mirror of
https://github.com/torvalds/linux.git
synced 2024-11-27 22:51:35 +00:00
80851ef2a5
Add a hook so architectures can validate /dev/mem mmap requests. This is analogous to validation we already perform in the read/write paths. The identity mapping scheme used on ia64 requires that each 16MB or 64MB granule be accessed with exactly one attribute (write-back or uncacheable). This avoids "attribute aliasing", which can cause a machine check. Sample problem scenario: - Machine supports VGA, so it has uncacheable (UC) MMIO at 640K-768K - efi_memmap_init() discards any write-back (WB) memory in the first granule - Application (e.g., "hwinfo") mmaps /dev/mem, offset 0 - hwinfo receives UC mapping (the default, since memmap says "no WB here") - Machine check abort (on chipsets that don't support UC access to WB memory, e.g., sx1000) In the scenario above, the only choices are - Use WB for hwinfo mmap. Can't do this because it causes attribute aliasing with the UC mapping for the VGA MMIO space. - Use UC for hwinfo mmap. Can't do this because the chipset may not support UC for that region. - Disallow the hwinfo mmap with -EINVAL. That's what this patch does. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1075 lines
30 KiB
C
1075 lines
30 KiB
C
/*
|
|
* Extensible Firmware Interface
|
|
*
|
|
* Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
|
|
*
|
|
* Copyright (C) 1999 VA Linux Systems
|
|
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
* Copyright (C) 1999-2003 Hewlett-Packard Co.
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
*
|
|
* All EFI Runtime Services are not implemented yet as EFI only
|
|
* supports physical mode addressing on SoftSDV. This is to be fixed
|
|
* in a future version. --drummond 1999-07-20
|
|
*
|
|
* Implemented EFI runtime services and virtual mode calls. --davidm
|
|
*
|
|
* Goutham Rao: <goutham.rao@intel.com>
|
|
* Skip non-WB memory and ignore empty memory ranges.
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/time.h>
|
|
#include <linux/efi.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/kregs.h>
|
|
#include <asm/meminit.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mca.h>
|
|
|
|
#define EFI_DEBUG 0
|
|
|
|
extern efi_status_t efi_call_phys (void *, ...);
|
|
|
|
struct efi efi;
|
|
EXPORT_SYMBOL(efi);
|
|
static efi_runtime_services_t *runtime;
|
|
static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
|
|
|
|
#define efi_call_virt(f, args...) (*(f))(args)
|
|
|
|
#define STUB_GET_TIME(prefix, adjust_arg) \
|
|
static efi_status_t \
|
|
prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
efi_time_cap_t *atc = NULL; \
|
|
efi_status_t ret; \
|
|
\
|
|
if (tc) \
|
|
atc = adjust_arg(tc); \
|
|
ia64_save_scratch_fpregs(fr); \
|
|
ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
return ret; \
|
|
}
|
|
|
|
#define STUB_SET_TIME(prefix, adjust_arg) \
|
|
static efi_status_t \
|
|
prefix##_set_time (efi_time_t *tm) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
efi_status_t ret; \
|
|
\
|
|
ia64_save_scratch_fpregs(fr); \
|
|
ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
return ret; \
|
|
}
|
|
|
|
#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
|
|
static efi_status_t \
|
|
prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
efi_status_t ret; \
|
|
\
|
|
ia64_save_scratch_fpregs(fr); \
|
|
ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
|
|
adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
return ret; \
|
|
}
|
|
|
|
#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
|
|
static efi_status_t \
|
|
prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
efi_time_t *atm = NULL; \
|
|
efi_status_t ret; \
|
|
\
|
|
if (tm) \
|
|
atm = adjust_arg(tm); \
|
|
ia64_save_scratch_fpregs(fr); \
|
|
ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
|
|
enabled, atm); \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
return ret; \
|
|
}
|
|
|
|
#define STUB_GET_VARIABLE(prefix, adjust_arg) \
|
|
static efi_status_t \
|
|
prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
|
|
unsigned long *data_size, void *data) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
u32 *aattr = NULL; \
|
|
efi_status_t ret; \
|
|
\
|
|
if (attr) \
|
|
aattr = adjust_arg(attr); \
|
|
ia64_save_scratch_fpregs(fr); \
|
|
ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
|
|
adjust_arg(name), adjust_arg(vendor), aattr, \
|
|
adjust_arg(data_size), adjust_arg(data)); \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
return ret; \
|
|
}
|
|
|
|
#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
|
|
static efi_status_t \
|
|
prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
efi_status_t ret; \
|
|
\
|
|
ia64_save_scratch_fpregs(fr); \
|
|
ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
|
|
adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
return ret; \
|
|
}
|
|
|
|
#define STUB_SET_VARIABLE(prefix, adjust_arg) \
|
|
static efi_status_t \
|
|
prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
|
|
unsigned long data_size, void *data) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
efi_status_t ret; \
|
|
\
|
|
ia64_save_scratch_fpregs(fr); \
|
|
ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
|
|
adjust_arg(name), adjust_arg(vendor), attr, data_size, \
|
|
adjust_arg(data)); \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
return ret; \
|
|
}
|
|
|
|
#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
|
|
static efi_status_t \
|
|
prefix##_get_next_high_mono_count (u32 *count) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
efi_status_t ret; \
|
|
\
|
|
ia64_save_scratch_fpregs(fr); \
|
|
ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
|
|
__va(runtime->get_next_high_mono_count), adjust_arg(count)); \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
return ret; \
|
|
}
|
|
|
|
#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
|
|
static void \
|
|
prefix##_reset_system (int reset_type, efi_status_t status, \
|
|
unsigned long data_size, efi_char16_t *data) \
|
|
{ \
|
|
struct ia64_fpreg fr[6]; \
|
|
efi_char16_t *adata = NULL; \
|
|
\
|
|
if (data) \
|
|
adata = adjust_arg(data); \
|
|
\
|
|
ia64_save_scratch_fpregs(fr); \
|
|
efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
|
|
reset_type, status, data_size, adata); \
|
|
/* should not return, but just in case... */ \
|
|
ia64_load_scratch_fpregs(fr); \
|
|
}
|
|
|
|
#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
|
|
|
|
STUB_GET_TIME(phys, phys_ptr)
|
|
STUB_SET_TIME(phys, phys_ptr)
|
|
STUB_GET_WAKEUP_TIME(phys, phys_ptr)
|
|
STUB_SET_WAKEUP_TIME(phys, phys_ptr)
|
|
STUB_GET_VARIABLE(phys, phys_ptr)
|
|
STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
|
|
STUB_SET_VARIABLE(phys, phys_ptr)
|
|
STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
|
|
STUB_RESET_SYSTEM(phys, phys_ptr)
|
|
|
|
#define id(arg) arg
|
|
|
|
STUB_GET_TIME(virt, id)
|
|
STUB_SET_TIME(virt, id)
|
|
STUB_GET_WAKEUP_TIME(virt, id)
|
|
STUB_SET_WAKEUP_TIME(virt, id)
|
|
STUB_GET_VARIABLE(virt, id)
|
|
STUB_GET_NEXT_VARIABLE(virt, id)
|
|
STUB_SET_VARIABLE(virt, id)
|
|
STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
|
|
STUB_RESET_SYSTEM(virt, id)
|
|
|
|
void
|
|
efi_gettimeofday (struct timespec *ts)
|
|
{
|
|
efi_time_t tm;
|
|
|
|
memset(ts, 0, sizeof(ts));
|
|
if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
|
|
return;
|
|
|
|
ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
|
|
ts->tv_nsec = tm.nanosecond;
|
|
}
|
|
|
|
static int
|
|
is_available_memory (efi_memory_desc_t *md)
|
|
{
|
|
if (!(md->attribute & EFI_MEMORY_WB))
|
|
return 0;
|
|
|
|
switch (md->type) {
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
typedef struct kern_memdesc {
|
|
u64 attribute;
|
|
u64 start;
|
|
u64 num_pages;
|
|
} kern_memdesc_t;
|
|
|
|
static kern_memdesc_t *kern_memmap;
|
|
|
|
#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
|
|
|
|
static inline u64
|
|
kmd_end(kern_memdesc_t *kmd)
|
|
{
|
|
return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
|
|
}
|
|
|
|
static inline u64
|
|
efi_md_end(efi_memory_desc_t *md)
|
|
{
|
|
return (md->phys_addr + efi_md_size(md));
|
|
}
|
|
|
|
static inline int
|
|
efi_wb(efi_memory_desc_t *md)
|
|
{
|
|
return (md->attribute & EFI_MEMORY_WB);
|
|
}
|
|
|
|
static inline int
|
|
efi_uc(efi_memory_desc_t *md)
|
|
{
|
|
return (md->attribute & EFI_MEMORY_UC);
|
|
}
|
|
|
|
static void
|
|
walk (efi_freemem_callback_t callback, void *arg, u64 attr)
|
|
{
|
|
kern_memdesc_t *k;
|
|
u64 start, end, voff;
|
|
|
|
voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
|
|
for (k = kern_memmap; k->start != ~0UL; k++) {
|
|
if (k->attribute != attr)
|
|
continue;
|
|
start = PAGE_ALIGN(k->start);
|
|
end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
|
|
if (start < end)
|
|
if ((*callback)(start + voff, end + voff, arg) < 0)
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
|
|
* has memory that is available for OS use.
|
|
*/
|
|
void
|
|
efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
|
|
{
|
|
walk(callback, arg, EFI_MEMORY_WB);
|
|
}
|
|
|
|
/*
|
|
* Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
|
|
* has memory that is available for uncached allocator.
|
|
*/
|
|
void
|
|
efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
|
|
{
|
|
walk(callback, arg, EFI_MEMORY_UC);
|
|
}
|
|
|
|
/*
|
|
* Look for the PAL_CODE region reported by EFI and maps it using an
|
|
* ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
|
|
* Abstraction Layer chapter 11 in ADAG
|
|
*/
|
|
|
|
void *
|
|
efi_get_pal_addr (void)
|
|
{
|
|
void *efi_map_start, *efi_map_end, *p;
|
|
efi_memory_desc_t *md;
|
|
u64 efi_desc_size;
|
|
int pal_code_count = 0;
|
|
u64 vaddr, mask;
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
|
|
md = p;
|
|
if (md->type != EFI_PAL_CODE)
|
|
continue;
|
|
|
|
if (++pal_code_count > 1) {
|
|
printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
|
|
md->phys_addr);
|
|
continue;
|
|
}
|
|
/*
|
|
* The only ITLB entry in region 7 that is used is the one installed by
|
|
* __start(). That entry covers a 64MB range.
|
|
*/
|
|
mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
|
|
vaddr = PAGE_OFFSET + md->phys_addr;
|
|
|
|
/*
|
|
* We must check that the PAL mapping won't overlap with the kernel
|
|
* mapping.
|
|
*
|
|
* PAL code is guaranteed to be aligned on a power of 2 between 4k and
|
|
* 256KB and that only one ITR is needed to map it. This implies that the
|
|
* PAL code is always aligned on its size, i.e., the closest matching page
|
|
* size supported by the TLB. Therefore PAL code is guaranteed never to
|
|
* cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
|
|
* now the following test is enough to determine whether or not we need a
|
|
* dedicated ITR for the PAL code.
|
|
*/
|
|
if ((vaddr & mask) == (KERNEL_START & mask)) {
|
|
printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
|
|
__FUNCTION__);
|
|
continue;
|
|
}
|
|
|
|
if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
|
|
panic("Woah! PAL code size bigger than a granule!");
|
|
|
|
#if EFI_DEBUG
|
|
mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
|
|
|
|
printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
|
|
smp_processor_id(), md->phys_addr,
|
|
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
|
|
vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
|
|
#endif
|
|
return __va(md->phys_addr);
|
|
}
|
|
printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
|
|
__FUNCTION__);
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
efi_map_pal_code (void)
|
|
{
|
|
void *pal_vaddr = efi_get_pal_addr ();
|
|
u64 psr;
|
|
|
|
if (!pal_vaddr)
|
|
return;
|
|
|
|
/*
|
|
* Cannot write to CRx with PSR.ic=1
|
|
*/
|
|
psr = ia64_clear_ic();
|
|
ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
|
|
pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
|
|
IA64_GRANULE_SHIFT);
|
|
ia64_set_psr(psr); /* restore psr */
|
|
ia64_srlz_i();
|
|
}
|
|
|
|
void __init
|
|
efi_init (void)
|
|
{
|
|
void *efi_map_start, *efi_map_end;
|
|
efi_config_table_t *config_tables;
|
|
efi_char16_t *c16;
|
|
u64 efi_desc_size;
|
|
char *cp, *end, vendor[100] = "unknown";
|
|
extern char saved_command_line[];
|
|
int i;
|
|
|
|
/* it's too early to be able to use the standard kernel command line support... */
|
|
for (cp = saved_command_line; *cp; ) {
|
|
if (memcmp(cp, "mem=", 4) == 0) {
|
|
cp += 4;
|
|
mem_limit = memparse(cp, &end);
|
|
if (end != cp)
|
|
break;
|
|
cp = end;
|
|
} else if (memcmp(cp, "max_addr=", 9) == 0) {
|
|
cp += 9;
|
|
max_addr = GRANULEROUNDDOWN(memparse(cp, &end));
|
|
if (end != cp)
|
|
break;
|
|
cp = end;
|
|
} else {
|
|
while (*cp != ' ' && *cp)
|
|
++cp;
|
|
while (*cp == ' ')
|
|
++cp;
|
|
}
|
|
}
|
|
if (max_addr != ~0UL)
|
|
printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
|
|
|
|
efi.systab = __va(ia64_boot_param->efi_systab);
|
|
|
|
/*
|
|
* Verify the EFI Table
|
|
*/
|
|
if (efi.systab == NULL)
|
|
panic("Woah! Can't find EFI system table.\n");
|
|
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
panic("Woah! EFI system table signature incorrect\n");
|
|
if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
|
|
printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
|
|
"got %d.%02d, expected %d.%02d\n",
|
|
efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
|
|
EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
|
|
|
|
config_tables = __va(efi.systab->tables);
|
|
|
|
/* Show what we know for posterity */
|
|
c16 = __va(efi.systab->fw_vendor);
|
|
if (c16) {
|
|
for (i = 0;i < (int) sizeof(vendor) && *c16; ++i)
|
|
vendor[i] = *c16++;
|
|
vendor[i] = '\0';
|
|
}
|
|
|
|
printk(KERN_INFO "EFI v%u.%.02u by %s:",
|
|
efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
|
|
|
|
for (i = 0; i < (int) efi.systab->nr_tables; i++) {
|
|
if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
|
|
efi.mps = __va(config_tables[i].table);
|
|
printk(" MPS=0x%lx", config_tables[i].table);
|
|
} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
|
|
efi.acpi20 = __va(config_tables[i].table);
|
|
printk(" ACPI 2.0=0x%lx", config_tables[i].table);
|
|
} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
|
|
efi.acpi = __va(config_tables[i].table);
|
|
printk(" ACPI=0x%lx", config_tables[i].table);
|
|
} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
|
|
efi.smbios = __va(config_tables[i].table);
|
|
printk(" SMBIOS=0x%lx", config_tables[i].table);
|
|
} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
|
|
efi.sal_systab = __va(config_tables[i].table);
|
|
printk(" SALsystab=0x%lx", config_tables[i].table);
|
|
} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
|
|
efi.hcdp = __va(config_tables[i].table);
|
|
printk(" HCDP=0x%lx", config_tables[i].table);
|
|
}
|
|
}
|
|
printk("\n");
|
|
|
|
runtime = __va(efi.systab->runtime);
|
|
efi.get_time = phys_get_time;
|
|
efi.set_time = phys_set_time;
|
|
efi.get_wakeup_time = phys_get_wakeup_time;
|
|
efi.set_wakeup_time = phys_set_wakeup_time;
|
|
efi.get_variable = phys_get_variable;
|
|
efi.get_next_variable = phys_get_next_variable;
|
|
efi.set_variable = phys_set_variable;
|
|
efi.get_next_high_mono_count = phys_get_next_high_mono_count;
|
|
efi.reset_system = phys_reset_system;
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
#if EFI_DEBUG
|
|
/* print EFI memory map: */
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
|
|
md = p;
|
|
printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
|
|
i, md->type, md->attribute, md->phys_addr,
|
|
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
|
|
md->num_pages >> (20 - EFI_PAGE_SHIFT));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
efi_map_pal_code();
|
|
efi_enter_virtual_mode();
|
|
}
|
|
|
|
void
|
|
efi_enter_virtual_mode (void)
|
|
{
|
|
void *efi_map_start, *efi_map_end, *p;
|
|
efi_memory_desc_t *md;
|
|
efi_status_t status;
|
|
u64 efi_desc_size;
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
|
|
md = p;
|
|
if (md->attribute & EFI_MEMORY_RUNTIME) {
|
|
/*
|
|
* Some descriptors have multiple bits set, so the order of
|
|
* the tests is relevant.
|
|
*/
|
|
if (md->attribute & EFI_MEMORY_WB) {
|
|
md->virt_addr = (u64) __va(md->phys_addr);
|
|
} else if (md->attribute & EFI_MEMORY_UC) {
|
|
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
|
|
} else if (md->attribute & EFI_MEMORY_WC) {
|
|
#if 0
|
|
md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
|
|
| _PAGE_D
|
|
| _PAGE_MA_WC
|
|
| _PAGE_PL_0
|
|
| _PAGE_AR_RW));
|
|
#else
|
|
printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
|
|
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
|
|
#endif
|
|
} else if (md->attribute & EFI_MEMORY_WT) {
|
|
#if 0
|
|
md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
|
|
| _PAGE_D | _PAGE_MA_WT
|
|
| _PAGE_PL_0
|
|
| _PAGE_AR_RW));
|
|
#else
|
|
printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
|
|
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
status = efi_call_phys(__va(runtime->set_virtual_address_map),
|
|
ia64_boot_param->efi_memmap_size,
|
|
efi_desc_size, ia64_boot_param->efi_memdesc_version,
|
|
ia64_boot_param->efi_memmap);
|
|
if (status != EFI_SUCCESS) {
|
|
printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
|
|
"(status=%lu)\n", status);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now that EFI is in virtual mode, we call the EFI functions more efficiently:
|
|
*/
|
|
efi.get_time = virt_get_time;
|
|
efi.set_time = virt_set_time;
|
|
efi.get_wakeup_time = virt_get_wakeup_time;
|
|
efi.set_wakeup_time = virt_set_wakeup_time;
|
|
efi.get_variable = virt_get_variable;
|
|
efi.get_next_variable = virt_get_next_variable;
|
|
efi.set_variable = virt_set_variable;
|
|
efi.get_next_high_mono_count = virt_get_next_high_mono_count;
|
|
efi.reset_system = virt_reset_system;
|
|
}
|
|
|
|
/*
|
|
* Walk the EFI memory map looking for the I/O port range. There can only be one entry of
|
|
* this type, other I/O port ranges should be described via ACPI.
|
|
*/
|
|
u64
|
|
efi_get_iobase (void)
|
|
{
|
|
void *efi_map_start, *efi_map_end, *p;
|
|
efi_memory_desc_t *md;
|
|
u64 efi_desc_size;
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
|
|
md = p;
|
|
if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
|
|
if (md->attribute & EFI_MEMORY_UC)
|
|
return md->phys_addr;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static efi_memory_desc_t *
|
|
efi_memory_descriptor (unsigned long phys_addr)
|
|
{
|
|
void *efi_map_start, *efi_map_end, *p;
|
|
efi_memory_desc_t *md;
|
|
u64 efi_desc_size;
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
|
|
md = p;
|
|
|
|
if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
|
|
return md;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
efi_memmap_has_mmio (void)
|
|
{
|
|
void *efi_map_start, *efi_map_end, *p;
|
|
efi_memory_desc_t *md;
|
|
u64 efi_desc_size;
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
|
|
md = p;
|
|
|
|
if (md->type == EFI_MEMORY_MAPPED_IO)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u32
|
|
efi_mem_type (unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
|
|
|
|
if (md)
|
|
return md->type;
|
|
return 0;
|
|
}
|
|
|
|
u64
|
|
efi_mem_attributes (unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
|
|
|
|
if (md)
|
|
return md->attribute;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(efi_mem_attributes);
|
|
|
|
/*
|
|
* Determines whether the memory at phys_addr supports the desired
|
|
* attribute (WB, UC, etc). If this returns 1, the caller can safely
|
|
* access *size bytes at phys_addr with the specified attribute.
|
|
*/
|
|
static int
|
|
efi_mem_attribute_range (unsigned long phys_addr, unsigned long *size, u64 attr)
|
|
{
|
|
efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
|
|
unsigned long md_end;
|
|
|
|
if (!md || (md->attribute & attr) != attr)
|
|
return 0;
|
|
|
|
do {
|
|
md_end = efi_md_end(md);
|
|
if (phys_addr + *size <= md_end)
|
|
return 1;
|
|
|
|
md = efi_memory_descriptor(md_end);
|
|
if (!md || (md->attribute & attr) != attr) {
|
|
*size = md_end - phys_addr;
|
|
return 1;
|
|
}
|
|
} while (md);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For /dev/mem, we only allow read & write system calls to access
|
|
* write-back memory, because read & write don't allow the user to
|
|
* control access size.
|
|
*/
|
|
int
|
|
valid_phys_addr_range (unsigned long phys_addr, unsigned long *size)
|
|
{
|
|
return efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB);
|
|
}
|
|
|
|
/*
|
|
* We allow mmap of anything in the EFI memory map that supports
|
|
* either write-back or uncacheable access. For uncacheable regions,
|
|
* the supported access sizes are system-dependent, and the user is
|
|
* responsible for using the correct size.
|
|
*
|
|
* Note that this doesn't currently allow access to hot-added memory,
|
|
* because that doesn't appear in the boot-time EFI memory map.
|
|
*/
|
|
int
|
|
valid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long *size)
|
|
{
|
|
if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB))
|
|
return 1;
|
|
|
|
if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_UC))
|
|
return 1;
|
|
|
|
/*
|
|
* Some firmware doesn't report MMIO regions in the EFI memory map.
|
|
* The Intel BigSur (a.k.a. HP i2000) has this problem. In this
|
|
* case, we can't use the EFI memory map to validate mmap requests.
|
|
*/
|
|
if (!efi_memmap_has_mmio())
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init
|
|
efi_uart_console_only(void)
|
|
{
|
|
efi_status_t status;
|
|
char *s, name[] = "ConOut";
|
|
efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
|
|
efi_char16_t *utf16, name_utf16[32];
|
|
unsigned char data[1024];
|
|
unsigned long size = sizeof(data);
|
|
struct efi_generic_dev_path *hdr, *end_addr;
|
|
int uart = 0;
|
|
|
|
/* Convert to UTF-16 */
|
|
utf16 = name_utf16;
|
|
s = name;
|
|
while (*s)
|
|
*utf16++ = *s++ & 0x7f;
|
|
*utf16 = 0;
|
|
|
|
status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
|
|
if (status != EFI_SUCCESS) {
|
|
printk(KERN_ERR "No EFI %s variable?\n", name);
|
|
return 0;
|
|
}
|
|
|
|
hdr = (struct efi_generic_dev_path *) data;
|
|
end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
|
|
while (hdr < end_addr) {
|
|
if (hdr->type == EFI_DEV_MSG &&
|
|
hdr->sub_type == EFI_DEV_MSG_UART)
|
|
uart = 1;
|
|
else if (hdr->type == EFI_DEV_END_PATH ||
|
|
hdr->type == EFI_DEV_END_PATH2) {
|
|
if (!uart)
|
|
return 0;
|
|
if (hdr->sub_type == EFI_DEV_END_ENTIRE)
|
|
return 1;
|
|
uart = 0;
|
|
}
|
|
hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
|
|
}
|
|
printk(KERN_ERR "Malformed %s value\n", name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Look for the first granule aligned memory descriptor memory
|
|
* that is big enough to hold EFI memory map. Make sure this
|
|
* descriptor is atleast granule sized so it does not get trimmed
|
|
*/
|
|
struct kern_memdesc *
|
|
find_memmap_space (void)
|
|
{
|
|
u64 contig_low=0, contig_high=0;
|
|
u64 as = 0, ae;
|
|
void *efi_map_start, *efi_map_end, *p, *q;
|
|
efi_memory_desc_t *md, *pmd = NULL, *check_md;
|
|
u64 space_needed, efi_desc_size;
|
|
unsigned long total_mem = 0;
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
/*
|
|
* Worst case: we need 3 kernel descriptors for each efi descriptor
|
|
* (if every entry has a WB part in the middle, and UC head and tail),
|
|
* plus one for the end marker.
|
|
*/
|
|
space_needed = sizeof(kern_memdesc_t) *
|
|
(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
|
|
|
|
for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
|
|
md = p;
|
|
if (!efi_wb(md)) {
|
|
continue;
|
|
}
|
|
if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
|
|
contig_low = GRANULEROUNDUP(md->phys_addr);
|
|
contig_high = efi_md_end(md);
|
|
for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
|
|
check_md = q;
|
|
if (!efi_wb(check_md))
|
|
break;
|
|
if (contig_high != check_md->phys_addr)
|
|
break;
|
|
contig_high = efi_md_end(check_md);
|
|
}
|
|
contig_high = GRANULEROUNDDOWN(contig_high);
|
|
}
|
|
if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
|
|
continue;
|
|
|
|
/* Round ends inward to granule boundaries */
|
|
as = max(contig_low, md->phys_addr);
|
|
ae = min(contig_high, efi_md_end(md));
|
|
|
|
/* keep within max_addr= command line arg */
|
|
ae = min(ae, max_addr);
|
|
if (ae <= as)
|
|
continue;
|
|
|
|
/* avoid going over mem= command line arg */
|
|
if (total_mem + (ae - as) > mem_limit)
|
|
ae -= total_mem + (ae - as) - mem_limit;
|
|
|
|
if (ae <= as)
|
|
continue;
|
|
|
|
if (ae - as > space_needed)
|
|
break;
|
|
}
|
|
if (p >= efi_map_end)
|
|
panic("Can't allocate space for kernel memory descriptors");
|
|
|
|
return __va(as);
|
|
}
|
|
|
|
/*
|
|
* Walk the EFI memory map and gather all memory available for kernel
|
|
* to use. We can allocate partial granules only if the unavailable
|
|
* parts exist, and are WB.
|
|
*/
|
|
void
|
|
efi_memmap_init(unsigned long *s, unsigned long *e)
|
|
{
|
|
struct kern_memdesc *k, *prev = 0;
|
|
u64 contig_low=0, contig_high=0;
|
|
u64 as, ae, lim;
|
|
void *efi_map_start, *efi_map_end, *p, *q;
|
|
efi_memory_desc_t *md, *pmd = NULL, *check_md;
|
|
u64 efi_desc_size;
|
|
unsigned long total_mem = 0;
|
|
|
|
k = kern_memmap = find_memmap_space();
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
|
|
md = p;
|
|
if (!efi_wb(md)) {
|
|
if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
|
|
md->type == EFI_BOOT_SERVICES_DATA)) {
|
|
k->attribute = EFI_MEMORY_UC;
|
|
k->start = md->phys_addr;
|
|
k->num_pages = md->num_pages;
|
|
k++;
|
|
}
|
|
continue;
|
|
}
|
|
if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
|
|
contig_low = GRANULEROUNDUP(md->phys_addr);
|
|
contig_high = efi_md_end(md);
|
|
for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
|
|
check_md = q;
|
|
if (!efi_wb(check_md))
|
|
break;
|
|
if (contig_high != check_md->phys_addr)
|
|
break;
|
|
contig_high = efi_md_end(check_md);
|
|
}
|
|
contig_high = GRANULEROUNDDOWN(contig_high);
|
|
}
|
|
if (!is_available_memory(md))
|
|
continue;
|
|
|
|
/*
|
|
* Round ends inward to granule boundaries
|
|
* Give trimmings to uncached allocator
|
|
*/
|
|
if (md->phys_addr < contig_low) {
|
|
lim = min(efi_md_end(md), contig_low);
|
|
if (efi_uc(md)) {
|
|
if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
|
|
kmd_end(k-1) == md->phys_addr) {
|
|
(k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
|
|
} else {
|
|
k->attribute = EFI_MEMORY_UC;
|
|
k->start = md->phys_addr;
|
|
k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
|
|
k++;
|
|
}
|
|
}
|
|
as = contig_low;
|
|
} else
|
|
as = md->phys_addr;
|
|
|
|
if (efi_md_end(md) > contig_high) {
|
|
lim = max(md->phys_addr, contig_high);
|
|
if (efi_uc(md)) {
|
|
if (lim == md->phys_addr && k > kern_memmap &&
|
|
(k-1)->attribute == EFI_MEMORY_UC &&
|
|
kmd_end(k-1) == md->phys_addr) {
|
|
(k-1)->num_pages += md->num_pages;
|
|
} else {
|
|
k->attribute = EFI_MEMORY_UC;
|
|
k->start = lim;
|
|
k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
|
|
k++;
|
|
}
|
|
}
|
|
ae = contig_high;
|
|
} else
|
|
ae = efi_md_end(md);
|
|
|
|
/* keep within max_addr= command line arg */
|
|
ae = min(ae, max_addr);
|
|
if (ae <= as)
|
|
continue;
|
|
|
|
/* avoid going over mem= command line arg */
|
|
if (total_mem + (ae - as) > mem_limit)
|
|
ae -= total_mem + (ae - as) - mem_limit;
|
|
|
|
if (ae <= as)
|
|
continue;
|
|
if (prev && kmd_end(prev) == md->phys_addr) {
|
|
prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
|
|
total_mem += ae - as;
|
|
continue;
|
|
}
|
|
k->attribute = EFI_MEMORY_WB;
|
|
k->start = as;
|
|
k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
|
|
total_mem += ae - as;
|
|
prev = k++;
|
|
}
|
|
k->start = ~0L; /* end-marker */
|
|
|
|
/* reserve the memory we are using for kern_memmap */
|
|
*s = (u64)kern_memmap;
|
|
*e = (u64)++k;
|
|
}
|
|
|
|
void
|
|
efi_initialize_iomem_resources(struct resource *code_resource,
|
|
struct resource *data_resource)
|
|
{
|
|
struct resource *res;
|
|
void *efi_map_start, *efi_map_end, *p;
|
|
efi_memory_desc_t *md;
|
|
u64 efi_desc_size;
|
|
char *name;
|
|
unsigned long flags;
|
|
|
|
efi_map_start = __va(ia64_boot_param->efi_memmap);
|
|
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
|
|
efi_desc_size = ia64_boot_param->efi_memdesc_size;
|
|
|
|
res = NULL;
|
|
|
|
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
|
|
md = p;
|
|
|
|
if (md->num_pages == 0) /* should not happen */
|
|
continue;
|
|
|
|
flags = IORESOURCE_MEM;
|
|
switch (md->type) {
|
|
|
|
case EFI_MEMORY_MAPPED_IO:
|
|
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
|
|
continue;
|
|
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
if (md->attribute & EFI_MEMORY_WP) {
|
|
name = "System ROM";
|
|
flags |= IORESOURCE_READONLY;
|
|
} else {
|
|
name = "System RAM";
|
|
}
|
|
break;
|
|
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
name = "ACPI Non-volatile Storage";
|
|
flags |= IORESOURCE_BUSY;
|
|
break;
|
|
|
|
case EFI_UNUSABLE_MEMORY:
|
|
name = "reserved";
|
|
flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
|
|
break;
|
|
|
|
case EFI_RESERVED_TYPE:
|
|
case EFI_RUNTIME_SERVICES_CODE:
|
|
case EFI_RUNTIME_SERVICES_DATA:
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
default:
|
|
name = "reserved";
|
|
flags |= IORESOURCE_BUSY;
|
|
break;
|
|
}
|
|
|
|
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
|
|
printk(KERN_ERR "failed to alocate resource for iomem\n");
|
|
return;
|
|
}
|
|
|
|
res->name = name;
|
|
res->start = md->phys_addr;
|
|
res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
|
|
res->flags = flags;
|
|
|
|
if (insert_resource(&iomem_resource, res) < 0)
|
|
kfree(res);
|
|
else {
|
|
/*
|
|
* We don't know which region contains
|
|
* kernel data so we try it repeatedly and
|
|
* let the resource manager test it.
|
|
*/
|
|
insert_resource(res, code_resource);
|
|
insert_resource(res, data_resource);
|
|
}
|
|
}
|
|
}
|