mirror of
https://github.com/torvalds/linux.git
synced 2024-12-30 14:52:05 +00:00
6b3ad6649a
Commit69f594a389
("ptrace: do not audit capability check when outputing /proc/pid/stat") introduced the ability to opt out of audit messages for accesses to various proc files since they are not violations of policy. While doing so it somehow switched the check from ns_capable() to has_ns_capability{_noaudit}(). That means it switched from checking the subjective credentials of the task to using the objective credentials. This is wrong since. ptrace_has_cap() is currently only used in ptrace_may_access() And is used to check whether the calling task (subject) has the CAP_SYS_PTRACE capability in the provided user namespace to operate on the target task (object). According to the cred.h comments this would mean the subjective credentials of the calling task need to be used. This switches ptrace_has_cap() to use security_capable(). Because we only call ptrace_has_cap() in ptrace_may_access() and in there we already have a stable reference to the calling task's creds under rcu_read_lock() there's no need to go through another series of dereferences and rcu locking done in ns_capable{_noaudit}(). As one example where this might be particularly problematic, Jann pointed out that in combination with the upcoming IORING_OP_OPENAT feature, this bug might allow unprivileged users to bypass the capability checks while asynchronously opening files like /proc/*/mem, because the capability checks for this would be performed against kernel credentials. To illustrate on the former point about this being exploitable: When io_uring creates a new context it records the subjective credentials of the caller. Later on, when it starts to do work it creates a kernel thread and registers a callback. The callback runs with kernel creds for ktask->real_cred and ktask->cred. To prevent this from becoming a full-blown 0-day io_uring will call override_cred() and override ktask->cred with the subjective credentials of the creator of the io_uring instance. With ptrace_has_cap() currently looking at ktask->real_cred this override will be ineffective and the caller will be able to open arbitray proc files as mentioned above. Luckily, this is currently not exploitable but will turn into a 0-day once IORING_OP_OPENAT{2} land in v5.6. Fix it now! Cc: Oleg Nesterov <oleg@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: stable@vger.kernel.org Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: Jann Horn <jannh@google.com> Fixes:69f594a389
("ptrace: do not audit capability check when outputing /proc/pid/stat") Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
1431 lines
36 KiB
C
1431 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/kernel/ptrace.c
|
|
*
|
|
* (C) Copyright 1999 Linus Torvalds
|
|
*
|
|
* Common interfaces for "ptrace()" which we do not want
|
|
* to continually duplicate across every architecture.
|
|
*/
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/security.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/regset.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/sched/signal.h>
|
|
|
|
#include <asm/syscall.h> /* for syscall_get_* */
|
|
|
|
/*
|
|
* Access another process' address space via ptrace.
|
|
* Source/target buffer must be kernel space,
|
|
* Do not walk the page table directly, use get_user_pages
|
|
*/
|
|
int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
|
|
void *buf, int len, unsigned int gup_flags)
|
|
{
|
|
struct mm_struct *mm;
|
|
int ret;
|
|
|
|
mm = get_task_mm(tsk);
|
|
if (!mm)
|
|
return 0;
|
|
|
|
if (!tsk->ptrace ||
|
|
(current != tsk->parent) ||
|
|
((get_dumpable(mm) != SUID_DUMP_USER) &&
|
|
!ptracer_capable(tsk, mm->user_ns))) {
|
|
mmput(mm);
|
|
return 0;
|
|
}
|
|
|
|
ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
|
|
mmput(mm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
|
|
const struct cred *ptracer_cred)
|
|
{
|
|
BUG_ON(!list_empty(&child->ptrace_entry));
|
|
list_add(&child->ptrace_entry, &new_parent->ptraced);
|
|
child->parent = new_parent;
|
|
child->ptracer_cred = get_cred(ptracer_cred);
|
|
}
|
|
|
|
/*
|
|
* ptrace a task: make the debugger its new parent and
|
|
* move it to the ptrace list.
|
|
*
|
|
* Must be called with the tasklist lock write-held.
|
|
*/
|
|
static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
|
|
{
|
|
__ptrace_link(child, new_parent, current_cred());
|
|
}
|
|
|
|
/**
|
|
* __ptrace_unlink - unlink ptracee and restore its execution state
|
|
* @child: ptracee to be unlinked
|
|
*
|
|
* Remove @child from the ptrace list, move it back to the original parent,
|
|
* and restore the execution state so that it conforms to the group stop
|
|
* state.
|
|
*
|
|
* Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
|
|
* exiting. For PTRACE_DETACH, unless the ptracee has been killed between
|
|
* ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
|
|
* If the ptracer is exiting, the ptracee can be in any state.
|
|
*
|
|
* After detach, the ptracee should be in a state which conforms to the
|
|
* group stop. If the group is stopped or in the process of stopping, the
|
|
* ptracee should be put into TASK_STOPPED; otherwise, it should be woken
|
|
* up from TASK_TRACED.
|
|
*
|
|
* If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
|
|
* it goes through TRACED -> RUNNING -> STOPPED transition which is similar
|
|
* to but in the opposite direction of what happens while attaching to a
|
|
* stopped task. However, in this direction, the intermediate RUNNING
|
|
* state is not hidden even from the current ptracer and if it immediately
|
|
* re-attaches and performs a WNOHANG wait(2), it may fail.
|
|
*
|
|
* CONTEXT:
|
|
* write_lock_irq(tasklist_lock)
|
|
*/
|
|
void __ptrace_unlink(struct task_struct *child)
|
|
{
|
|
const struct cred *old_cred;
|
|
BUG_ON(!child->ptrace);
|
|
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
#ifdef TIF_SYSCALL_EMU
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
#endif
|
|
|
|
child->parent = child->real_parent;
|
|
list_del_init(&child->ptrace_entry);
|
|
old_cred = child->ptracer_cred;
|
|
child->ptracer_cred = NULL;
|
|
put_cred(old_cred);
|
|
|
|
spin_lock(&child->sighand->siglock);
|
|
child->ptrace = 0;
|
|
/*
|
|
* Clear all pending traps and TRAPPING. TRAPPING should be
|
|
* cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
|
|
*/
|
|
task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
|
|
task_clear_jobctl_trapping(child);
|
|
|
|
/*
|
|
* Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
|
|
* @child isn't dead.
|
|
*/
|
|
if (!(child->flags & PF_EXITING) &&
|
|
(child->signal->flags & SIGNAL_STOP_STOPPED ||
|
|
child->signal->group_stop_count)) {
|
|
child->jobctl |= JOBCTL_STOP_PENDING;
|
|
|
|
/*
|
|
* This is only possible if this thread was cloned by the
|
|
* traced task running in the stopped group, set the signal
|
|
* for the future reports.
|
|
* FIXME: we should change ptrace_init_task() to handle this
|
|
* case.
|
|
*/
|
|
if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
|
|
child->jobctl |= SIGSTOP;
|
|
}
|
|
|
|
/*
|
|
* If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
|
|
* @child in the butt. Note that @resume should be used iff @child
|
|
* is in TASK_TRACED; otherwise, we might unduly disrupt
|
|
* TASK_KILLABLE sleeps.
|
|
*/
|
|
if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
|
|
ptrace_signal_wake_up(child, true);
|
|
|
|
spin_unlock(&child->sighand->siglock);
|
|
}
|
|
|
|
/* Ensure that nothing can wake it up, even SIGKILL */
|
|
static bool ptrace_freeze_traced(struct task_struct *task)
|
|
{
|
|
bool ret = false;
|
|
|
|
/* Lockless, nobody but us can set this flag */
|
|
if (task->jobctl & JOBCTL_LISTENING)
|
|
return ret;
|
|
|
|
spin_lock_irq(&task->sighand->siglock);
|
|
if (task_is_traced(task) && !__fatal_signal_pending(task)) {
|
|
task->state = __TASK_TRACED;
|
|
ret = true;
|
|
}
|
|
spin_unlock_irq(&task->sighand->siglock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ptrace_unfreeze_traced(struct task_struct *task)
|
|
{
|
|
if (task->state != __TASK_TRACED)
|
|
return;
|
|
|
|
WARN_ON(!task->ptrace || task->parent != current);
|
|
|
|
/*
|
|
* PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
|
|
* Recheck state under the lock to close this race.
|
|
*/
|
|
spin_lock_irq(&task->sighand->siglock);
|
|
if (task->state == __TASK_TRACED) {
|
|
if (__fatal_signal_pending(task))
|
|
wake_up_state(task, __TASK_TRACED);
|
|
else
|
|
task->state = TASK_TRACED;
|
|
}
|
|
spin_unlock_irq(&task->sighand->siglock);
|
|
}
|
|
|
|
/**
|
|
* ptrace_check_attach - check whether ptracee is ready for ptrace operation
|
|
* @child: ptracee to check for
|
|
* @ignore_state: don't check whether @child is currently %TASK_TRACED
|
|
*
|
|
* Check whether @child is being ptraced by %current and ready for further
|
|
* ptrace operations. If @ignore_state is %false, @child also should be in
|
|
* %TASK_TRACED state and on return the child is guaranteed to be traced
|
|
* and not executing. If @ignore_state is %true, @child can be in any
|
|
* state.
|
|
*
|
|
* CONTEXT:
|
|
* Grabs and releases tasklist_lock and @child->sighand->siglock.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -ESRCH if %child is not ready.
|
|
*/
|
|
static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
|
|
{
|
|
int ret = -ESRCH;
|
|
|
|
/*
|
|
* We take the read lock around doing both checks to close a
|
|
* possible race where someone else was tracing our child and
|
|
* detached between these two checks. After this locked check,
|
|
* we are sure that this is our traced child and that can only
|
|
* be changed by us so it's not changing right after this.
|
|
*/
|
|
read_lock(&tasklist_lock);
|
|
if (child->ptrace && child->parent == current) {
|
|
WARN_ON(child->state == __TASK_TRACED);
|
|
/*
|
|
* child->sighand can't be NULL, release_task()
|
|
* does ptrace_unlink() before __exit_signal().
|
|
*/
|
|
if (ignore_state || ptrace_freeze_traced(child))
|
|
ret = 0;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (!ret && !ignore_state) {
|
|
if (!wait_task_inactive(child, __TASK_TRACED)) {
|
|
/*
|
|
* This can only happen if may_ptrace_stop() fails and
|
|
* ptrace_stop() changes ->state back to TASK_RUNNING,
|
|
* so we should not worry about leaking __TASK_TRACED.
|
|
*/
|
|
WARN_ON(child->state == __TASK_TRACED);
|
|
ret = -ESRCH;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool ptrace_has_cap(const struct cred *cred, struct user_namespace *ns,
|
|
unsigned int mode)
|
|
{
|
|
int ret;
|
|
|
|
if (mode & PTRACE_MODE_NOAUDIT)
|
|
ret = security_capable(cred, ns, CAP_SYS_PTRACE, CAP_OPT_NOAUDIT);
|
|
else
|
|
ret = security_capable(cred, ns, CAP_SYS_PTRACE, CAP_OPT_NONE);
|
|
|
|
return ret == 0;
|
|
}
|
|
|
|
/* Returns 0 on success, -errno on denial. */
|
|
static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
|
|
{
|
|
const struct cred *cred = current_cred(), *tcred;
|
|
struct mm_struct *mm;
|
|
kuid_t caller_uid;
|
|
kgid_t caller_gid;
|
|
|
|
if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
|
|
WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* May we inspect the given task?
|
|
* This check is used both for attaching with ptrace
|
|
* and for allowing access to sensitive information in /proc.
|
|
*
|
|
* ptrace_attach denies several cases that /proc allows
|
|
* because setting up the necessary parent/child relationship
|
|
* or halting the specified task is impossible.
|
|
*/
|
|
|
|
/* Don't let security modules deny introspection */
|
|
if (same_thread_group(task, current))
|
|
return 0;
|
|
rcu_read_lock();
|
|
if (mode & PTRACE_MODE_FSCREDS) {
|
|
caller_uid = cred->fsuid;
|
|
caller_gid = cred->fsgid;
|
|
} else {
|
|
/*
|
|
* Using the euid would make more sense here, but something
|
|
* in userland might rely on the old behavior, and this
|
|
* shouldn't be a security problem since
|
|
* PTRACE_MODE_REALCREDS implies that the caller explicitly
|
|
* used a syscall that requests access to another process
|
|
* (and not a filesystem syscall to procfs).
|
|
*/
|
|
caller_uid = cred->uid;
|
|
caller_gid = cred->gid;
|
|
}
|
|
tcred = __task_cred(task);
|
|
if (uid_eq(caller_uid, tcred->euid) &&
|
|
uid_eq(caller_uid, tcred->suid) &&
|
|
uid_eq(caller_uid, tcred->uid) &&
|
|
gid_eq(caller_gid, tcred->egid) &&
|
|
gid_eq(caller_gid, tcred->sgid) &&
|
|
gid_eq(caller_gid, tcred->gid))
|
|
goto ok;
|
|
if (ptrace_has_cap(cred, tcred->user_ns, mode))
|
|
goto ok;
|
|
rcu_read_unlock();
|
|
return -EPERM;
|
|
ok:
|
|
rcu_read_unlock();
|
|
/*
|
|
* If a task drops privileges and becomes nondumpable (through a syscall
|
|
* like setresuid()) while we are trying to access it, we must ensure
|
|
* that the dumpability is read after the credentials; otherwise,
|
|
* we may be able to attach to a task that we shouldn't be able to
|
|
* attach to (as if the task had dropped privileges without becoming
|
|
* nondumpable).
|
|
* Pairs with a write barrier in commit_creds().
|
|
*/
|
|
smp_rmb();
|
|
mm = task->mm;
|
|
if (mm &&
|
|
((get_dumpable(mm) != SUID_DUMP_USER) &&
|
|
!ptrace_has_cap(cred, mm->user_ns, mode)))
|
|
return -EPERM;
|
|
|
|
return security_ptrace_access_check(task, mode);
|
|
}
|
|
|
|
bool ptrace_may_access(struct task_struct *task, unsigned int mode)
|
|
{
|
|
int err;
|
|
task_lock(task);
|
|
err = __ptrace_may_access(task, mode);
|
|
task_unlock(task);
|
|
return !err;
|
|
}
|
|
|
|
static int ptrace_attach(struct task_struct *task, long request,
|
|
unsigned long addr,
|
|
unsigned long flags)
|
|
{
|
|
bool seize = (request == PTRACE_SEIZE);
|
|
int retval;
|
|
|
|
retval = -EIO;
|
|
if (seize) {
|
|
if (addr != 0)
|
|
goto out;
|
|
if (flags & ~(unsigned long)PTRACE_O_MASK)
|
|
goto out;
|
|
flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
|
|
} else {
|
|
flags = PT_PTRACED;
|
|
}
|
|
|
|
audit_ptrace(task);
|
|
|
|
retval = -EPERM;
|
|
if (unlikely(task->flags & PF_KTHREAD))
|
|
goto out;
|
|
if (same_thread_group(task, current))
|
|
goto out;
|
|
|
|
/*
|
|
* Protect exec's credential calculations against our interference;
|
|
* SUID, SGID and LSM creds get determined differently
|
|
* under ptrace.
|
|
*/
|
|
retval = -ERESTARTNOINTR;
|
|
if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
|
|
goto out;
|
|
|
|
task_lock(task);
|
|
retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
|
|
task_unlock(task);
|
|
if (retval)
|
|
goto unlock_creds;
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
retval = -EPERM;
|
|
if (unlikely(task->exit_state))
|
|
goto unlock_tasklist;
|
|
if (task->ptrace)
|
|
goto unlock_tasklist;
|
|
|
|
if (seize)
|
|
flags |= PT_SEIZED;
|
|
task->ptrace = flags;
|
|
|
|
ptrace_link(task, current);
|
|
|
|
/* SEIZE doesn't trap tracee on attach */
|
|
if (!seize)
|
|
send_sig_info(SIGSTOP, SEND_SIG_PRIV, task);
|
|
|
|
spin_lock(&task->sighand->siglock);
|
|
|
|
/*
|
|
* If the task is already STOPPED, set JOBCTL_TRAP_STOP and
|
|
* TRAPPING, and kick it so that it transits to TRACED. TRAPPING
|
|
* will be cleared if the child completes the transition or any
|
|
* event which clears the group stop states happens. We'll wait
|
|
* for the transition to complete before returning from this
|
|
* function.
|
|
*
|
|
* This hides STOPPED -> RUNNING -> TRACED transition from the
|
|
* attaching thread but a different thread in the same group can
|
|
* still observe the transient RUNNING state. IOW, if another
|
|
* thread's WNOHANG wait(2) on the stopped tracee races against
|
|
* ATTACH, the wait(2) may fail due to the transient RUNNING.
|
|
*
|
|
* The following task_is_stopped() test is safe as both transitions
|
|
* in and out of STOPPED are protected by siglock.
|
|
*/
|
|
if (task_is_stopped(task) &&
|
|
task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
|
|
signal_wake_up_state(task, __TASK_STOPPED);
|
|
|
|
spin_unlock(&task->sighand->siglock);
|
|
|
|
retval = 0;
|
|
unlock_tasklist:
|
|
write_unlock_irq(&tasklist_lock);
|
|
unlock_creds:
|
|
mutex_unlock(&task->signal->cred_guard_mutex);
|
|
out:
|
|
if (!retval) {
|
|
/*
|
|
* We do not bother to change retval or clear JOBCTL_TRAPPING
|
|
* if wait_on_bit() was interrupted by SIGKILL. The tracer will
|
|
* not return to user-mode, it will exit and clear this bit in
|
|
* __ptrace_unlink() if it wasn't already cleared by the tracee;
|
|
* and until then nobody can ptrace this task.
|
|
*/
|
|
wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
|
|
proc_ptrace_connector(task, PTRACE_ATTACH);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* ptrace_traceme -- helper for PTRACE_TRACEME
|
|
*
|
|
* Performs checks and sets PT_PTRACED.
|
|
* Should be used by all ptrace implementations for PTRACE_TRACEME.
|
|
*/
|
|
static int ptrace_traceme(void)
|
|
{
|
|
int ret = -EPERM;
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
/* Are we already being traced? */
|
|
if (!current->ptrace) {
|
|
ret = security_ptrace_traceme(current->parent);
|
|
/*
|
|
* Check PF_EXITING to ensure ->real_parent has not passed
|
|
* exit_ptrace(). Otherwise we don't report the error but
|
|
* pretend ->real_parent untraces us right after return.
|
|
*/
|
|
if (!ret && !(current->real_parent->flags & PF_EXITING)) {
|
|
current->ptrace = PT_PTRACED;
|
|
ptrace_link(current, current->real_parent);
|
|
}
|
|
}
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called with irqs disabled, returns true if childs should reap themselves.
|
|
*/
|
|
static int ignoring_children(struct sighand_struct *sigh)
|
|
{
|
|
int ret;
|
|
spin_lock(&sigh->siglock);
|
|
ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
|
|
(sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
|
|
spin_unlock(&sigh->siglock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called with tasklist_lock held for writing.
|
|
* Unlink a traced task, and clean it up if it was a traced zombie.
|
|
* Return true if it needs to be reaped with release_task().
|
|
* (We can't call release_task() here because we already hold tasklist_lock.)
|
|
*
|
|
* If it's a zombie, our attachedness prevented normal parent notification
|
|
* or self-reaping. Do notification now if it would have happened earlier.
|
|
* If it should reap itself, return true.
|
|
*
|
|
* If it's our own child, there is no notification to do. But if our normal
|
|
* children self-reap, then this child was prevented by ptrace and we must
|
|
* reap it now, in that case we must also wake up sub-threads sleeping in
|
|
* do_wait().
|
|
*/
|
|
static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
|
|
{
|
|
bool dead;
|
|
|
|
__ptrace_unlink(p);
|
|
|
|
if (p->exit_state != EXIT_ZOMBIE)
|
|
return false;
|
|
|
|
dead = !thread_group_leader(p);
|
|
|
|
if (!dead && thread_group_empty(p)) {
|
|
if (!same_thread_group(p->real_parent, tracer))
|
|
dead = do_notify_parent(p, p->exit_signal);
|
|
else if (ignoring_children(tracer->sighand)) {
|
|
__wake_up_parent(p, tracer);
|
|
dead = true;
|
|
}
|
|
}
|
|
/* Mark it as in the process of being reaped. */
|
|
if (dead)
|
|
p->exit_state = EXIT_DEAD;
|
|
return dead;
|
|
}
|
|
|
|
static int ptrace_detach(struct task_struct *child, unsigned int data)
|
|
{
|
|
if (!valid_signal(data))
|
|
return -EIO;
|
|
|
|
/* Architecture-specific hardware disable .. */
|
|
ptrace_disable(child);
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
/*
|
|
* We rely on ptrace_freeze_traced(). It can't be killed and
|
|
* untraced by another thread, it can't be a zombie.
|
|
*/
|
|
WARN_ON(!child->ptrace || child->exit_state);
|
|
/*
|
|
* tasklist_lock avoids the race with wait_task_stopped(), see
|
|
* the comment in ptrace_resume().
|
|
*/
|
|
child->exit_code = data;
|
|
__ptrace_detach(current, child);
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
|
proc_ptrace_connector(child, PTRACE_DETACH);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Detach all tasks we were using ptrace on. Called with tasklist held
|
|
* for writing.
|
|
*/
|
|
void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
|
|
{
|
|
struct task_struct *p, *n;
|
|
|
|
list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
|
|
if (unlikely(p->ptrace & PT_EXITKILL))
|
|
send_sig_info(SIGKILL, SEND_SIG_PRIV, p);
|
|
|
|
if (__ptrace_detach(tracer, p))
|
|
list_add(&p->ptrace_entry, dead);
|
|
}
|
|
}
|
|
|
|
int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
|
|
{
|
|
int copied = 0;
|
|
|
|
while (len > 0) {
|
|
char buf[128];
|
|
int this_len, retval;
|
|
|
|
this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
|
|
retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
|
|
|
|
if (!retval) {
|
|
if (copied)
|
|
break;
|
|
return -EIO;
|
|
}
|
|
if (copy_to_user(dst, buf, retval))
|
|
return -EFAULT;
|
|
copied += retval;
|
|
src += retval;
|
|
dst += retval;
|
|
len -= retval;
|
|
}
|
|
return copied;
|
|
}
|
|
|
|
int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
|
|
{
|
|
int copied = 0;
|
|
|
|
while (len > 0) {
|
|
char buf[128];
|
|
int this_len, retval;
|
|
|
|
this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
|
|
if (copy_from_user(buf, src, this_len))
|
|
return -EFAULT;
|
|
retval = ptrace_access_vm(tsk, dst, buf, this_len,
|
|
FOLL_FORCE | FOLL_WRITE);
|
|
if (!retval) {
|
|
if (copied)
|
|
break;
|
|
return -EIO;
|
|
}
|
|
copied += retval;
|
|
src += retval;
|
|
dst += retval;
|
|
len -= retval;
|
|
}
|
|
return copied;
|
|
}
|
|
|
|
static int ptrace_setoptions(struct task_struct *child, unsigned long data)
|
|
{
|
|
unsigned flags;
|
|
|
|
if (data & ~(unsigned long)PTRACE_O_MASK)
|
|
return -EINVAL;
|
|
|
|
if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
|
|
if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
|
|
!IS_ENABLED(CONFIG_SECCOMP))
|
|
return -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED ||
|
|
current->ptrace & PT_SUSPEND_SECCOMP)
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Avoid intermediate state when all opts are cleared */
|
|
flags = child->ptrace;
|
|
flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
|
|
flags |= (data << PT_OPT_FLAG_SHIFT);
|
|
child->ptrace = flags;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info)
|
|
{
|
|
unsigned long flags;
|
|
int error = -ESRCH;
|
|
|
|
if (lock_task_sighand(child, &flags)) {
|
|
error = -EINVAL;
|
|
if (likely(child->last_siginfo != NULL)) {
|
|
copy_siginfo(info, child->last_siginfo);
|
|
error = 0;
|
|
}
|
|
unlock_task_sighand(child, &flags);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info)
|
|
{
|
|
unsigned long flags;
|
|
int error = -ESRCH;
|
|
|
|
if (lock_task_sighand(child, &flags)) {
|
|
error = -EINVAL;
|
|
if (likely(child->last_siginfo != NULL)) {
|
|
copy_siginfo(child->last_siginfo, info);
|
|
error = 0;
|
|
}
|
|
unlock_task_sighand(child, &flags);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int ptrace_peek_siginfo(struct task_struct *child,
|
|
unsigned long addr,
|
|
unsigned long data)
|
|
{
|
|
struct ptrace_peeksiginfo_args arg;
|
|
struct sigpending *pending;
|
|
struct sigqueue *q;
|
|
int ret, i;
|
|
|
|
ret = copy_from_user(&arg, (void __user *) addr,
|
|
sizeof(struct ptrace_peeksiginfo_args));
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
|
|
return -EINVAL; /* unknown flags */
|
|
|
|
if (arg.nr < 0)
|
|
return -EINVAL;
|
|
|
|
/* Ensure arg.off fits in an unsigned long */
|
|
if (arg.off > ULONG_MAX)
|
|
return 0;
|
|
|
|
if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
|
|
pending = &child->signal->shared_pending;
|
|
else
|
|
pending = &child->pending;
|
|
|
|
for (i = 0; i < arg.nr; ) {
|
|
kernel_siginfo_t info;
|
|
unsigned long off = arg.off + i;
|
|
bool found = false;
|
|
|
|
spin_lock_irq(&child->sighand->siglock);
|
|
list_for_each_entry(q, &pending->list, list) {
|
|
if (!off--) {
|
|
found = true;
|
|
copy_siginfo(&info, &q->info);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irq(&child->sighand->siglock);
|
|
|
|
if (!found) /* beyond the end of the list */
|
|
break;
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
if (unlikely(in_compat_syscall())) {
|
|
compat_siginfo_t __user *uinfo = compat_ptr(data);
|
|
|
|
if (copy_siginfo_to_user32(uinfo, &info)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
} else
|
|
#endif
|
|
{
|
|
siginfo_t __user *uinfo = (siginfo_t __user *) data;
|
|
|
|
if (copy_siginfo_to_user(uinfo, &info)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
data += sizeof(siginfo_t);
|
|
i++;
|
|
|
|
if (signal_pending(current))
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
if (i > 0)
|
|
return i;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef PTRACE_SINGLESTEP
|
|
#define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
|
|
#else
|
|
#define is_singlestep(request) 0
|
|
#endif
|
|
|
|
#ifdef PTRACE_SINGLEBLOCK
|
|
#define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
|
|
#else
|
|
#define is_singleblock(request) 0
|
|
#endif
|
|
|
|
#ifdef PTRACE_SYSEMU
|
|
#define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
|
|
#else
|
|
#define is_sysemu_singlestep(request) 0
|
|
#endif
|
|
|
|
static int ptrace_resume(struct task_struct *child, long request,
|
|
unsigned long data)
|
|
{
|
|
bool need_siglock;
|
|
|
|
if (!valid_signal(data))
|
|
return -EIO;
|
|
|
|
if (request == PTRACE_SYSCALL)
|
|
set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
else
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
|
|
|
|
#ifdef TIF_SYSCALL_EMU
|
|
if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
|
|
set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
else
|
|
clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
|
|
#endif
|
|
|
|
if (is_singleblock(request)) {
|
|
if (unlikely(!arch_has_block_step()))
|
|
return -EIO;
|
|
user_enable_block_step(child);
|
|
} else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
|
|
if (unlikely(!arch_has_single_step()))
|
|
return -EIO;
|
|
user_enable_single_step(child);
|
|
} else {
|
|
user_disable_single_step(child);
|
|
}
|
|
|
|
/*
|
|
* Change ->exit_code and ->state under siglock to avoid the race
|
|
* with wait_task_stopped() in between; a non-zero ->exit_code will
|
|
* wrongly look like another report from tracee.
|
|
*
|
|
* Note that we need siglock even if ->exit_code == data and/or this
|
|
* status was not reported yet, the new status must not be cleared by
|
|
* wait_task_stopped() after resume.
|
|
*
|
|
* If data == 0 we do not care if wait_task_stopped() reports the old
|
|
* status and clears the code too; this can't race with the tracee, it
|
|
* takes siglock after resume.
|
|
*/
|
|
need_siglock = data && !thread_group_empty(current);
|
|
if (need_siglock)
|
|
spin_lock_irq(&child->sighand->siglock);
|
|
child->exit_code = data;
|
|
wake_up_state(child, __TASK_TRACED);
|
|
if (need_siglock)
|
|
spin_unlock_irq(&child->sighand->siglock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
|
|
|
|
static const struct user_regset *
|
|
find_regset(const struct user_regset_view *view, unsigned int type)
|
|
{
|
|
const struct user_regset *regset;
|
|
int n;
|
|
|
|
for (n = 0; n < view->n; ++n) {
|
|
regset = view->regsets + n;
|
|
if (regset->core_note_type == type)
|
|
return regset;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
|
|
struct iovec *kiov)
|
|
{
|
|
const struct user_regset_view *view = task_user_regset_view(task);
|
|
const struct user_regset *regset = find_regset(view, type);
|
|
int regset_no;
|
|
|
|
if (!regset || (kiov->iov_len % regset->size) != 0)
|
|
return -EINVAL;
|
|
|
|
regset_no = regset - view->regsets;
|
|
kiov->iov_len = min(kiov->iov_len,
|
|
(__kernel_size_t) (regset->n * regset->size));
|
|
|
|
if (req == PTRACE_GETREGSET)
|
|
return copy_regset_to_user(task, view, regset_no, 0,
|
|
kiov->iov_len, kiov->iov_base);
|
|
else
|
|
return copy_regset_from_user(task, view, regset_no, 0,
|
|
kiov->iov_len, kiov->iov_base);
|
|
}
|
|
|
|
/*
|
|
* This is declared in linux/regset.h and defined in machine-dependent
|
|
* code. We put the export here, near the primary machine-neutral use,
|
|
* to ensure no machine forgets it.
|
|
*/
|
|
EXPORT_SYMBOL_GPL(task_user_regset_view);
|
|
|
|
static unsigned long
|
|
ptrace_get_syscall_info_entry(struct task_struct *child, struct pt_regs *regs,
|
|
struct ptrace_syscall_info *info)
|
|
{
|
|
unsigned long args[ARRAY_SIZE(info->entry.args)];
|
|
int i;
|
|
|
|
info->op = PTRACE_SYSCALL_INFO_ENTRY;
|
|
info->entry.nr = syscall_get_nr(child, regs);
|
|
syscall_get_arguments(child, regs, args);
|
|
for (i = 0; i < ARRAY_SIZE(args); i++)
|
|
info->entry.args[i] = args[i];
|
|
|
|
/* args is the last field in struct ptrace_syscall_info.entry */
|
|
return offsetofend(struct ptrace_syscall_info, entry.args);
|
|
}
|
|
|
|
static unsigned long
|
|
ptrace_get_syscall_info_seccomp(struct task_struct *child, struct pt_regs *regs,
|
|
struct ptrace_syscall_info *info)
|
|
{
|
|
/*
|
|
* As struct ptrace_syscall_info.entry is currently a subset
|
|
* of struct ptrace_syscall_info.seccomp, it makes sense to
|
|
* initialize that subset using ptrace_get_syscall_info_entry().
|
|
* This can be reconsidered in the future if these structures
|
|
* diverge significantly enough.
|
|
*/
|
|
ptrace_get_syscall_info_entry(child, regs, info);
|
|
info->op = PTRACE_SYSCALL_INFO_SECCOMP;
|
|
info->seccomp.ret_data = child->ptrace_message;
|
|
|
|
/* ret_data is the last field in struct ptrace_syscall_info.seccomp */
|
|
return offsetofend(struct ptrace_syscall_info, seccomp.ret_data);
|
|
}
|
|
|
|
static unsigned long
|
|
ptrace_get_syscall_info_exit(struct task_struct *child, struct pt_regs *regs,
|
|
struct ptrace_syscall_info *info)
|
|
{
|
|
info->op = PTRACE_SYSCALL_INFO_EXIT;
|
|
info->exit.rval = syscall_get_error(child, regs);
|
|
info->exit.is_error = !!info->exit.rval;
|
|
if (!info->exit.is_error)
|
|
info->exit.rval = syscall_get_return_value(child, regs);
|
|
|
|
/* is_error is the last field in struct ptrace_syscall_info.exit */
|
|
return offsetofend(struct ptrace_syscall_info, exit.is_error);
|
|
}
|
|
|
|
static int
|
|
ptrace_get_syscall_info(struct task_struct *child, unsigned long user_size,
|
|
void __user *datavp)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(child);
|
|
struct ptrace_syscall_info info = {
|
|
.op = PTRACE_SYSCALL_INFO_NONE,
|
|
.arch = syscall_get_arch(child),
|
|
.instruction_pointer = instruction_pointer(regs),
|
|
.stack_pointer = user_stack_pointer(regs),
|
|
};
|
|
unsigned long actual_size = offsetof(struct ptrace_syscall_info, entry);
|
|
unsigned long write_size;
|
|
|
|
/*
|
|
* This does not need lock_task_sighand() to access
|
|
* child->last_siginfo because ptrace_freeze_traced()
|
|
* called earlier by ptrace_check_attach() ensures that
|
|
* the tracee cannot go away and clear its last_siginfo.
|
|
*/
|
|
switch (child->last_siginfo ? child->last_siginfo->si_code : 0) {
|
|
case SIGTRAP | 0x80:
|
|
switch (child->ptrace_message) {
|
|
case PTRACE_EVENTMSG_SYSCALL_ENTRY:
|
|
actual_size = ptrace_get_syscall_info_entry(child, regs,
|
|
&info);
|
|
break;
|
|
case PTRACE_EVENTMSG_SYSCALL_EXIT:
|
|
actual_size = ptrace_get_syscall_info_exit(child, regs,
|
|
&info);
|
|
break;
|
|
}
|
|
break;
|
|
case SIGTRAP | (PTRACE_EVENT_SECCOMP << 8):
|
|
actual_size = ptrace_get_syscall_info_seccomp(child, regs,
|
|
&info);
|
|
break;
|
|
}
|
|
|
|
write_size = min(actual_size, user_size);
|
|
return copy_to_user(datavp, &info, write_size) ? -EFAULT : actual_size;
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
|
|
|
|
int ptrace_request(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data)
|
|
{
|
|
bool seized = child->ptrace & PT_SEIZED;
|
|
int ret = -EIO;
|
|
kernel_siginfo_t siginfo, *si;
|
|
void __user *datavp = (void __user *) data;
|
|
unsigned long __user *datalp = datavp;
|
|
unsigned long flags;
|
|
|
|
switch (request) {
|
|
case PTRACE_PEEKTEXT:
|
|
case PTRACE_PEEKDATA:
|
|
return generic_ptrace_peekdata(child, addr, data);
|
|
case PTRACE_POKETEXT:
|
|
case PTRACE_POKEDATA:
|
|
return generic_ptrace_pokedata(child, addr, data);
|
|
|
|
#ifdef PTRACE_OLDSETOPTIONS
|
|
case PTRACE_OLDSETOPTIONS:
|
|
#endif
|
|
case PTRACE_SETOPTIONS:
|
|
ret = ptrace_setoptions(child, data);
|
|
break;
|
|
case PTRACE_GETEVENTMSG:
|
|
ret = put_user(child->ptrace_message, datalp);
|
|
break;
|
|
|
|
case PTRACE_PEEKSIGINFO:
|
|
ret = ptrace_peek_siginfo(child, addr, data);
|
|
break;
|
|
|
|
case PTRACE_GETSIGINFO:
|
|
ret = ptrace_getsiginfo(child, &siginfo);
|
|
if (!ret)
|
|
ret = copy_siginfo_to_user(datavp, &siginfo);
|
|
break;
|
|
|
|
case PTRACE_SETSIGINFO:
|
|
ret = copy_siginfo_from_user(&siginfo, datavp);
|
|
if (!ret)
|
|
ret = ptrace_setsiginfo(child, &siginfo);
|
|
break;
|
|
|
|
case PTRACE_GETSIGMASK: {
|
|
sigset_t *mask;
|
|
|
|
if (addr != sizeof(sigset_t)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (test_tsk_restore_sigmask(child))
|
|
mask = &child->saved_sigmask;
|
|
else
|
|
mask = &child->blocked;
|
|
|
|
if (copy_to_user(datavp, mask, sizeof(sigset_t)))
|
|
ret = -EFAULT;
|
|
else
|
|
ret = 0;
|
|
|
|
break;
|
|
}
|
|
|
|
case PTRACE_SETSIGMASK: {
|
|
sigset_t new_set;
|
|
|
|
if (addr != sizeof(sigset_t)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
/*
|
|
* Every thread does recalc_sigpending() after resume, so
|
|
* retarget_shared_pending() and recalc_sigpending() are not
|
|
* called here.
|
|
*/
|
|
spin_lock_irq(&child->sighand->siglock);
|
|
child->blocked = new_set;
|
|
spin_unlock_irq(&child->sighand->siglock);
|
|
|
|
clear_tsk_restore_sigmask(child);
|
|
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
case PTRACE_INTERRUPT:
|
|
/*
|
|
* Stop tracee without any side-effect on signal or job
|
|
* control. At least one trap is guaranteed to happen
|
|
* after this request. If @child is already trapped, the
|
|
* current trap is not disturbed and another trap will
|
|
* happen after the current trap is ended with PTRACE_CONT.
|
|
*
|
|
* The actual trap might not be PTRACE_EVENT_STOP trap but
|
|
* the pending condition is cleared regardless.
|
|
*/
|
|
if (unlikely(!seized || !lock_task_sighand(child, &flags)))
|
|
break;
|
|
|
|
/*
|
|
* INTERRUPT doesn't disturb existing trap sans one
|
|
* exception. If ptracer issued LISTEN for the current
|
|
* STOP, this INTERRUPT should clear LISTEN and re-trap
|
|
* tracee into STOP.
|
|
*/
|
|
if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
|
|
ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
|
|
|
|
unlock_task_sighand(child, &flags);
|
|
ret = 0;
|
|
break;
|
|
|
|
case PTRACE_LISTEN:
|
|
/*
|
|
* Listen for events. Tracee must be in STOP. It's not
|
|
* resumed per-se but is not considered to be in TRACED by
|
|
* wait(2) or ptrace(2). If an async event (e.g. group
|
|
* stop state change) happens, tracee will enter STOP trap
|
|
* again. Alternatively, ptracer can issue INTERRUPT to
|
|
* finish listening and re-trap tracee into STOP.
|
|
*/
|
|
if (unlikely(!seized || !lock_task_sighand(child, &flags)))
|
|
break;
|
|
|
|
si = child->last_siginfo;
|
|
if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
|
|
child->jobctl |= JOBCTL_LISTENING;
|
|
/*
|
|
* If NOTIFY is set, it means event happened between
|
|
* start of this trap and now. Trigger re-trap.
|
|
*/
|
|
if (child->jobctl & JOBCTL_TRAP_NOTIFY)
|
|
ptrace_signal_wake_up(child, true);
|
|
ret = 0;
|
|
}
|
|
unlock_task_sighand(child, &flags);
|
|
break;
|
|
|
|
case PTRACE_DETACH: /* detach a process that was attached. */
|
|
ret = ptrace_detach(child, data);
|
|
break;
|
|
|
|
#ifdef CONFIG_BINFMT_ELF_FDPIC
|
|
case PTRACE_GETFDPIC: {
|
|
struct mm_struct *mm = get_task_mm(child);
|
|
unsigned long tmp = 0;
|
|
|
|
ret = -ESRCH;
|
|
if (!mm)
|
|
break;
|
|
|
|
switch (addr) {
|
|
case PTRACE_GETFDPIC_EXEC:
|
|
tmp = mm->context.exec_fdpic_loadmap;
|
|
break;
|
|
case PTRACE_GETFDPIC_INTERP:
|
|
tmp = mm->context.interp_fdpic_loadmap;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
mmput(mm);
|
|
|
|
ret = put_user(tmp, datalp);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef PTRACE_SINGLESTEP
|
|
case PTRACE_SINGLESTEP:
|
|
#endif
|
|
#ifdef PTRACE_SINGLEBLOCK
|
|
case PTRACE_SINGLEBLOCK:
|
|
#endif
|
|
#ifdef PTRACE_SYSEMU
|
|
case PTRACE_SYSEMU:
|
|
case PTRACE_SYSEMU_SINGLESTEP:
|
|
#endif
|
|
case PTRACE_SYSCALL:
|
|
case PTRACE_CONT:
|
|
return ptrace_resume(child, request, data);
|
|
|
|
case PTRACE_KILL:
|
|
if (child->exit_state) /* already dead */
|
|
return 0;
|
|
return ptrace_resume(child, request, SIGKILL);
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
|
|
case PTRACE_GETREGSET:
|
|
case PTRACE_SETREGSET: {
|
|
struct iovec kiov;
|
|
struct iovec __user *uiov = datavp;
|
|
|
|
if (!access_ok(uiov, sizeof(*uiov)))
|
|
return -EFAULT;
|
|
|
|
if (__get_user(kiov.iov_base, &uiov->iov_base) ||
|
|
__get_user(kiov.iov_len, &uiov->iov_len))
|
|
return -EFAULT;
|
|
|
|
ret = ptrace_regset(child, request, addr, &kiov);
|
|
if (!ret)
|
|
ret = __put_user(kiov.iov_len, &uiov->iov_len);
|
|
break;
|
|
}
|
|
|
|
case PTRACE_GET_SYSCALL_INFO:
|
|
ret = ptrace_get_syscall_info(child, addr, datavp);
|
|
break;
|
|
#endif
|
|
|
|
case PTRACE_SECCOMP_GET_FILTER:
|
|
ret = seccomp_get_filter(child, addr, datavp);
|
|
break;
|
|
|
|
case PTRACE_SECCOMP_GET_METADATA:
|
|
ret = seccomp_get_metadata(child, addr, datavp);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifndef arch_ptrace_attach
|
|
#define arch_ptrace_attach(child) do { } while (0)
|
|
#endif
|
|
|
|
SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
|
|
unsigned long, data)
|
|
{
|
|
struct task_struct *child;
|
|
long ret;
|
|
|
|
if (request == PTRACE_TRACEME) {
|
|
ret = ptrace_traceme();
|
|
if (!ret)
|
|
arch_ptrace_attach(current);
|
|
goto out;
|
|
}
|
|
|
|
child = find_get_task_by_vpid(pid);
|
|
if (!child) {
|
|
ret = -ESRCH;
|
|
goto out;
|
|
}
|
|
|
|
if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
|
|
ret = ptrace_attach(child, request, addr, data);
|
|
/*
|
|
* Some architectures need to do book-keeping after
|
|
* a ptrace attach.
|
|
*/
|
|
if (!ret)
|
|
arch_ptrace_attach(child);
|
|
goto out_put_task_struct;
|
|
}
|
|
|
|
ret = ptrace_check_attach(child, request == PTRACE_KILL ||
|
|
request == PTRACE_INTERRUPT);
|
|
if (ret < 0)
|
|
goto out_put_task_struct;
|
|
|
|
ret = arch_ptrace(child, request, addr, data);
|
|
if (ret || request != PTRACE_DETACH)
|
|
ptrace_unfreeze_traced(child);
|
|
|
|
out_put_task_struct:
|
|
put_task_struct(child);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
|
|
unsigned long data)
|
|
{
|
|
unsigned long tmp;
|
|
int copied;
|
|
|
|
copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
|
|
if (copied != sizeof(tmp))
|
|
return -EIO;
|
|
return put_user(tmp, (unsigned long __user *)data);
|
|
}
|
|
|
|
int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
|
|
unsigned long data)
|
|
{
|
|
int copied;
|
|
|
|
copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
|
|
FOLL_FORCE | FOLL_WRITE);
|
|
return (copied == sizeof(data)) ? 0 : -EIO;
|
|
}
|
|
|
|
#if defined CONFIG_COMPAT
|
|
|
|
int compat_ptrace_request(struct task_struct *child, compat_long_t request,
|
|
compat_ulong_t addr, compat_ulong_t data)
|
|
{
|
|
compat_ulong_t __user *datap = compat_ptr(data);
|
|
compat_ulong_t word;
|
|
kernel_siginfo_t siginfo;
|
|
int ret;
|
|
|
|
switch (request) {
|
|
case PTRACE_PEEKTEXT:
|
|
case PTRACE_PEEKDATA:
|
|
ret = ptrace_access_vm(child, addr, &word, sizeof(word),
|
|
FOLL_FORCE);
|
|
if (ret != sizeof(word))
|
|
ret = -EIO;
|
|
else
|
|
ret = put_user(word, datap);
|
|
break;
|
|
|
|
case PTRACE_POKETEXT:
|
|
case PTRACE_POKEDATA:
|
|
ret = ptrace_access_vm(child, addr, &data, sizeof(data),
|
|
FOLL_FORCE | FOLL_WRITE);
|
|
ret = (ret != sizeof(data) ? -EIO : 0);
|
|
break;
|
|
|
|
case PTRACE_GETEVENTMSG:
|
|
ret = put_user((compat_ulong_t) child->ptrace_message, datap);
|
|
break;
|
|
|
|
case PTRACE_GETSIGINFO:
|
|
ret = ptrace_getsiginfo(child, &siginfo);
|
|
if (!ret)
|
|
ret = copy_siginfo_to_user32(
|
|
(struct compat_siginfo __user *) datap,
|
|
&siginfo);
|
|
break;
|
|
|
|
case PTRACE_SETSIGINFO:
|
|
ret = copy_siginfo_from_user32(
|
|
&siginfo, (struct compat_siginfo __user *) datap);
|
|
if (!ret)
|
|
ret = ptrace_setsiginfo(child, &siginfo);
|
|
break;
|
|
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
|
|
case PTRACE_GETREGSET:
|
|
case PTRACE_SETREGSET:
|
|
{
|
|
struct iovec kiov;
|
|
struct compat_iovec __user *uiov =
|
|
(struct compat_iovec __user *) datap;
|
|
compat_uptr_t ptr;
|
|
compat_size_t len;
|
|
|
|
if (!access_ok(uiov, sizeof(*uiov)))
|
|
return -EFAULT;
|
|
|
|
if (__get_user(ptr, &uiov->iov_base) ||
|
|
__get_user(len, &uiov->iov_len))
|
|
return -EFAULT;
|
|
|
|
kiov.iov_base = compat_ptr(ptr);
|
|
kiov.iov_len = len;
|
|
|
|
ret = ptrace_regset(child, request, addr, &kiov);
|
|
if (!ret)
|
|
ret = __put_user(kiov.iov_len, &uiov->iov_len);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
ret = ptrace_request(child, request, addr, data);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
|
|
compat_long_t, addr, compat_long_t, data)
|
|
{
|
|
struct task_struct *child;
|
|
long ret;
|
|
|
|
if (request == PTRACE_TRACEME) {
|
|
ret = ptrace_traceme();
|
|
goto out;
|
|
}
|
|
|
|
child = find_get_task_by_vpid(pid);
|
|
if (!child) {
|
|
ret = -ESRCH;
|
|
goto out;
|
|
}
|
|
|
|
if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
|
|
ret = ptrace_attach(child, request, addr, data);
|
|
/*
|
|
* Some architectures need to do book-keeping after
|
|
* a ptrace attach.
|
|
*/
|
|
if (!ret)
|
|
arch_ptrace_attach(child);
|
|
goto out_put_task_struct;
|
|
}
|
|
|
|
ret = ptrace_check_attach(child, request == PTRACE_KILL ||
|
|
request == PTRACE_INTERRUPT);
|
|
if (!ret) {
|
|
ret = compat_arch_ptrace(child, request, addr, data);
|
|
if (ret || request != PTRACE_DETACH)
|
|
ptrace_unfreeze_traced(child);
|
|
}
|
|
|
|
out_put_task_struct:
|
|
put_task_struct(child);
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_COMPAT */
|