1); /* CS_RX_EN */
r = FLD_MOD(r, 1, 2, 2); /* ECC_RX_EN */
r = FLD_MOD(r, 1, 3, 3); /* TX_FIFO_ARBITRATION */
r = FLD_MOD(r, 1, 4, 4); /* VP_CLK_RATIO, always 1, see errata*/
r = FLD_MOD(r, buswidth, 7, 6); /* VP_DATA_BUS_WIDTH */
r = FLD_MOD(r, 0, 8, 8); /* VP_CLK_POL */
r = FLD_MOD(r, 2, 13, 12); /* LINE_BUFFER, 2 lines */
r = FLD_MOD(r, 1, 14, 14); /* TRIGGER_RESET_MODE */
r = FLD_MOD(r, 1, 19, 19); /* EOT_ENABLE */
r = FLD_MOD(r, 1, 24, 24); /* DCS_CMD_ENABLE */
r = FLD_MOD(r, 0, 25, 25); /* DCS_CMD_CODE, 1=start, 0=continue */
dsi_write_reg(DSI_CTRL, r);
dsi_vc_initial_config(0);
/* set all vc targets to peripheral 0 */
dsi.vc[0].dest_per = 0;
dsi.vc[1].dest_per = 0;
dsi.vc[2].dest_per = 0;
dsi.vc[3].dest_per = 0;
return 0;
}
static void dsi_proto_timings(struct omap_dss_device *dssdev)
{
unsigned tlpx, tclk_zero, tclk_prepare, tclk_trail;
unsigned tclk_pre, tclk_post;
unsigned ths_prepare, ths_prepare_ths_zero, ths_zero;
unsigned ths_trail, ths_exit;
unsigned ddr_clk_pre, ddr_clk_post;
unsigned enter_hs_mode_lat, exit_hs_mode_lat;
unsigned ths_eot;
u32 r;
r = dsi_read_reg(DSI_DSIPHY_CFG0);
ths_prepare = FLD_GET(r, 31, 24);
ths_prepare_ths_zero = FLD_GET(r, 23, 16);
ths_zero = ths_prepare_ths_zero - ths_prepare;
ths_trail = FLD_GET(r, 15, 8);
ths_exit = FLD_GET(r, 7, 0);
r = dsi_read_reg(DSI_DSIPHY_CFG1);
tlpx = FLD_GET(r, 22, 16) * 2;
tclk_trail = FLD_GET(r, 15, 8);
tclk_zero = FLD_GET(r, 7, 0);
r = dsi_read_reg(DSI_DSIPHY_CFG2);
tclk_prepare = FLD_GET(r, 7, 0);
/* min 8*UI */
tclk_pre = 20;
/* min 60ns + 52*UI */
tclk_post = ns2ddr(60) + 26;
/* ths_eot is 2 for 2 datalanes and 4 for 1 datalane */
if (dssdev->phy.dsi.data1_lane != 0 &&
dssdev->phy.dsi.data2_lane != 0)
ths_eot = 2;
else
ths_eot = 4;
ddr_clk_pre = DIV_ROUND_UP(tclk_pre + tlpx + tclk_zero + tclk_prepare,
4);
ddr_clk_post = DIV_ROUND_UP(tclk_post + ths_trail, 4) + ths_eot;
BUG_ON(ddr_clk_pre == 0 || ddr_clk_pre > 255);
BUG_ON(ddr_clk_post == 0 || ddr_clk_post > 255);
r = dsi_read_reg(DSI_CLK_TIMING);
r = FLD_MOD(r, ddr_clk_pre, 15, 8);
r = FLD_MOD(r, ddr_clk_post, 7, 0);
dsi_write_reg(DSI_CLK_TIMING, r);
DSSDBG("ddr_clk_pre %u, ddr_clk_post %u\n",
ddr_clk_pre,
ddr_clk_post);
enter_hs_mode_lat = 1 + DIV_ROUND_UP(tlpx, 4) +
DIV_ROUND_UP(ths_prepare, 4) +
DIV_ROUND_UP(ths_zero + 3, 4);
exit_hs_mode_lat = DIV_ROUND_UP(ths_trail + ths_exit, 4) + 1 + ths_eot;
r = FLD_VAL(enter_hs_mode_lat, 31, 16) |
FLD_VAL(exit_hs_mode_lat, 15, 0);
dsi_write_reg(DSI_VM_TIMING7, r);
DSSDBG("enter_hs_mode_lat %u, exit_hs_mode_lat %u\n",
enter_hs_mode_lat, exit_hs_mode_lat);
}
#define DSI_DECL_VARS \
int __dsi_cb = 0; u32 __dsi_cv = 0;
#define DSI_FLUSH(ch) \
if (__dsi_cb > 0) { \
/*DSSDBG("sending long packet %#010x\n", __dsi_cv);*/ \
dsi_write_reg(DSI_VC_LONG_PACKET_PAYLOAD(ch), __dsi_cv); \
__dsi_cb = __dsi_cv = 0; \
}
#define DSI_PUSH(ch, data) \
do { \
__dsi_cv |= (data) << (__dsi_cb * 8); \
/*DSSDBG("cv = %#010x, cb = %d\n", __dsi_cv, __dsi_cb);*/ \
if (++__dsi_cb > 3) \
DSI_FLUSH(ch); \
} while (0)
static int dsi_update_screen_l4(struct omap_dss_device *dssdev,
int x, int y, int w, int h)
{
/* Note: supports only 24bit colors in 32bit container */
int first = 1;
int fifo_stalls = 0;
int max_dsi_packet_size;
int max_data_per_packet;
int max_pixels_per_packet;
int pixels_left;
int bytespp = dssdev->ctrl.pixel_size / 8;
int scr_width;
u32 __iomem *data;
int start_offset;
int horiz_inc;
int current_x;
struct omap_overlay *ovl;
debug_irq = 0;
DSSDBG("dsi_update_screen_l4 (%d,%d %dx%d)\n",
x, y, w, h);
ovl = dssdev->manager->overlays[0];
if (ovl->info.color_mode != OMAP_DSS_COLOR_RGB24U)
return -EINVAL;
if (dssdev->ctrl.pixel_size != 24)
return -EINVAL;
scr_width = ovl->info.screen_width;
data = ovl->info.vaddr;
start_offset = scr_width * y + x;
horiz_inc = scr_width - w;
current_x = x;
/* We need header(4) + DCSCMD(1) + pixels(numpix*bytespp) bytes
* in fifo */
/* When using CPU, max long packet size is TX buffer size */
max_dsi_packet_size = dsi.vc[0].fifo_size * 32 * 4;
/* we seem to get better perf if we divide the tx fifo to half,
and while the other half is being sent, we fill the other half
max_dsi_packet_size /= 2; */
max_data_per_packet = max_dsi_packet_size - 4 - 1;
max_pixels_per_packet = max_data_per_packet / bytespp;
DSSDBG("max_pixels_per_packet %d\n", max_pixels_per_packet);
pixels_left = w * h;
DSSDBG("total pixels %d\n", pixels_left);
data += start_offset;
while (pixels_left > 0) {
/* 0x2c = write_memory_start */
/* 0x3c = write_memory_continue */
u8 dcs_cmd = first ? 0x2c : 0x3c;
int pixels;
DSI_DECL_VARS;
first = 0;
#if 1
/* using fifo not empty */
/* TX_FIFO_NOT_EMPTY */
while (FLD_GET(dsi_read_reg(DSI_VC_CTRL(0)), 5, 5)) {
fifo_stalls++;
if (fifo_stalls > 0xfffff) {
DSSERR("fifo stalls overflow, pixels left %d\n",
pixels_left);
dsi_if_enable(0);
return -EIO;
}
udelay(1);
}
#elif 1
/* using fifo emptiness */
while ((REG_GET(DSI_TX_FIFO_VC_EMPTINESS, 7, 0)+1)*4 <
max_dsi_packet_size) {
fifo_stalls++;
if (fifo_stalls > 0xfffff) {
DSSERR("fifo stalls overflow, pixels left %d\n",
pixels_left);
dsi_if_enable(0);
return -EIO;
}
}
#else
while ((REG_GET(DSI_TX_FIFO_VC_EMPTINESS, 7, 0)+1)*4 == 0) {
fifo_stalls++;
if (fifo_stalls > 0xfffff) {
DSSERR("fifo stalls overflow, pixels left %d\n",
pixels_left);
dsi_if_enable(0);
return -EIO;
}
}
#endif
pixels = min(max_pixels_per_packet, pixels_left);
pixels_left -= pixels;
dsi_vc_write_long_header(0, DSI_DT_DCS_LONG_WRITE,
1 + pixels * bytespp, 0);
DSI_PUSH(0, dcs_cmd);
while (pixels-- > 0) {
u32 pix = __raw_readl(data++);
DSI_PUSH(0, (pix >> 16) & 0xff);
DSI_PUSH(0, (pix >> 8) & 0xff);
DSI_PUSH(0, (pix >> 0) & 0xff);
current_x++;
if (current_x == x+w) {
current_x = x;
data += horiz_inc;
}
}
DSI_FLUSH(0);
}
return 0;
}
static void dsi_update_screen_dispc(struct omap_dss_device *dssdev,
u16 x, u16 y, u16 w, u16 h)
{
unsigned bytespp;
unsigned bytespl;
unsigned bytespf;
unsigned total_len;
unsigned packet_payload;
unsigned packet_len;
u32 l;
bool use_te_trigger;
const unsigned channel = 0;
/* line buffer is 1024 x 24bits */
/* XXX: for some reason using full buffer size causes considerable TX
* slowdown with update sizes that fill the whole buffer */
const unsigned line_buf_size = 1023 * 3;
use_te_trigger = dsi.te_enabled && !dsi.use_ext_te;
if (dsi.update_mode != OMAP_DSS_UPDATE_AUTO)
DSSDBG("dsi_update_screen_dispc(%d,%d %dx%d)\n",
x, y, w, h);
bytespp = dssdev->ctrl.pixel_size / 8;
bytespl = w * bytespp;
bytespf = bytespl * h;
/* NOTE: packet_payload has to be equal to N * bytespl, where N is
* number of lines in a packet. See errata about VP_CLK_RATIO */
if (bytespf < line_buf_size)
packet_payload = bytespf;
else
packet_payload = (line_buf_size) / bytespl * bytespl;
packet_len = packet_payload + 1; /* 1 byte for DCS cmd */
total_len = (bytespf / packet_payload) * packet_len;
if (bytespf % packet_payload)
total_len += (bytespf % packet_payload) + 1;
if (0)
dsi_vc_print_status(1);
l = FLD_VAL(total_len, 23, 0); /* TE_SIZE */
dsi_write_reg(DSI_VC_TE(channel), l);
dsi_vc_write_long_header(channel, DSI_DT_DCS_LONG_WRITE, packet_len, 0);
if (use_te_trigger)
l = FLD_MOD(l, 1, 30, 30); /* TE_EN */
else
l = FLD_MOD(l, 1, 31, 31); /* TE_START */
dsi_write_reg(DSI_VC_TE(channel), l);
/* We put SIDLEMODE to no-idle for the duration of the transfer,
* because DSS interrupts are not capable of waking up the CPU and the
* framedone interrupt could be delayed for quite a long time. I think
* the same goes for any DSS interrupts, but for some reason I have not
* seen the problem anywhere else than here.
*/
dispc_disable_sidle();
dss_start_update(dssdev);
if (use_te_trigger) {
/* disable LP_RX_TO, so that we can receive TE. Time to wait
* for TE is longer than the timer allows */
REG_FLD_MOD(DSI_TIMING2, 0, 15, 15); /* LP_RX_TO */
dsi_vc_send_bta(channel);
#ifdef DSI_CATCH_MISSING_TE
mod_timer(&dsi.te_timer, jiffies + msecs_to_jiffies(250));
#endif
}
}
#ifdef DSI_CATCH_MISSING_TE
static void dsi_te_timeout(unsigned long arg)
{
DSSERR("TE not received for 250ms!\n");
}
#endif
static void dsi_framedone_irq_callback(void *data, u32 mask)
{
/* Note: We get FRAMEDONE when DISPC has finished sending pixels and
* turns itself off. However, DSI still has the pixels in its buffers,
* and is sending the data.
*/
/* SIDLEMODE back to smart-idle */
dispc_enable_sidle();
dsi.framedone_received = true;
wake_up(&dsi.waitqueue);
}
static void dsi_set_update_region(struct omap_dss_device *dssdev,
u16 x, u16 y, u16 w, u16 h)
{
spin_lock(&dsi.update_lock);
if (dsi.update_region.dirty) {
dsi.update_region.x = min(x, dsi.update_region.x);
dsi.update_region.y = min(y, dsi.update_region.y);
dsi.update_region.w = max(w, dsi.update_region.w);
dsi.update_region.h = max(h, dsi.update_region.h);
} else {
dsi.update_region.x = x;
dsi.update_region.y = y;
dsi.update_region.w = w;
dsi.update_region.h = h;
}
dsi.update_region.device = dssdev;
dsi.update_region.dirty = true;
spin_unlock(&dsi.update_lock);
}
static int dsi_set_update_mode(struct omap_dss_device *dssdev,
enum omap_dss_update_mode mode)
{
int r = 0;
int i;
WARN_ON(!dsi_bus_is_locked());
if (dsi.update_mode != mode) {
dsi.update_mode = mode;
/* Mark the overlays dirty, and do apply(), so that we get the
* overlays configured properly after update mode change. */
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
struct omap_overlay *ovl;
ovl = omap_dss_get_overlay(i);
if (ovl->manager == dssdev->manager)
ovl->info_dirty = true;
}
r = dssdev->manager->apply(dssdev->manager);
if (dssdev->state == OMAP_DSS_DISPLAY_ACTIVE &&
mode == OMAP_DSS_UPDATE_AUTO) {
u16 w, h;
DSSDBG("starting auto update\n");
dssdev->get_resolution(dssdev, &w, &h);
dsi_set_update_region(dssdev, 0, 0, w, h);
dsi_perf_mark_start_auto();
wake_up(&dsi.waitqueue);
}
}
return r;
}
static int dsi_set_te(struct omap_dss_device *dssdev, bool enable)
{
int r = 0;
if (dssdev->driver->enable_te) {
r = dssdev->driver->enable_te(dssdev, enable);
/* XXX for some reason, DSI TE breaks if we don't wait here.
* Panel bug? Needs more studying */
msleep(100);
}
return r;
}
static void dsi_handle_framedone(void)
{
int r;
const int channel = 0;
bool use_te_trigger;
use_te_trigger = dsi.te_enabled && !dsi.use_ext_te;
if (dsi.update_mode != OMAP_DSS_UPDATE_AUTO)
DSSDBG("FRAMEDONE\n");
if (use_te_trigger) {
/* enable LP_RX_TO again after the TE */
REG_FLD_MOD(DSI_TIMING2, 1, 15, 15); /* LP_RX_TO */
}
/* Send BTA after the frame. We need this for the TE to work, as TE
* trigger is only sent for BTAs without preceding packet. Thus we need
* to BTA after the pixel packets so that next BTA will cause TE
* trigger.
*
* This is not needed when TE is not in use, but we do it anyway to
* make sure that the transfer has been completed. It would be more
* optimal, but more complex, to wait only just before starting next
* transfer. */
r = dsi_vc_send_bta_sync(channel);
if (r)
DSSERR("BTA after framedone failed\n");
/* RX_FIFO_NOT_EMPTY */
if (REG_GET(DSI_VC_CTRL(channel), 20, 20)) {
DSSERR("Received error during frame transfer:\n");
dsi_vc_flush_receive_data(0);
}
#ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC
dispc_fake_vsync_irq();
#endif
}
static int dsi_update_thread(void *data)
{
unsigned long timeout;
struct omap_dss_device *device;
u16 x, y, w, h;
while (1) {
bool sched;
wait_event_interruptible(dsi.waitqueue,
dsi.update_mode == OMAP_DSS_UPDATE_AUTO ||
(dsi.update_mode == OMAP_DSS_UPDATE_MANUAL &&
dsi.update_region.dirty == true) ||
kthread_should_stop());
if (kthread_should_stop())
break;
dsi_bus_lock();
if (dsi.update_mode == OMAP_DSS_UPDATE_DISABLED ||
kthread_should_stop()) {
dsi_bus_unlock();
break;
}
dsi_perf_mark_setup();
if (dsi.update_region.dirty) {
spin_lock(&dsi.update_lock);
dsi.active_update_region = dsi.update_region;
dsi.update_region.dirty = false;
spin_unlock(&dsi.update_lock);
}
device = dsi.active_update_region.device;
x = dsi.active_update_region.x;
y = dsi.active_update_region.y;
w = dsi.active_update_region.w;
h = dsi.active_update_region.h;
if (device->manager->caps & OMAP_DSS_OVL_MGR_CAP_DISPC) {
if (dsi.update_mode == OMAP_DSS_UPDATE_MANUAL)
dss_setup_partial_planes(device,
&x, &y, &w, &h);
dispc_set_lcd_size(w, h);
}
if (dsi.active_update_region.dirty) {
dsi.active_update_region.dirty = false;
/* XXX TODO we don't need to send the coords, if they
* are the same that are already programmed to the
* panel. That should speed up manual update a bit */
device->driver->setup_update(device, x, y, w, h);
}
dsi_perf_mark_start();
if (device->manager->caps & OMAP_DSS_OVL_MGR_CAP_DISPC) {
dsi_vc_config_vp(0);
if (dsi.te_enabled && dsi.use_ext_te)
device->driver->wait_for_te(device);
dsi.framedone_received = false;
dsi_update_screen_dispc(device, x, y, w, h);
/* wait for framedone */
timeout = msecs_to_jiffies(1000);
wait_event_timeout(dsi.waitqueue,
dsi.framedone_received == true,
timeout);
if (!dsi.framedone_received) {
DSSERR("framedone timeout\n");
DSSERR("failed update %d,%d %dx%d\n",
x, y, w, h);
dispc_enable_sidle();
dispc_enable_lcd_out(0);
dsi_reset_tx_fifo(0);
} else {
dsi_handle_framedone();
dsi_perf_show("DISPC");
}
} else {
dsi_update_screen_l4(device, x, y, w, h);
dsi_perf_show("L4");
}
sched = atomic_read(&dsi.bus_lock.count) < 0;
complete_all(&dsi.update_completion);
dsi_bus_unlock();
/* XXX We need to give others chance to get the bus lock. Is
* there a better way for this? */
if (dsi.update_mode == OMAP_DSS_UPDATE_AUTO && sched)
schedule_timeout_interruptible(1);
}
DSSDBG("update thread exiting\n");
return 0;
}
/* Display funcs */
static int dsi_display_init_dispc(struct omap_dss_device *dssdev)
{
int r;
r = omap_dispc_register_isr(dsi_framedone_irq_callback, NULL,
DISPC_IRQ_FRAMEDONE);
if (r) {
DSSERR("can't get FRAMEDONE irq\n");
return r;
}
dispc_set_lcd_display_type(OMAP_DSS_LCD_DISPLAY_TFT);
dispc_set_parallel_interface_mode(OMAP_DSS_PARALLELMODE_DSI);
dispc_enable_fifohandcheck(1);
dispc_set_tft_data_lines(dssdev->ctrl.pixel_size);
{
struct omap_video_timings timings = {
.hsw = 1,
.hfp = 1,
.hbp = 1,
.vsw = 1,
.vfp = 0,
.vbp = 0,
};
dispc_set_lcd_timings(&timings);
}
return 0;
}
static void dsi_display_uninit_dispc(struct omap_dss_device *dssdev)
{
omap_dispc_unregister_isr(dsi_framedone_irq_callback, NULL,
DISPC_IRQ_FRAMEDONE);
}
static int dsi_configure_dsi_clocks(struct omap_dss_device *dssdev)
{
struct dsi_clock_info cinfo;
int r;
/* we always use DSS2_FCK as input clock */
cinfo.use_dss2_fck = true;
cinfo.regn = dssdev->phy.dsi.div.regn;
cinfo.regm = dssdev->phy.dsi.div.regm;
cinfo.regm3 = dssdev->phy.dsi.div.regm3;
cinfo.regm4 = dssdev->phy.dsi.div.regm4;
r = dsi_calc_clock_rates(&cinfo);
if (r)
return r;
r = dsi_pll_set_clock_div(&cinfo);
if (r) {
DSSERR("Failed to set dsi clocks\n");
return r;
}
return 0;
}
static int dsi_configure_dispc_clocks(struct omap_dss_device *dssdev)
{
struct dispc_clock_info dispc_cinfo;
int r;
unsigned long long fck;
fck = dsi_get_dsi1_pll_rate();
dispc_cinfo.lck_div = dssdev->phy.dsi.div.lck_div;
dispc_cinfo.pck_div = dssdev->phy.dsi.div.pck_div;
r = dispc_calc_clock_rates(fck, &dispc_cinfo);
if (r) {
DSSERR("Failed to calc dispc clocks\n");
return r;
}
r = dispc_set_clock_div(&dispc_cinfo);
if (r) {
DSSERR("Failed to set dispc clocks\n");
return r;
}
return 0;
}
static int dsi_display_init_dsi(struct omap_dss_device *dssdev)
{
int r;
_dsi_print_reset_status();
r = dsi_pll_init(dssdev, true, true);
if (r)
goto err0;
r = dsi_configure_dsi_clocks(dssdev);
if (r)
goto err1;
dss_select_dispc_clk_source(DSS_SRC_DSI1_PLL_FCLK);
dss_select_dsi_clk_source(DSS_SRC_DSI2_PLL_FCLK);
DSSDBG("PLL OK\n");
r = dsi_configure_dispc_clocks(dssdev);
if (r)
goto err2;
r = dsi_complexio_init(dssdev);
if (r)
goto err2;
_dsi_print_reset_status();
dsi_proto_timings(dssdev);
dsi_set_lp_clk_divisor(dssdev);
if (1)
_dsi_print_reset_status();
r = dsi_proto_config(dssdev);
if (r)
goto err3;
/* enable interface */
dsi_vc_enable(0, 1);
dsi_if_enable(1);
dsi_force_tx_stop_mode_io();
if (dssdev->driver->enable) {
r = dssdev->driver->enable(dssdev);
if (r)
goto err4;
}
/* enable high-speed after initial config */
dsi_vc_enable_hs(0, 1);
return 0;
err4:
dsi_if_enable(0);
err3:
dsi_complexio_uninit();
err2:
dss_select_dispc_clk_source(DSS_SRC_DSS1_ALWON_FCLK);
dss_select_dsi_clk_source(DSS_SRC_DSS1_ALWON_FCLK);
err1:
dsi_pll_uninit();
err0:
return r;
}
static void dsi_display_uninit_dsi(struct omap_dss_device *dssdev)
{
if (dssdev->driver->disable)
dssdev->driver->disable(dssdev);
dss_select_dispc_clk_source(DSS_SRC_DSS1_ALWON_FCLK);
dss_select_dsi_clk_source(DSS_SRC_DSS1_ALWON_FCLK);
dsi_complexio_uninit();
dsi_pll_uninit();
}
static int dsi_core_init(void)
{
/* Autoidle */
REG_FLD_MOD(DSI_SYSCONFIG, 1, 0, 0);
/* ENWAKEUP */
REG_FLD_MOD(DSI_SYSCONFIG, 1, 2, 2);
/* SIDLEMODE smart-idle */
REG_FLD_MOD(DSI_SYSCONFIG, 2, 4, 3);
_dsi_initialize_irq();
return 0;
}
static int dsi_display_enable(struct omap_dss_device *dssdev)
{
int r = 0;
DSSDBG("dsi_display_enable\n");
mutex_lock(&dsi.lock);
dsi_bus_lock();
r = omap_dss_start_device(dssdev);
if (r) {
DSSERR("failed to start device\n");
goto err0;
}
if (dssdev->state != OMAP_DSS_DISPLAY_DISABLED) {
DSSERR("dssdev already enabled\n");
r = -EINVAL;
goto err1;
}
enable_clocks(1);
dsi_enable_pll_clock(1);
r = _dsi_reset();
if (r)
goto err2;
dsi_core_init();
r = dsi_display_init_dispc(dssdev);
if (r)
goto err2;
r = dsi_display_init_dsi(dssdev);
if (r)
goto err3;
dssdev->state = OMAP_DSS_DISPLAY_ACTIVE;
dsi.use_ext_te = dssdev->phy.dsi.ext_te;
r = dsi_set_te(dssdev, dsi.te_enabled);
if (r)
goto err4;
dsi_set_update_mode(dssdev, dsi.user_update_mode);
dsi_bus_unlock();
mutex_unlock(&dsi.lock);
return 0;
err4:
dsi_display_uninit_dsi(dssdev);
err3:
dsi_display_uninit_dispc(dssdev);
err2:
enable_clocks(0);
dsi_enable_pll_clock(0);
err1:
omap_dss_stop_device(dssdev);
err0:
dsi_bus_unlock();
mutex_unlock(&dsi.lock);
DSSDBG("dsi_display_enable FAILED\n");
return r;
}
static void dsi_display_disable(struct omap_dss_device *dssdev)
{
DSSDBG("dsi_display_disable\n");
mutex_lock(&dsi.lock);
dsi_bus_lock();
if (dssdev->state == OMAP_DSS_DISPLAY_DISABLED ||
dssdev->state == OMAP_DSS_DISPLAY_SUSPENDED)
goto end;
dsi.update_mode = OMAP_DSS_UPDATE_DISABLED;
dssdev->state = OMAP_DSS_DISPLAY_DISABLED;
dsi_display_uninit_dispc(dssdev);
dsi_display_uninit_dsi(dssdev);
enable_clocks(0);
dsi_enable_pll_clock(0);
omap_dss_stop_device(dssdev);
end:
dsi_bus_unlock();
mutex_unlock(&dsi.lock);
}
static int dsi_display_suspend(struct omap_dss_device *dssdev)
{
DSSDBG("dsi_display_suspend\n");
mutex_lock(&dsi.lock);
dsi_bus_lock();
if (dssdev->state == OMAP_DSS_DISPLAY_DISABLED ||
dssdev->state == OMAP_DSS_DISPLAY_SUSPENDED)
goto end;
dsi.update_mode = OMAP_DSS_UPDATE_DISABLED;
dssdev->state = OMAP_DSS_DISPLAY_SUSPENDED;
dsi_display_uninit_dispc(dssdev);
dsi_display_uninit_dsi(dssdev);
enable_clocks(0);
dsi_enable_pll_clock(0);
end:
dsi_bus_unlock();
mutex_unlock(&dsi.lock);
return 0;
}
static int dsi_display_resume(struct omap_dss_device *dssdev)
{
int r;
DSSDBG("dsi_display_resume\n");
mutex_lock(&dsi.lock);
dsi_bus_lock();
if (dssdev->state != OMAP_DSS_DISPLAY_SUSPENDED) {
DSSERR("dssdev not suspended\n");
r = -EINVAL;
goto err0;
}
enable_clocks(1);
dsi_enable_pll_clock(1);
r = _dsi_reset();
if (r)
goto err1;
dsi_core_init();
r = dsi_display_init_dispc(dssdev);
if (r)
goto err1;
r = dsi_display_init_dsi(dssdev);
if (r)
goto err2;
dssdev->state = OMAP_DSS_DISPLAY_ACTIVE;
r = dsi_set_te(dssdev, dsi.te_enabled);
if (r)
goto err2;
dsi_set_update_mode(dssdev, dsi.user_update_mode);
dsi_bus_unlock();
mutex_unlock(&dsi.lock);
return 0;
err2:
dsi_display_uninit_dispc(dssdev);
err1:
enable_clocks(0);
dsi_enable_pll_clock(0);
err0:
dsi_bus_unlock();
mutex_unlock(&dsi.lock);
DSSDBG("dsi_display_resume FAILED\n");
return r;
}
static int dsi_display_update(struct omap_dss_device *dssdev,
u16 x, u16 y, u16 w, u16 h)
{
int r = 0;
u16 dw, dh;
DSSDBG("dsi_display_update(%d,%d %dx%d)\n", x, y, w, h);
mutex_lock(&dsi.lock);
if (dsi.update_mode != OMAP_DSS_UPDATE_MANUAL)
goto end;
if (dssdev->state != OMAP_DSS_DISPLAY_ACTIVE)
goto end;
dssdev->get_resolution(dssdev, &dw, &dh);
if (x > dw || y > dh)
goto end;
if (x + w > dw)
w = dw - x;
if (y + h > dh)
h = dh - y;
if (w == 0 || h == 0)
goto end;
if (w == 1) {
r = -EINVAL;
goto end;
}
dsi_set_update_region(dssdev, x, y, w, h);
wake_up(&dsi.waitqueue);
end:
mutex_unlock(&dsi.lock);
return r;
}
static int dsi_display_sync(struct omap_dss_device *dssdev)
{
bool wait;
DSSDBG("dsi_display_sync()\n");
mutex_lock(&dsi.lock);
dsi_bus_lock();
if (dsi.update_mode == OMAP_DSS_UPDATE_MANUAL &&
dsi.update_region.dirty) {
INIT_COMPLETION(dsi.update_completion);
wait = true;
} else {
wait = false;
}
dsi_bus_unlock();
mutex_unlock(&dsi.lock);
if (wait)
wait_for_completion_interruptible(&dsi.update_completion);
DSSDBG("dsi_display_sync() done\n");
return 0;
}
static int dsi_display_set_update_mode(struct omap_dss_device *dssdev,
enum omap_dss_update_mode mode)
{
int r = 0;
DSSDBGF("%d", mode);
mutex_lock(&dsi.lock);
dsi_bus_lock();
dsi.user_update_mode = mode;
r = dsi_set_update_mode(dssdev, mode);
dsi_bus_unlock();
mutex_unlock(&dsi.lock);
return r;
}
static enum omap_dss_update_mode dsi_display_get_update_mode(
struct omap_dss_device *dssdev)
{
return dsi.update_mode;
}
static int dsi_display_enable_te(struct omap_dss_device *dssdev, bool enable)
{
int r = 0;
DSSDBGF("%d", enable);
if (!dssdev->driver->enable_te)
return -ENOENT;
dsi_bus_lock();
dsi.te_enabled = enable;
if (dssdev->state != OMAP_DSS_DISPLAY_ACTIVE)
goto end;
r = dsi_set_te(dssdev, enable);
end:
dsi_bus_unlock();
return r;
}
static int dsi_display_get_te(struct omap_dss_device *dssdev)
{
return dsi.te_enabled;
}
static int dsi_display_set_rotate(struct omap_dss_device *dssdev, u8 rotate)
{
DSSDBGF("%d", rotate);
if (!dssdev->driver->set_rotate || !dssdev->driver->get_rotate)
return -EINVAL;
dsi_bus_lock();
dssdev->driver->set_rotate(dssdev, rotate);
if (dsi.update_mode == OMAP_DSS_UPDATE_AUTO) {
u16 w, h;
/* the display dimensions may have changed, so set a new
* update region */
dssdev->get_resolution(dssdev, &w, &h);
dsi_set_update_region(dssdev, 0, 0, w, h);
}
dsi_bus_unlock();
return 0;
}
static u8 dsi_display_get_rotate(struct omap_dss_device *dssdev)
{
if (!dssdev->driver->set_rotate || !dssdev->driver->get_rotate)
return 0;
return dssdev->driver->get_rotate(dssdev);
}
static int dsi_display_set_mirror(struct omap_dss_device *dssdev, bool mirror)
{
DSSDBGF("%d", mirror);
if (!dssdev->driver->set_mirror || !dssdev->driver->get_mirror)
return -EINVAL;
dsi_bus_lock();
dssdev->driver->set_mirror(dssdev, mirror);
dsi_bus_unlock();
return 0;
}
static bool dsi_display_get_mirror(struct omap_dss_device *dssdev)
{
if (!dssdev->driver->set_mirror || !dssdev->driver->get_mirror)
return 0;
return dssdev->driver->get_mirror(dssdev);
}
static int dsi_display_run_test(struct omap_dss_device *dssdev, int test_num)
{
int r;
if (dssdev->state != OMAP_DSS_DISPLAY_ACTIVE)
return -EIO;
DSSDBGF("%d", test_num);
dsi_bus_lock();
/* run test first in low speed mode */
dsi_vc_enable_hs(0, 0);
if (dssdev->driver->run_test) {
r = dssdev->driver->run_test(dssdev, test_num);
if (r)
goto end;
}
/* then in high speed */
dsi_vc_enable_hs(0, 1);
if (dssdev->driver->run_test) {
r = dssdev->driver->run_test(dssdev, test_num);
if (r)
goto end;
}
end:
dsi_vc_enable_hs(0, 1);
dsi_bus_unlock();
return r;
}
static int dsi_display_memory_read(struct omap_dss_device *dssdev,
void *buf, size_t size,
u16 x, u16 y, u16 w, u16 h)
{
int r;
DSSDBGF("");
if (!dssdev->driver->memory_read)
return -EINVAL;
if (dssdev->state != OMAP_DSS_DISPLAY_ACTIVE)
return -EIO;
dsi_bus_lock();
r = dssdev->driver->memory_read(dssdev, buf, size,
x, y, w, h);
/* Memory read usually changes the update area. This will
* force the next update to re-set the update area */
dsi.active_update_region.dirty = true;
dsi_bus_unlock();
return r;
}
void dsi_get_overlay_fifo_thresholds(enum omap_plane plane,
u32 fifo_size, enum omap_burst_size *burst_size,
u32 *fifo_low, u32 *fifo_high)
{
unsigned burst_size_bytes;
*burst_size = OMAP_DSS_BURST_16x32;
burst_size_bytes = 16 * 32 / 8;
*fifo_high = fifo_size - burst_size_bytes;
*fifo_low = fifo_size - burst_size_bytes * 8;
}
int dsi_init_display(struct omap_dss_device *dssdev)
{
DSSDBG("DSI init\n");
dssdev->enable = dsi_display_enable;
dssdev->disable = dsi_display_disable;
dssdev->suspend = dsi_display_suspend;
dssdev->resume = dsi_display_resume;
dssdev->update = dsi_display_update;
dssdev->sync = dsi_display_sync;
dssdev->set_update_mode = dsi_display_set_update_mode;
dssdev->get_update_mode = dsi_display_get_update_mode;
dssdev->enable_te = dsi_display_enable_te;
dssdev->get_te = dsi_display_get_te;
dssdev->get_rotate = dsi_display_get_rotate;
dssdev->set_rotate = dsi_display_set_rotate;
dssdev->get_mirror = dsi_display_get_mirror;
dssdev->set_mirror = dsi_display_set_mirror;
dssdev->run_test = dsi_display_run_test;
dssdev->memory_read = dsi_display_memory_read;
/* XXX these should be figured out dynamically */
dssdev->caps = OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE |
OMAP_DSS_DISPLAY_CAP_TEAR_ELIM;
dsi.vc[0].dssdev = dssdev;
dsi.vc[1].dssdev = dssdev;
return 0;
}
int dsi_init(struct platform_device *pdev)
{
u32 rev;
int r;
struct sched_param param = {
.sched_priority = MAX_USER_RT_PRIO-1
};
spin_lock_init(&dsi.errors_lock);
dsi.errors = 0;
#ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
spin_lock_init(&dsi.irq_stats_lock);
dsi.irq_stats.last_reset = jiffies;
#endif
init_completion(&dsi.bta_completion);
init_completion(&dsi.update_completion);
dsi.thread = kthread_create(dsi_update_thread, NULL, "dsi");
if (IS_ERR(dsi.thread)) {
DSSERR("cannot create kthread\n");
r = PTR_ERR(dsi.thread);
goto err0;
}
sched_setscheduler(dsi.thread, SCHED_FIFO, &param);
init_waitqueue_head(&dsi.waitqueue);
spin_lock_init(&dsi.update_lock);
mutex_init(&dsi.lock);
mutex_init(&dsi.bus_lock);
#ifdef DSI_CATCH_MISSING_TE
init_timer(&dsi.te_timer);
dsi.te_timer.function = dsi_te_timeout;
dsi.te_timer.data = 0;
#endif
dsi.update_mode = OMAP_DSS_UPDATE_DISABLED;
dsi.user_update_mode = OMAP_DSS_UPDATE_DISABLED;
dsi.base = ioremap(DSI_BASE, DSI_SZ_REGS);
if (!dsi.base) {
DSSERR("can't ioremap DSI\n");
r = -ENOMEM;
goto err1;
}
dsi.vdds_dsi_reg = dss_get_vdds_dsi();
if (IS_ERR(dsi.vdds_dsi_reg)) {
iounmap(dsi.base);
DSSERR("can't get VDDS_DSI regulator\n");
r = PTR_ERR(dsi.vdds_dsi_reg);
goto err2;
}
enable_clocks(1);
rev = dsi_read_reg(DSI_REVISION);
printk(KERN_INFO "OMAP DSI rev %d.%d\n",
FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
enable_clocks(0);
wake_up_process(dsi.thread);
return 0;
err2:
iounmap(dsi.base);
err1:
kthread_stop(dsi.thread);
err0:
return r;
}
void dsi_exit(void)
{
kthread_stop(dsi.thread);
iounmap(dsi.base);
DSSDBG("omap_dsi_exit\n");
}