linux/drivers/dma/ti/k3-udma.c
Linus Torvalds ce615f5c1f dmaengine updates for v5.9-rc1
Core:
  - Support out of order dma completion
  - Support for repeating transaction
 
 New controllers:
  - Support for Actions S700 DMA engine
  - Renesas R8A774E1, r8a7742 controller binding
  - New driver for Xilinx DPDMA controller
 
 Others:
  - Support of out of order dma completion in idxd driver
  - W=1 warning cleanup of subsystem
  - Updates to ti-k3-dma, dw, idxd drivers
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE+vs47OPLdNbVcHzyfBQHDyUjg0cFAl8s6voACgkQfBQHDyUj
 g0f7Aw/+NjqyWAMZ4WpP6p2AN+5Evs7MY0fhhJMkU7ShbQlBM1GKrrNpMhaOaMw2
 KB7xWvsfMnpKhxcq5LL2ymMnzJgJHVi0Zp9aRwNQXmJfHyCTDoqv54ljd5ADaL/O
 XLBLBWc6h5WbAsWmpiovb/EQ58RAU/bvlPD7gntK9Y8n5ha32c+jFnOg+Fd3uINl
 x9uSHKUOWFVRvIJgOrFcFwl2eT0erFcme7WyCWuNfSFDZlJqOdfVf1TfTVcfyAYY
 8r6VWPOyiAc97SPN1hVYMUqqTtRAEDlsPRfeyvUm2pnRJnbyJdHbvbA0l/OMvzH5
 3q5SBXz6NgoZsO6GPiSEV679K0nsuZOCqfevNb6+UQUrO7f5JyEbwGTrWju6F3fg
 UVTENto8XW7KCE+oTkJBgZ6utbDtK5dpoKghX59lN3nKogqzGi3JUlgTtlSIF+AY
 CnmESWM37f1jw1Ew58gmSYRFfKQV2fLwcAePnaV4HaNV70uFoYnhPvVenSvgYeky
 24D8O5fzzhRHsSqUPTLTZ/u4cGJtOiBzQWdWcUXig/mfHKpu9i4nejHmuA2x64l0
 oFc3nKwd7XrGVg2l4XMx1T0x69+1dlc0eEkZ7lRGzZgDCMKeHEsLOBGaid+bMO09
 4IMzxoQxINui6l8csX5ctbRdXfUFZKZaZU36RxQeysidLE6QDGk=
 =OfZv
 -----END PGP SIGNATURE-----

Merge tag 'dmaengine-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine

Pull dmaengine updates from Vinod Koul:
 "Core:
   - Support out of order dma completion
   - Support for repeating transaction

  New controllers:
   - Support for Actions S700 DMA engine
   - Renesas R8A774E1, r8a7742 controller binding
   - New driver for Xilinx DPDMA controller

  Other:
   - Support of out of order dma completion in idxd driver
   - W=1 warning cleanup of subsystem
   - Updates to ti-k3-dma, dw, idxd drivers"

* tag 'dmaengine-5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine: (68 commits)
  dmaengine: dw: Don't include unneeded header to platform data header
  dmaengine: Actions: Add support for S700 DMA engine
  dmaengine: Actions: get rid of bit fields from dma descriptor
  dt-bindings: dmaengine: convert Actions Semi Owl SoCs bindings to yaml
  dmaengine: idxd: add missing invalid flags field to completion
  dmaengine: dw: Initialize max_sg_burst capability
  dmaengine: dw: Introduce max burst length hw config
  dmaengine: dw: Initialize min and max burst DMA device capability
  dmaengine: dw: Set DMA device max segment size parameter
  dmaengine: dw: Take HC_LLP flag into account for noLLP auto-config
  dmaengine: Introduce DMA-device device_caps callback
  dmaengine: Introduce max SG burst capability
  dmaengine: Introduce min burst length capability
  dt-bindings: dma: dw: Add max burst transaction length property
  dt-bindings: dma: dw: Convert DW DMAC to DT binding
  dmaengine: ti: k3-udma: Query throughput level information from hardware
  dmaengine: ti: k3-udma: Use defines for capabilities register parsing
  dmaengine: xilinx: dpdma: Fix kerneldoc warning
  dmaengine: xilinx: dpdma: add missing kernel doc
  dmaengine: xilinx: dpdma: remove comparison of unsigned expression
  ...
2020-08-07 12:41:36 -07:00

3687 lines
92 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com
* Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/workqueue.h>
#include <linux/completion.h>
#include <linux/soc/ti/k3-ringacc.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include <linux/soc/ti/ti_sci_inta_msi.h>
#include <linux/dma/ti-cppi5.h>
#include "../virt-dma.h"
#include "k3-udma.h"
#include "k3-psil-priv.h"
struct udma_static_tr {
u8 elsize; /* RPSTR0 */
u16 elcnt; /* RPSTR0 */
u16 bstcnt; /* RPSTR1 */
};
#define K3_UDMA_MAX_RFLOWS 1024
#define K3_UDMA_DEFAULT_RING_SIZE 16
/* How SRC/DST tag should be updated by UDMA in the descriptor's Word 3 */
#define UDMA_RFLOW_SRCTAG_NONE 0
#define UDMA_RFLOW_SRCTAG_CFG_TAG 1
#define UDMA_RFLOW_SRCTAG_FLOW_ID 2
#define UDMA_RFLOW_SRCTAG_SRC_TAG 4
#define UDMA_RFLOW_DSTTAG_NONE 0
#define UDMA_RFLOW_DSTTAG_CFG_TAG 1
#define UDMA_RFLOW_DSTTAG_FLOW_ID 2
#define UDMA_RFLOW_DSTTAG_DST_TAG_LO 4
#define UDMA_RFLOW_DSTTAG_DST_TAG_HI 5
struct udma_chan;
enum udma_mmr {
MMR_GCFG = 0,
MMR_RCHANRT,
MMR_TCHANRT,
MMR_LAST,
};
static const char * const mmr_names[] = { "gcfg", "rchanrt", "tchanrt" };
struct udma_tchan {
void __iomem *reg_rt;
int id;
struct k3_ring *t_ring; /* Transmit ring */
struct k3_ring *tc_ring; /* Transmit Completion ring */
};
struct udma_rflow {
int id;
struct k3_ring *fd_ring; /* Free Descriptor ring */
struct k3_ring *r_ring; /* Receive ring */
};
struct udma_rchan {
void __iomem *reg_rt;
int id;
};
#define UDMA_FLAG_PDMA_ACC32 BIT(0)
#define UDMA_FLAG_PDMA_BURST BIT(1)
struct udma_match_data {
u32 psil_base;
bool enable_memcpy_support;
u32 flags;
u32 statictr_z_mask;
u32 rchan_oes_offset;
};
struct udma_hwdesc {
size_t cppi5_desc_size;
void *cppi5_desc_vaddr;
dma_addr_t cppi5_desc_paddr;
/* TR descriptor internal pointers */
void *tr_req_base;
struct cppi5_tr_resp_t *tr_resp_base;
};
struct udma_rx_flush {
struct udma_hwdesc hwdescs[2];
size_t buffer_size;
void *buffer_vaddr;
dma_addr_t buffer_paddr;
};
struct udma_dev {
struct dma_device ddev;
struct device *dev;
void __iomem *mmrs[MMR_LAST];
const struct udma_match_data *match_data;
u8 tpl_levels;
u32 tpl_start_idx[3];
size_t desc_align; /* alignment to use for descriptors */
struct udma_tisci_rm tisci_rm;
struct k3_ringacc *ringacc;
struct work_struct purge_work;
struct list_head desc_to_purge;
spinlock_t lock;
struct udma_rx_flush rx_flush;
int tchan_cnt;
int echan_cnt;
int rchan_cnt;
int rflow_cnt;
unsigned long *tchan_map;
unsigned long *rchan_map;
unsigned long *rflow_gp_map;
unsigned long *rflow_gp_map_allocated;
unsigned long *rflow_in_use;
struct udma_tchan *tchans;
struct udma_rchan *rchans;
struct udma_rflow *rflows;
struct udma_chan *channels;
u32 psil_base;
u32 atype;
};
struct udma_desc {
struct virt_dma_desc vd;
bool terminated;
enum dma_transfer_direction dir;
struct udma_static_tr static_tr;
u32 residue;
unsigned int sglen;
unsigned int desc_idx; /* Only used for cyclic in packet mode */
unsigned int tr_idx;
u32 metadata_size;
void *metadata; /* pointer to provided metadata buffer (EPIP, PSdata) */
unsigned int hwdesc_count;
struct udma_hwdesc hwdesc[];
};
enum udma_chan_state {
UDMA_CHAN_IS_IDLE = 0, /* not active, no teardown is in progress */
UDMA_CHAN_IS_ACTIVE, /* Normal operation */
UDMA_CHAN_IS_TERMINATING, /* channel is being terminated */
};
struct udma_tx_drain {
struct delayed_work work;
ktime_t tstamp;
u32 residue;
};
struct udma_chan_config {
bool pkt_mode; /* TR or packet */
bool needs_epib; /* EPIB is needed for the communication or not */
u32 psd_size; /* size of Protocol Specific Data */
u32 metadata_size; /* (needs_epib ? 16:0) + psd_size */
u32 hdesc_size; /* Size of a packet descriptor in packet mode */
bool notdpkt; /* Suppress sending TDC packet */
int remote_thread_id;
u32 atype;
u32 src_thread;
u32 dst_thread;
enum psil_endpoint_type ep_type;
bool enable_acc32;
bool enable_burst;
enum udma_tp_level channel_tpl; /* Channel Throughput Level */
enum dma_transfer_direction dir;
};
struct udma_chan {
struct virt_dma_chan vc;
struct dma_slave_config cfg;
struct udma_dev *ud;
struct udma_desc *desc;
struct udma_desc *terminated_desc;
struct udma_static_tr static_tr;
char *name;
struct udma_tchan *tchan;
struct udma_rchan *rchan;
struct udma_rflow *rflow;
bool psil_paired;
int irq_num_ring;
int irq_num_udma;
bool cyclic;
bool paused;
enum udma_chan_state state;
struct completion teardown_completed;
struct udma_tx_drain tx_drain;
u32 bcnt; /* number of bytes completed since the start of the channel */
/* Channel configuration parameters */
struct udma_chan_config config;
/* dmapool for packet mode descriptors */
bool use_dma_pool;
struct dma_pool *hdesc_pool;
u32 id;
};
static inline struct udma_dev *to_udma_dev(struct dma_device *d)
{
return container_of(d, struct udma_dev, ddev);
}
static inline struct udma_chan *to_udma_chan(struct dma_chan *c)
{
return container_of(c, struct udma_chan, vc.chan);
}
static inline struct udma_desc *to_udma_desc(struct dma_async_tx_descriptor *t)
{
return container_of(t, struct udma_desc, vd.tx);
}
/* Generic register access functions */
static inline u32 udma_read(void __iomem *base, int reg)
{
return readl(base + reg);
}
static inline void udma_write(void __iomem *base, int reg, u32 val)
{
writel(val, base + reg);
}
static inline void udma_update_bits(void __iomem *base, int reg,
u32 mask, u32 val)
{
u32 tmp, orig;
orig = readl(base + reg);
tmp = orig & ~mask;
tmp |= (val & mask);
if (tmp != orig)
writel(tmp, base + reg);
}
/* TCHANRT */
static inline u32 udma_tchanrt_read(struct udma_chan *uc, int reg)
{
if (!uc->tchan)
return 0;
return udma_read(uc->tchan->reg_rt, reg);
}
static inline void udma_tchanrt_write(struct udma_chan *uc, int reg, u32 val)
{
if (!uc->tchan)
return;
udma_write(uc->tchan->reg_rt, reg, val);
}
static inline void udma_tchanrt_update_bits(struct udma_chan *uc, int reg,
u32 mask, u32 val)
{
if (!uc->tchan)
return;
udma_update_bits(uc->tchan->reg_rt, reg, mask, val);
}
/* RCHANRT */
static inline u32 udma_rchanrt_read(struct udma_chan *uc, int reg)
{
if (!uc->rchan)
return 0;
return udma_read(uc->rchan->reg_rt, reg);
}
static inline void udma_rchanrt_write(struct udma_chan *uc, int reg, u32 val)
{
if (!uc->rchan)
return;
udma_write(uc->rchan->reg_rt, reg, val);
}
static inline void udma_rchanrt_update_bits(struct udma_chan *uc, int reg,
u32 mask, u32 val)
{
if (!uc->rchan)
return;
udma_update_bits(uc->rchan->reg_rt, reg, mask, val);
}
static int navss_psil_pair(struct udma_dev *ud, u32 src_thread, u32 dst_thread)
{
struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
return tisci_rm->tisci_psil_ops->pair(tisci_rm->tisci,
tisci_rm->tisci_navss_dev_id,
src_thread, dst_thread);
}
static int navss_psil_unpair(struct udma_dev *ud, u32 src_thread,
u32 dst_thread)
{
struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
return tisci_rm->tisci_psil_ops->unpair(tisci_rm->tisci,
tisci_rm->tisci_navss_dev_id,
src_thread, dst_thread);
}
static void udma_reset_uchan(struct udma_chan *uc)
{
memset(&uc->config, 0, sizeof(uc->config));
uc->config.remote_thread_id = -1;
uc->state = UDMA_CHAN_IS_IDLE;
}
static void udma_dump_chan_stdata(struct udma_chan *uc)
{
struct device *dev = uc->ud->dev;
u32 offset;
int i;
if (uc->config.dir == DMA_MEM_TO_DEV || uc->config.dir == DMA_MEM_TO_MEM) {
dev_dbg(dev, "TCHAN State data:\n");
for (i = 0; i < 32; i++) {
offset = UDMA_CHAN_RT_STDATA_REG + i * 4;
dev_dbg(dev, "TRT_STDATA[%02d]: 0x%08x\n", i,
udma_tchanrt_read(uc, offset));
}
}
if (uc->config.dir == DMA_DEV_TO_MEM || uc->config.dir == DMA_MEM_TO_MEM) {
dev_dbg(dev, "RCHAN State data:\n");
for (i = 0; i < 32; i++) {
offset = UDMA_CHAN_RT_STDATA_REG + i * 4;
dev_dbg(dev, "RRT_STDATA[%02d]: 0x%08x\n", i,
udma_rchanrt_read(uc, offset));
}
}
}
static inline dma_addr_t udma_curr_cppi5_desc_paddr(struct udma_desc *d,
int idx)
{
return d->hwdesc[idx].cppi5_desc_paddr;
}
static inline void *udma_curr_cppi5_desc_vaddr(struct udma_desc *d, int idx)
{
return d->hwdesc[idx].cppi5_desc_vaddr;
}
static struct udma_desc *udma_udma_desc_from_paddr(struct udma_chan *uc,
dma_addr_t paddr)
{
struct udma_desc *d = uc->terminated_desc;
if (d) {
dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
d->desc_idx);
if (desc_paddr != paddr)
d = NULL;
}
if (!d) {
d = uc->desc;
if (d) {
dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
d->desc_idx);
if (desc_paddr != paddr)
d = NULL;
}
}
return d;
}
static void udma_free_hwdesc(struct udma_chan *uc, struct udma_desc *d)
{
if (uc->use_dma_pool) {
int i;
for (i = 0; i < d->hwdesc_count; i++) {
if (!d->hwdesc[i].cppi5_desc_vaddr)
continue;
dma_pool_free(uc->hdesc_pool,
d->hwdesc[i].cppi5_desc_vaddr,
d->hwdesc[i].cppi5_desc_paddr);
d->hwdesc[i].cppi5_desc_vaddr = NULL;
}
} else if (d->hwdesc[0].cppi5_desc_vaddr) {
struct udma_dev *ud = uc->ud;
dma_free_coherent(ud->dev, d->hwdesc[0].cppi5_desc_size,
d->hwdesc[0].cppi5_desc_vaddr,
d->hwdesc[0].cppi5_desc_paddr);
d->hwdesc[0].cppi5_desc_vaddr = NULL;
}
}
static void udma_purge_desc_work(struct work_struct *work)
{
struct udma_dev *ud = container_of(work, typeof(*ud), purge_work);
struct virt_dma_desc *vd, *_vd;
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&ud->lock, flags);
list_splice_tail_init(&ud->desc_to_purge, &head);
spin_unlock_irqrestore(&ud->lock, flags);
list_for_each_entry_safe(vd, _vd, &head, node) {
struct udma_chan *uc = to_udma_chan(vd->tx.chan);
struct udma_desc *d = to_udma_desc(&vd->tx);
udma_free_hwdesc(uc, d);
list_del(&vd->node);
kfree(d);
}
/* If more to purge, schedule the work again */
if (!list_empty(&ud->desc_to_purge))
schedule_work(&ud->purge_work);
}
static void udma_desc_free(struct virt_dma_desc *vd)
{
struct udma_dev *ud = to_udma_dev(vd->tx.chan->device);
struct udma_chan *uc = to_udma_chan(vd->tx.chan);
struct udma_desc *d = to_udma_desc(&vd->tx);
unsigned long flags;
if (uc->terminated_desc == d)
uc->terminated_desc = NULL;
if (uc->use_dma_pool) {
udma_free_hwdesc(uc, d);
kfree(d);
return;
}
spin_lock_irqsave(&ud->lock, flags);
list_add_tail(&vd->node, &ud->desc_to_purge);
spin_unlock_irqrestore(&ud->lock, flags);
schedule_work(&ud->purge_work);
}
static bool udma_is_chan_running(struct udma_chan *uc)
{
u32 trt_ctl = 0;
u32 rrt_ctl = 0;
if (uc->tchan)
trt_ctl = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
if (uc->rchan)
rrt_ctl = udma_rchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
if (trt_ctl & UDMA_CHAN_RT_CTL_EN || rrt_ctl & UDMA_CHAN_RT_CTL_EN)
return true;
return false;
}
static bool udma_is_chan_paused(struct udma_chan *uc)
{
u32 val, pause_mask;
switch (uc->config.dir) {
case DMA_DEV_TO_MEM:
val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG);
pause_mask = UDMA_PEER_RT_EN_PAUSE;
break;
case DMA_MEM_TO_DEV:
val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_RT_EN_REG);
pause_mask = UDMA_PEER_RT_EN_PAUSE;
break;
case DMA_MEM_TO_MEM:
val = udma_tchanrt_read(uc, UDMA_CHAN_RT_CTL_REG);
pause_mask = UDMA_CHAN_RT_CTL_PAUSE;
break;
default:
return false;
}
if (val & pause_mask)
return true;
return false;
}
static inline dma_addr_t udma_get_rx_flush_hwdesc_paddr(struct udma_chan *uc)
{
return uc->ud->rx_flush.hwdescs[uc->config.pkt_mode].cppi5_desc_paddr;
}
static int udma_push_to_ring(struct udma_chan *uc, int idx)
{
struct udma_desc *d = uc->desc;
struct k3_ring *ring = NULL;
dma_addr_t paddr;
switch (uc->config.dir) {
case DMA_DEV_TO_MEM:
ring = uc->rflow->fd_ring;
break;
case DMA_MEM_TO_DEV:
case DMA_MEM_TO_MEM:
ring = uc->tchan->t_ring;
break;
default:
return -EINVAL;
}
/* RX flush packet: idx == -1 is only passed in case of DEV_TO_MEM */
if (idx == -1) {
paddr = udma_get_rx_flush_hwdesc_paddr(uc);
} else {
paddr = udma_curr_cppi5_desc_paddr(d, idx);
wmb(); /* Ensure that writes are not moved over this point */
}
return k3_ringacc_ring_push(ring, &paddr);
}
static bool udma_desc_is_rx_flush(struct udma_chan *uc, dma_addr_t addr)
{
if (uc->config.dir != DMA_DEV_TO_MEM)
return false;
if (addr == udma_get_rx_flush_hwdesc_paddr(uc))
return true;
return false;
}
static int udma_pop_from_ring(struct udma_chan *uc, dma_addr_t *addr)
{
struct k3_ring *ring = NULL;
int ret;
switch (uc->config.dir) {
case DMA_DEV_TO_MEM:
ring = uc->rflow->r_ring;
break;
case DMA_MEM_TO_DEV:
case DMA_MEM_TO_MEM:
ring = uc->tchan->tc_ring;
break;
default:
return -ENOENT;
}
ret = k3_ringacc_ring_pop(ring, addr);
if (ret)
return ret;
rmb(); /* Ensure that reads are not moved before this point */
/* Teardown completion */
if (cppi5_desc_is_tdcm(*addr))
return 0;
/* Check for flush descriptor */
if (udma_desc_is_rx_flush(uc, *addr))
return -ENOENT;
return 0;
}
static void udma_reset_rings(struct udma_chan *uc)
{
struct k3_ring *ring1 = NULL;
struct k3_ring *ring2 = NULL;
switch (uc->config.dir) {
case DMA_DEV_TO_MEM:
if (uc->rchan) {
ring1 = uc->rflow->fd_ring;
ring2 = uc->rflow->r_ring;
}
break;
case DMA_MEM_TO_DEV:
case DMA_MEM_TO_MEM:
if (uc->tchan) {
ring1 = uc->tchan->t_ring;
ring2 = uc->tchan->tc_ring;
}
break;
default:
break;
}
if (ring1)
k3_ringacc_ring_reset_dma(ring1,
k3_ringacc_ring_get_occ(ring1));
if (ring2)
k3_ringacc_ring_reset(ring2);
/* make sure we are not leaking memory by stalled descriptor */
if (uc->terminated_desc) {
udma_desc_free(&uc->terminated_desc->vd);
uc->terminated_desc = NULL;
}
}
static void udma_reset_counters(struct udma_chan *uc)
{
u32 val;
if (uc->tchan) {
val = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
udma_tchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
val = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
udma_tchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG);
udma_tchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val);
val = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
}
if (uc->rchan) {
val = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
udma_rchanrt_write(uc, UDMA_CHAN_RT_BCNT_REG, val);
val = udma_rchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
udma_rchanrt_write(uc, UDMA_CHAN_RT_SBCNT_REG, val);
val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PCNT_REG);
udma_rchanrt_write(uc, UDMA_CHAN_RT_PCNT_REG, val);
val = udma_rchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_BCNT_REG, val);
}
uc->bcnt = 0;
}
static int udma_reset_chan(struct udma_chan *uc, bool hard)
{
switch (uc->config.dir) {
case DMA_DEV_TO_MEM:
udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0);
udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
break;
case DMA_MEM_TO_DEV:
udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG, 0);
break;
case DMA_MEM_TO_MEM:
udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG, 0);
break;
default:
return -EINVAL;
}
/* Reset all counters */
udma_reset_counters(uc);
/* Hard reset: re-initialize the channel to reset */
if (hard) {
struct udma_chan_config ucc_backup;
int ret;
memcpy(&ucc_backup, &uc->config, sizeof(uc->config));
uc->ud->ddev.device_free_chan_resources(&uc->vc.chan);
/* restore the channel configuration */
memcpy(&uc->config, &ucc_backup, sizeof(uc->config));
ret = uc->ud->ddev.device_alloc_chan_resources(&uc->vc.chan);
if (ret)
return ret;
/*
* Setting forced teardown after forced reset helps recovering
* the rchan.
*/
if (uc->config.dir == DMA_DEV_TO_MEM)
udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN |
UDMA_CHAN_RT_CTL_TDOWN |
UDMA_CHAN_RT_CTL_FTDOWN);
}
uc->state = UDMA_CHAN_IS_IDLE;
return 0;
}
static void udma_start_desc(struct udma_chan *uc)
{
struct udma_chan_config *ucc = &uc->config;
if (ucc->pkt_mode && (uc->cyclic || ucc->dir == DMA_DEV_TO_MEM)) {
int i;
/* Push all descriptors to ring for packet mode cyclic or RX */
for (i = 0; i < uc->desc->sglen; i++)
udma_push_to_ring(uc, i);
} else {
udma_push_to_ring(uc, 0);
}
}
static bool udma_chan_needs_reconfiguration(struct udma_chan *uc)
{
/* Only PDMAs have staticTR */
if (uc->config.ep_type == PSIL_EP_NATIVE)
return false;
/* Check if the staticTR configuration has changed for TX */
if (memcmp(&uc->static_tr, &uc->desc->static_tr, sizeof(uc->static_tr)))
return true;
return false;
}
static int udma_start(struct udma_chan *uc)
{
struct virt_dma_desc *vd = vchan_next_desc(&uc->vc);
if (!vd) {
uc->desc = NULL;
return -ENOENT;
}
list_del(&vd->node);
uc->desc = to_udma_desc(&vd->tx);
/* Channel is already running and does not need reconfiguration */
if (udma_is_chan_running(uc) && !udma_chan_needs_reconfiguration(uc)) {
udma_start_desc(uc);
goto out;
}
/* Make sure that we clear the teardown bit, if it is set */
udma_reset_chan(uc, false);
/* Push descriptors before we start the channel */
udma_start_desc(uc);
switch (uc->desc->dir) {
case DMA_DEV_TO_MEM:
/* Config remote TR */
if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
const struct udma_match_data *match_data =
uc->ud->match_data;
if (uc->config.enable_acc32)
val |= PDMA_STATIC_TR_XY_ACC32;
if (uc->config.enable_burst)
val |= PDMA_STATIC_TR_XY_BURST;
udma_rchanrt_write(uc,
UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG,
val);
udma_rchanrt_write(uc,
UDMA_CHAN_RT_PEER_STATIC_TR_Z_REG,
PDMA_STATIC_TR_Z(uc->desc->static_tr.bstcnt,
match_data->statictr_z_mask));
/* save the current staticTR configuration */
memcpy(&uc->static_tr, &uc->desc->static_tr,
sizeof(uc->static_tr));
}
udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN);
/* Enable remote */
udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_ENABLE);
break;
case DMA_MEM_TO_DEV:
/* Config remote TR */
if (uc->config.ep_type == PSIL_EP_PDMA_XY) {
u32 val = PDMA_STATIC_TR_Y(uc->desc->static_tr.elcnt) |
PDMA_STATIC_TR_X(uc->desc->static_tr.elsize);
if (uc->config.enable_acc32)
val |= PDMA_STATIC_TR_XY_ACC32;
if (uc->config.enable_burst)
val |= PDMA_STATIC_TR_XY_BURST;
udma_tchanrt_write(uc,
UDMA_CHAN_RT_PEER_STATIC_TR_XY_REG,
val);
/* save the current staticTR configuration */
memcpy(&uc->static_tr, &uc->desc->static_tr,
sizeof(uc->static_tr));
}
/* Enable remote */
udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_ENABLE);
udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN);
break;
case DMA_MEM_TO_MEM:
udma_rchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN);
udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN);
break;
default:
return -EINVAL;
}
uc->state = UDMA_CHAN_IS_ACTIVE;
out:
return 0;
}
static int udma_stop(struct udma_chan *uc)
{
enum udma_chan_state old_state = uc->state;
uc->state = UDMA_CHAN_IS_TERMINATING;
reinit_completion(&uc->teardown_completed);
switch (uc->config.dir) {
case DMA_DEV_TO_MEM:
if (!uc->cyclic && !uc->desc)
udma_push_to_ring(uc, -1);
udma_rchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_ENABLE |
UDMA_PEER_RT_EN_TEARDOWN);
break;
case DMA_MEM_TO_DEV:
udma_tchanrt_write(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_ENABLE |
UDMA_PEER_RT_EN_FLUSH);
udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN |
UDMA_CHAN_RT_CTL_TDOWN);
break;
case DMA_MEM_TO_MEM:
udma_tchanrt_write(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_EN |
UDMA_CHAN_RT_CTL_TDOWN);
break;
default:
uc->state = old_state;
complete_all(&uc->teardown_completed);
return -EINVAL;
}
return 0;
}
static void udma_cyclic_packet_elapsed(struct udma_chan *uc)
{
struct udma_desc *d = uc->desc;
struct cppi5_host_desc_t *h_desc;
h_desc = d->hwdesc[d->desc_idx].cppi5_desc_vaddr;
cppi5_hdesc_reset_to_original(h_desc);
udma_push_to_ring(uc, d->desc_idx);
d->desc_idx = (d->desc_idx + 1) % d->sglen;
}
static inline void udma_fetch_epib(struct udma_chan *uc, struct udma_desc *d)
{
struct cppi5_host_desc_t *h_desc = d->hwdesc[0].cppi5_desc_vaddr;
memcpy(d->metadata, h_desc->epib, d->metadata_size);
}
static bool udma_is_desc_really_done(struct udma_chan *uc, struct udma_desc *d)
{
u32 peer_bcnt, bcnt;
/* Only TX towards PDMA is affected */
if (uc->config.ep_type == PSIL_EP_NATIVE ||
uc->config.dir != DMA_MEM_TO_DEV)
return true;
peer_bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_PEER_BCNT_REG);
bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
/* Transfer is incomplete, store current residue and time stamp */
if (peer_bcnt < bcnt) {
uc->tx_drain.residue = bcnt - peer_bcnt;
uc->tx_drain.tstamp = ktime_get();
return false;
}
return true;
}
static void udma_check_tx_completion(struct work_struct *work)
{
struct udma_chan *uc = container_of(work, typeof(*uc),
tx_drain.work.work);
bool desc_done = true;
u32 residue_diff;
ktime_t time_diff;
unsigned long delay;
while (1) {
if (uc->desc) {
/* Get previous residue and time stamp */
residue_diff = uc->tx_drain.residue;
time_diff = uc->tx_drain.tstamp;
/*
* Get current residue and time stamp or see if
* transfer is complete
*/
desc_done = udma_is_desc_really_done(uc, uc->desc);
}
if (!desc_done) {
/*
* Find the time delta and residue delta w.r.t
* previous poll
*/
time_diff = ktime_sub(uc->tx_drain.tstamp,
time_diff) + 1;
residue_diff -= uc->tx_drain.residue;
if (residue_diff) {
/*
* Try to guess when we should check
* next time by calculating rate at
* which data is being drained at the
* peer device
*/
delay = (time_diff / residue_diff) *
uc->tx_drain.residue;
} else {
/* No progress, check again in 1 second */
schedule_delayed_work(&uc->tx_drain.work, HZ);
break;
}
usleep_range(ktime_to_us(delay),
ktime_to_us(delay) + 10);
continue;
}
if (uc->desc) {
struct udma_desc *d = uc->desc;
uc->bcnt += d->residue;
udma_start(uc);
vchan_cookie_complete(&d->vd);
break;
}
break;
}
}
static irqreturn_t udma_ring_irq_handler(int irq, void *data)
{
struct udma_chan *uc = data;
struct udma_desc *d;
unsigned long flags;
dma_addr_t paddr = 0;
if (udma_pop_from_ring(uc, &paddr) || !paddr)
return IRQ_HANDLED;
spin_lock_irqsave(&uc->vc.lock, flags);
/* Teardown completion message */
if (cppi5_desc_is_tdcm(paddr)) {
complete_all(&uc->teardown_completed);
if (uc->terminated_desc) {
udma_desc_free(&uc->terminated_desc->vd);
uc->terminated_desc = NULL;
}
if (!uc->desc)
udma_start(uc);
goto out;
}
d = udma_udma_desc_from_paddr(uc, paddr);
if (d) {
dma_addr_t desc_paddr = udma_curr_cppi5_desc_paddr(d,
d->desc_idx);
if (desc_paddr != paddr) {
dev_err(uc->ud->dev, "not matching descriptors!\n");
goto out;
}
if (d == uc->desc) {
/* active descriptor */
if (uc->cyclic) {
udma_cyclic_packet_elapsed(uc);
vchan_cyclic_callback(&d->vd);
} else {
if (udma_is_desc_really_done(uc, d)) {
uc->bcnt += d->residue;
udma_start(uc);
vchan_cookie_complete(&d->vd);
} else {
schedule_delayed_work(&uc->tx_drain.work,
0);
}
}
} else {
/*
* terminated descriptor, mark the descriptor as
* completed to update the channel's cookie marker
*/
dma_cookie_complete(&d->vd.tx);
}
}
out:
spin_unlock_irqrestore(&uc->vc.lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t udma_udma_irq_handler(int irq, void *data)
{
struct udma_chan *uc = data;
struct udma_desc *d;
unsigned long flags;
spin_lock_irqsave(&uc->vc.lock, flags);
d = uc->desc;
if (d) {
d->tr_idx = (d->tr_idx + 1) % d->sglen;
if (uc->cyclic) {
vchan_cyclic_callback(&d->vd);
} else {
/* TODO: figure out the real amount of data */
uc->bcnt += d->residue;
udma_start(uc);
vchan_cookie_complete(&d->vd);
}
}
spin_unlock_irqrestore(&uc->vc.lock, flags);
return IRQ_HANDLED;
}
/**
* __udma_alloc_gp_rflow_range - alloc range of GP RX flows
* @ud: UDMA device
* @from: Start the search from this flow id number
* @cnt: Number of consecutive flow ids to allocate
*
* Allocate range of RX flow ids for future use, those flows can be requested
* only using explicit flow id number. if @from is set to -1 it will try to find
* first free range. if @from is positive value it will force allocation only
* of the specified range of flows.
*
* Returns -ENOMEM if can't find free range.
* -EEXIST if requested range is busy.
* -EINVAL if wrong input values passed.
* Returns flow id on success.
*/
static int __udma_alloc_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
{
int start, tmp_from;
DECLARE_BITMAP(tmp, K3_UDMA_MAX_RFLOWS);
tmp_from = from;
if (tmp_from < 0)
tmp_from = ud->rchan_cnt;
/* default flows can't be allocated and accessible only by id */
if (tmp_from < ud->rchan_cnt)
return -EINVAL;
if (tmp_from + cnt > ud->rflow_cnt)
return -EINVAL;
bitmap_or(tmp, ud->rflow_gp_map, ud->rflow_gp_map_allocated,
ud->rflow_cnt);
start = bitmap_find_next_zero_area(tmp,
ud->rflow_cnt,
tmp_from, cnt, 0);
if (start >= ud->rflow_cnt)
return -ENOMEM;
if (from >= 0 && start != from)
return -EEXIST;
bitmap_set(ud->rflow_gp_map_allocated, start, cnt);
return start;
}
static int __udma_free_gp_rflow_range(struct udma_dev *ud, int from, int cnt)
{
if (from < ud->rchan_cnt)
return -EINVAL;
if (from + cnt > ud->rflow_cnt)
return -EINVAL;
bitmap_clear(ud->rflow_gp_map_allocated, from, cnt);
return 0;
}
static struct udma_rflow *__udma_get_rflow(struct udma_dev *ud, int id)
{
/*
* Attempt to request rflow by ID can be made for any rflow
* if not in use with assumption that caller knows what's doing.
* TI-SCI FW will perform additional permission check ant way, it's
* safe
*/
if (id < 0 || id >= ud->rflow_cnt)
return ERR_PTR(-ENOENT);
if (test_bit(id, ud->rflow_in_use))
return ERR_PTR(-ENOENT);
/* GP rflow has to be allocated first */
if (!test_bit(id, ud->rflow_gp_map) &&
!test_bit(id, ud->rflow_gp_map_allocated))
return ERR_PTR(-EINVAL);
dev_dbg(ud->dev, "get rflow%d\n", id);
set_bit(id, ud->rflow_in_use);
return &ud->rflows[id];
}
static void __udma_put_rflow(struct udma_dev *ud, struct udma_rflow *rflow)
{
if (!test_bit(rflow->id, ud->rflow_in_use)) {
dev_err(ud->dev, "attempt to put unused rflow%d\n", rflow->id);
return;
}
dev_dbg(ud->dev, "put rflow%d\n", rflow->id);
clear_bit(rflow->id, ud->rflow_in_use);
}
#define UDMA_RESERVE_RESOURCE(res) \
static struct udma_##res *__udma_reserve_##res(struct udma_dev *ud, \
enum udma_tp_level tpl, \
int id) \
{ \
if (id >= 0) { \
if (test_bit(id, ud->res##_map)) { \
dev_err(ud->dev, "res##%d is in use\n", id); \
return ERR_PTR(-ENOENT); \
} \
} else { \
int start; \
\
if (tpl >= ud->tpl_levels) \
tpl = ud->tpl_levels - 1; \
\
start = ud->tpl_start_idx[tpl]; \
\
id = find_next_zero_bit(ud->res##_map, ud->res##_cnt, \
start); \
if (id == ud->res##_cnt) { \
return ERR_PTR(-ENOENT); \
} \
} \
\
set_bit(id, ud->res##_map); \
return &ud->res##s[id]; \
}
UDMA_RESERVE_RESOURCE(tchan);
UDMA_RESERVE_RESOURCE(rchan);
static int udma_get_tchan(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->tchan) {
dev_dbg(ud->dev, "chan%d: already have tchan%d allocated\n",
uc->id, uc->tchan->id);
return 0;
}
uc->tchan = __udma_reserve_tchan(ud, uc->config.channel_tpl, -1);
return PTR_ERR_OR_ZERO(uc->tchan);
}
static int udma_get_rchan(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->rchan) {
dev_dbg(ud->dev, "chan%d: already have rchan%d allocated\n",
uc->id, uc->rchan->id);
return 0;
}
uc->rchan = __udma_reserve_rchan(ud, uc->config.channel_tpl, -1);
return PTR_ERR_OR_ZERO(uc->rchan);
}
static int udma_get_chan_pair(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
int chan_id, end;
if ((uc->tchan && uc->rchan) && uc->tchan->id == uc->rchan->id) {
dev_info(ud->dev, "chan%d: already have %d pair allocated\n",
uc->id, uc->tchan->id);
return 0;
}
if (uc->tchan) {
dev_err(ud->dev, "chan%d: already have tchan%d allocated\n",
uc->id, uc->tchan->id);
return -EBUSY;
} else if (uc->rchan) {
dev_err(ud->dev, "chan%d: already have rchan%d allocated\n",
uc->id, uc->rchan->id);
return -EBUSY;
}
/* Can be optimized, but let's have it like this for now */
end = min(ud->tchan_cnt, ud->rchan_cnt);
/* Try to use the highest TPL channel pair for MEM_TO_MEM channels */
chan_id = ud->tpl_start_idx[ud->tpl_levels - 1];
for (; chan_id < end; chan_id++) {
if (!test_bit(chan_id, ud->tchan_map) &&
!test_bit(chan_id, ud->rchan_map))
break;
}
if (chan_id == end)
return -ENOENT;
set_bit(chan_id, ud->tchan_map);
set_bit(chan_id, ud->rchan_map);
uc->tchan = &ud->tchans[chan_id];
uc->rchan = &ud->rchans[chan_id];
return 0;
}
static int udma_get_rflow(struct udma_chan *uc, int flow_id)
{
struct udma_dev *ud = uc->ud;
if (!uc->rchan) {
dev_err(ud->dev, "chan%d: does not have rchan??\n", uc->id);
return -EINVAL;
}
if (uc->rflow) {
dev_dbg(ud->dev, "chan%d: already have rflow%d allocated\n",
uc->id, uc->rflow->id);
return 0;
}
uc->rflow = __udma_get_rflow(ud, flow_id);
return PTR_ERR_OR_ZERO(uc->rflow);
}
static void udma_put_rchan(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->rchan) {
dev_dbg(ud->dev, "chan%d: put rchan%d\n", uc->id,
uc->rchan->id);
clear_bit(uc->rchan->id, ud->rchan_map);
uc->rchan = NULL;
}
}
static void udma_put_tchan(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->tchan) {
dev_dbg(ud->dev, "chan%d: put tchan%d\n", uc->id,
uc->tchan->id);
clear_bit(uc->tchan->id, ud->tchan_map);
uc->tchan = NULL;
}
}
static void udma_put_rflow(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
if (uc->rflow) {
dev_dbg(ud->dev, "chan%d: put rflow%d\n", uc->id,
uc->rflow->id);
__udma_put_rflow(ud, uc->rflow);
uc->rflow = NULL;
}
}
static void udma_free_tx_resources(struct udma_chan *uc)
{
if (!uc->tchan)
return;
k3_ringacc_ring_free(uc->tchan->t_ring);
k3_ringacc_ring_free(uc->tchan->tc_ring);
uc->tchan->t_ring = NULL;
uc->tchan->tc_ring = NULL;
udma_put_tchan(uc);
}
static int udma_alloc_tx_resources(struct udma_chan *uc)
{
struct k3_ring_cfg ring_cfg;
struct udma_dev *ud = uc->ud;
int ret;
ret = udma_get_tchan(uc);
if (ret)
return ret;
ret = k3_ringacc_request_rings_pair(ud->ringacc, uc->tchan->id, -1,
&uc->tchan->t_ring,
&uc->tchan->tc_ring);
if (ret) {
ret = -EBUSY;
goto err_ring;
}
memset(&ring_cfg, 0, sizeof(ring_cfg));
ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
ret = k3_ringacc_ring_cfg(uc->tchan->t_ring, &ring_cfg);
ret |= k3_ringacc_ring_cfg(uc->tchan->tc_ring, &ring_cfg);
if (ret)
goto err_ringcfg;
return 0;
err_ringcfg:
k3_ringacc_ring_free(uc->tchan->tc_ring);
uc->tchan->tc_ring = NULL;
k3_ringacc_ring_free(uc->tchan->t_ring);
uc->tchan->t_ring = NULL;
err_ring:
udma_put_tchan(uc);
return ret;
}
static void udma_free_rx_resources(struct udma_chan *uc)
{
if (!uc->rchan)
return;
if (uc->rflow) {
struct udma_rflow *rflow = uc->rflow;
k3_ringacc_ring_free(rflow->fd_ring);
k3_ringacc_ring_free(rflow->r_ring);
rflow->fd_ring = NULL;
rflow->r_ring = NULL;
udma_put_rflow(uc);
}
udma_put_rchan(uc);
}
static int udma_alloc_rx_resources(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
struct k3_ring_cfg ring_cfg;
struct udma_rflow *rflow;
int fd_ring_id;
int ret;
ret = udma_get_rchan(uc);
if (ret)
return ret;
/* For MEM_TO_MEM we don't need rflow or rings */
if (uc->config.dir == DMA_MEM_TO_MEM)
return 0;
ret = udma_get_rflow(uc, uc->rchan->id);
if (ret) {
ret = -EBUSY;
goto err_rflow;
}
rflow = uc->rflow;
fd_ring_id = ud->tchan_cnt + ud->echan_cnt + uc->rchan->id;
ret = k3_ringacc_request_rings_pair(ud->ringacc, fd_ring_id, -1,
&rflow->fd_ring, &rflow->r_ring);
if (ret) {
ret = -EBUSY;
goto err_ring;
}
memset(&ring_cfg, 0, sizeof(ring_cfg));
if (uc->config.pkt_mode)
ring_cfg.size = SG_MAX_SEGMENTS;
else
ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
ring_cfg.elm_size = K3_RINGACC_RING_ELSIZE_8;
ring_cfg.mode = K3_RINGACC_RING_MODE_MESSAGE;
ret = k3_ringacc_ring_cfg(rflow->fd_ring, &ring_cfg);
ring_cfg.size = K3_UDMA_DEFAULT_RING_SIZE;
ret |= k3_ringacc_ring_cfg(rflow->r_ring, &ring_cfg);
if (ret)
goto err_ringcfg;
return 0;
err_ringcfg:
k3_ringacc_ring_free(rflow->r_ring);
rflow->r_ring = NULL;
k3_ringacc_ring_free(rflow->fd_ring);
rflow->fd_ring = NULL;
err_ring:
udma_put_rflow(uc);
err_rflow:
udma_put_rchan(uc);
return ret;
}
#define TISCI_TCHAN_VALID_PARAMS ( \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_EINFO_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_FILT_PSWORDS_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_TX_SUPR_TDPKT_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
#define TISCI_RCHAN_VALID_PARAMS ( \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_PAUSE_ON_ERR_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_FETCH_SIZE_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_CQ_QNUM_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_CHAN_TYPE_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_SHORT_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_IGNORE_LONG_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_START_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_RX_FLOWID_CNT_VALID | \
TI_SCI_MSG_VALUE_RM_UDMAP_CH_ATYPE_VALID)
static int udma_tisci_m2m_channel_config(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
struct udma_tchan *tchan = uc->tchan;
struct udma_rchan *rchan = uc->rchan;
int ret = 0;
/* Non synchronized - mem to mem type of transfer */
int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
req_tx.nav_id = tisci_rm->tisci_dev_id;
req_tx.index = tchan->id;
req_tx.tx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
req_tx.tx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
req_tx.txcq_qnum = tc_ring;
req_tx.tx_atype = ud->atype;
ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
if (ret) {
dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
return ret;
}
req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
req_rx.nav_id = tisci_rm->tisci_dev_id;
req_rx.index = rchan->id;
req_rx.rx_fetch_size = sizeof(struct cppi5_desc_hdr_t) >> 2;
req_rx.rxcq_qnum = tc_ring;
req_rx.rx_chan_type = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_BCOPY_PBRR;
req_rx.rx_atype = ud->atype;
ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
if (ret)
dev_err(ud->dev, "rchan%d alloc failed %d\n", rchan->id, ret);
return ret;
}
static int udma_tisci_tx_channel_config(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
struct udma_tchan *tchan = uc->tchan;
int tc_ring = k3_ringacc_get_ring_id(tchan->tc_ring);
struct ti_sci_msg_rm_udmap_tx_ch_cfg req_tx = { 0 };
u32 mode, fetch_size;
int ret = 0;
if (uc->config.pkt_mode) {
mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
uc->config.psd_size, 0);
} else {
mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
fetch_size = sizeof(struct cppi5_desc_hdr_t);
}
req_tx.valid_params = TISCI_TCHAN_VALID_PARAMS;
req_tx.nav_id = tisci_rm->tisci_dev_id;
req_tx.index = tchan->id;
req_tx.tx_chan_type = mode;
req_tx.tx_supr_tdpkt = uc->config.notdpkt;
req_tx.tx_fetch_size = fetch_size >> 2;
req_tx.txcq_qnum = tc_ring;
req_tx.tx_atype = uc->config.atype;
ret = tisci_ops->tx_ch_cfg(tisci_rm->tisci, &req_tx);
if (ret)
dev_err(ud->dev, "tchan%d cfg failed %d\n", tchan->id, ret);
return ret;
}
static int udma_tisci_rx_channel_config(struct udma_chan *uc)
{
struct udma_dev *ud = uc->ud;
struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
const struct ti_sci_rm_udmap_ops *tisci_ops = tisci_rm->tisci_udmap_ops;
struct udma_rchan *rchan = uc->rchan;
int fd_ring = k3_ringacc_get_ring_id(uc->rflow->fd_ring);
int rx_ring = k3_ringacc_get_ring_id(uc->rflow->r_ring);
struct ti_sci_msg_rm_udmap_rx_ch_cfg req_rx = { 0 };
struct ti_sci_msg_rm_udmap_flow_cfg flow_req = { 0 };
u32 mode, fetch_size;
int ret = 0;
if (uc->config.pkt_mode) {
mode = TI_SCI_RM_UDMAP_CHAN_TYPE_PKT_PBRR;
fetch_size = cppi5_hdesc_calc_size(uc->config.needs_epib,
uc->config.psd_size, 0);
} else {
mode = TI_SCI_RM_UDMAP_CHAN_TYPE_3RDP_PBRR;
fetch_size = sizeof(struct cppi5_desc_hdr_t);
}
req_rx.valid_params = TISCI_RCHAN_VALID_PARAMS;
req_rx.nav_id = tisci_rm->tisci_dev_id;
req_rx.index = rchan->id;
req_rx.rx_fetch_size = fetch_size >> 2;
req_rx.rxcq_qnum = rx_ring;
req_rx.rx_chan_type = mode;
req_rx.rx_atype = uc->config.atype;
ret = tisci_ops->rx_ch_cfg(tisci_rm->tisci, &req_rx);
if (ret) {
dev_err(ud->dev, "rchan%d cfg failed %d\n", rchan->id, ret);
return ret;
}
flow_req.valid_params =
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_EINFO_PRESENT_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_PSINFO_PRESENT_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_ERROR_HANDLING_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DESC_TYPE_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_HI_SEL_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_SRC_TAG_LO_SEL_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_HI_SEL_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_DEST_TAG_LO_SEL_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ0_SZ0_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ1_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ2_QNUM_VALID |
TI_SCI_MSG_VALUE_RM_UDMAP_FLOW_FDQ3_QNUM_VALID;
flow_req.nav_id = tisci_rm->tisci_dev_id;
flow_req.flow_index = rchan->id;
if (uc->config.needs_epib)
flow_req.rx_einfo_present = 1;
else
flow_req.rx_einfo_present = 0;
if (uc->config.psd_size)
flow_req.rx_psinfo_present = 1;
else
flow_req.rx_psinfo_present = 0;
flow_req.rx_error_handling = 1;
flow_req.rx_dest_qnum = rx_ring;
flow_req.rx_src_tag_hi_sel = UDMA_RFLOW_SRCTAG_NONE;
flow_req.rx_src_tag_lo_sel = UDMA_RFLOW_SRCTAG_SRC_TAG;
flow_req.rx_dest_tag_hi_sel = UDMA_RFLOW_DSTTAG_DST_TAG_HI;
flow_req.rx_dest_tag_lo_sel = UDMA_RFLOW_DSTTAG_DST_TAG_LO;
flow_req.rx_fdq0_sz0_qnum = fd_ring;
flow_req.rx_fdq1_qnum = fd_ring;
flow_req.rx_fdq2_qnum = fd_ring;
flow_req.rx_fdq3_qnum = fd_ring;
ret = tisci_ops->rx_flow_cfg(tisci_rm->tisci, &flow_req);
if (ret)
dev_err(ud->dev, "flow%d config failed: %d\n", rchan->id, ret);
return 0;
}
static int udma_alloc_chan_resources(struct dma_chan *chan)
{
struct udma_chan *uc = to_udma_chan(chan);
struct udma_dev *ud = to_udma_dev(chan->device);
const struct udma_match_data *match_data = ud->match_data;
struct k3_ring *irq_ring;
u32 irq_udma_idx;
int ret;
if (uc->config.pkt_mode || uc->config.dir == DMA_MEM_TO_MEM) {
uc->use_dma_pool = true;
/* in case of MEM_TO_MEM we have maximum of two TRs */
if (uc->config.dir == DMA_MEM_TO_MEM) {
uc->config.hdesc_size = cppi5_trdesc_calc_size(
sizeof(struct cppi5_tr_type15_t), 2);
uc->config.pkt_mode = false;
}
}
if (uc->use_dma_pool) {
uc->hdesc_pool = dma_pool_create(uc->name, ud->ddev.dev,
uc->config.hdesc_size,
ud->desc_align,
0);
if (!uc->hdesc_pool) {
dev_err(ud->ddev.dev,
"Descriptor pool allocation failed\n");
uc->use_dma_pool = false;
ret = -ENOMEM;
goto err_cleanup;
}
}
/*
* Make sure that the completion is in a known state:
* No teardown, the channel is idle
*/
reinit_completion(&uc->teardown_completed);
complete_all(&uc->teardown_completed);
uc->state = UDMA_CHAN_IS_IDLE;
switch (uc->config.dir) {
case DMA_MEM_TO_MEM:
/* Non synchronized - mem to mem type of transfer */
dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-MEM\n", __func__,
uc->id);
ret = udma_get_chan_pair(uc);
if (ret)
goto err_cleanup;
ret = udma_alloc_tx_resources(uc);
if (ret) {
udma_put_rchan(uc);
goto err_cleanup;
}
ret = udma_alloc_rx_resources(uc);
if (ret) {
udma_free_tx_resources(uc);
goto err_cleanup;
}
uc->config.src_thread = ud->psil_base + uc->tchan->id;
uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
K3_PSIL_DST_THREAD_ID_OFFSET;
irq_ring = uc->tchan->tc_ring;
irq_udma_idx = uc->tchan->id;
ret = udma_tisci_m2m_channel_config(uc);
break;
case DMA_MEM_TO_DEV:
/* Slave transfer synchronized - mem to dev (TX) trasnfer */
dev_dbg(uc->ud->dev, "%s: chan%d as MEM-to-DEV\n", __func__,
uc->id);
ret = udma_alloc_tx_resources(uc);
if (ret)
goto err_cleanup;
uc->config.src_thread = ud->psil_base + uc->tchan->id;
uc->config.dst_thread = uc->config.remote_thread_id;
uc->config.dst_thread |= K3_PSIL_DST_THREAD_ID_OFFSET;
irq_ring = uc->tchan->tc_ring;
irq_udma_idx = uc->tchan->id;
ret = udma_tisci_tx_channel_config(uc);
break;
case DMA_DEV_TO_MEM:
/* Slave transfer synchronized - dev to mem (RX) trasnfer */
dev_dbg(uc->ud->dev, "%s: chan%d as DEV-to-MEM\n", __func__,
uc->id);
ret = udma_alloc_rx_resources(uc);
if (ret)
goto err_cleanup;
uc->config.src_thread = uc->config.remote_thread_id;
uc->config.dst_thread = (ud->psil_base + uc->rchan->id) |
K3_PSIL_DST_THREAD_ID_OFFSET;
irq_ring = uc->rflow->r_ring;
irq_udma_idx = match_data->rchan_oes_offset + uc->rchan->id;
ret = udma_tisci_rx_channel_config(uc);
break;
default:
/* Can not happen */
dev_err(uc->ud->dev, "%s: chan%d invalid direction (%u)\n",
__func__, uc->id, uc->config.dir);
ret = -EINVAL;
goto err_cleanup;
}
/* check if the channel configuration was successful */
if (ret)
goto err_res_free;
if (udma_is_chan_running(uc)) {
dev_warn(ud->dev, "chan%d: is running!\n", uc->id);
udma_reset_chan(uc, false);
if (udma_is_chan_running(uc)) {
dev_err(ud->dev, "chan%d: won't stop!\n", uc->id);
ret = -EBUSY;
goto err_res_free;
}
}
/* PSI-L pairing */
ret = navss_psil_pair(ud, uc->config.src_thread, uc->config.dst_thread);
if (ret) {
dev_err(ud->dev, "PSI-L pairing failed: 0x%04x -> 0x%04x\n",
uc->config.src_thread, uc->config.dst_thread);
goto err_res_free;
}
uc->psil_paired = true;
uc->irq_num_ring = k3_ringacc_get_ring_irq_num(irq_ring);
if (uc->irq_num_ring <= 0) {
dev_err(ud->dev, "Failed to get ring irq (index: %u)\n",
k3_ringacc_get_ring_id(irq_ring));
ret = -EINVAL;
goto err_psi_free;
}
ret = request_irq(uc->irq_num_ring, udma_ring_irq_handler,
IRQF_TRIGGER_HIGH, uc->name, uc);
if (ret) {
dev_err(ud->dev, "chan%d: ring irq request failed\n", uc->id);
goto err_irq_free;
}
/* Event from UDMA (TR events) only needed for slave TR mode channels */
if (is_slave_direction(uc->config.dir) && !uc->config.pkt_mode) {
uc->irq_num_udma = ti_sci_inta_msi_get_virq(ud->dev,
irq_udma_idx);
if (uc->irq_num_udma <= 0) {
dev_err(ud->dev, "Failed to get udma irq (index: %u)\n",
irq_udma_idx);
free_irq(uc->irq_num_ring, uc);
ret = -EINVAL;
goto err_irq_free;
}
ret = request_irq(uc->irq_num_udma, udma_udma_irq_handler, 0,
uc->name, uc);
if (ret) {
dev_err(ud->dev, "chan%d: UDMA irq request failed\n",
uc->id);
free_irq(uc->irq_num_ring, uc);
goto err_irq_free;
}
} else {
uc->irq_num_udma = 0;
}
udma_reset_rings(uc);
return 0;
err_irq_free:
uc->irq_num_ring = 0;
uc->irq_num_udma = 0;
err_psi_free:
navss_psil_unpair(ud, uc->config.src_thread, uc->config.dst_thread);
uc->psil_paired = false;
err_res_free:
udma_free_tx_resources(uc);
udma_free_rx_resources(uc);
err_cleanup:
udma_reset_uchan(uc);
if (uc->use_dma_pool) {
dma_pool_destroy(uc->hdesc_pool);
uc->use_dma_pool = false;
}
return ret;
}
static int udma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct udma_chan *uc = to_udma_chan(chan);
memcpy(&uc->cfg, cfg, sizeof(uc->cfg));
return 0;
}
static struct udma_desc *udma_alloc_tr_desc(struct udma_chan *uc,
size_t tr_size, int tr_count,
enum dma_transfer_direction dir)
{
struct udma_hwdesc *hwdesc;
struct cppi5_desc_hdr_t *tr_desc;
struct udma_desc *d;
u32 reload_count = 0;
u32 ring_id;
switch (tr_size) {
case 16:
case 32:
case 64:
case 128:
break;
default:
dev_err(uc->ud->dev, "Unsupported TR size of %zu\n", tr_size);
return NULL;
}
/* We have only one descriptor containing multiple TRs */
d = kzalloc(sizeof(*d) + sizeof(d->hwdesc[0]), GFP_NOWAIT);
if (!d)
return NULL;
d->sglen = tr_count;
d->hwdesc_count = 1;
hwdesc = &d->hwdesc[0];
/* Allocate memory for DMA ring descriptor */
if (uc->use_dma_pool) {
hwdesc->cppi5_desc_size = uc->config.hdesc_size;
hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
GFP_NOWAIT,
&hwdesc->cppi5_desc_paddr);
} else {
hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size,
tr_count);
hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
uc->ud->desc_align);
hwdesc->cppi5_desc_vaddr = dma_alloc_coherent(uc->ud->dev,
hwdesc->cppi5_desc_size,
&hwdesc->cppi5_desc_paddr,
GFP_NOWAIT);
}
if (!hwdesc->cppi5_desc_vaddr) {
kfree(d);
return NULL;
}
/* Start of the TR req records */
hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
/* Start address of the TR response array */
hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size * tr_count;
tr_desc = hwdesc->cppi5_desc_vaddr;
if (uc->cyclic)
reload_count = CPPI5_INFO0_TRDESC_RLDCNT_INFINITE;
if (dir == DMA_DEV_TO_MEM)
ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
else
ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
cppi5_trdesc_init(tr_desc, tr_count, tr_size, 0, reload_count);
cppi5_desc_set_pktids(tr_desc, uc->id,
CPPI5_INFO1_DESC_FLOWID_DEFAULT);
cppi5_desc_set_retpolicy(tr_desc, 0, ring_id);
return d;
}
/**
* udma_get_tr_counters - calculate TR counters for a given length
* @len: Length of the trasnfer
* @align_to: Preferred alignment
* @tr0_cnt0: First TR icnt0
* @tr0_cnt1: First TR icnt1
* @tr1_cnt0: Second (if used) TR icnt0
*
* For len < SZ_64K only one TR is enough, tr1_cnt0 is not updated
* For len >= SZ_64K two TRs are used in a simple way:
* First TR: SZ_64K-alignment blocks (tr0_cnt0, tr0_cnt1)
* Second TR: the remaining length (tr1_cnt0)
*
* Returns the number of TRs the length needs (1 or 2)
* -EINVAL if the length can not be supported
*/
static int udma_get_tr_counters(size_t len, unsigned long align_to,
u16 *tr0_cnt0, u16 *tr0_cnt1, u16 *tr1_cnt0)
{
if (len < SZ_64K) {
*tr0_cnt0 = len;
*tr0_cnt1 = 1;
return 1;
}
if (align_to > 3)
align_to = 3;
realign:
*tr0_cnt0 = SZ_64K - BIT(align_to);
if (len / *tr0_cnt0 >= SZ_64K) {
if (align_to) {
align_to--;
goto realign;
}
return -EINVAL;
}
*tr0_cnt1 = len / *tr0_cnt0;
*tr1_cnt0 = len % *tr0_cnt0;
return 2;
}
static struct udma_desc *
udma_prep_slave_sg_tr(struct udma_chan *uc, struct scatterlist *sgl,
unsigned int sglen, enum dma_transfer_direction dir,
unsigned long tx_flags, void *context)
{
struct scatterlist *sgent;
struct udma_desc *d;
struct cppi5_tr_type1_t *tr_req = NULL;
u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
unsigned int i;
size_t tr_size;
int num_tr = 0;
int tr_idx = 0;
if (!is_slave_direction(dir)) {
dev_err(uc->ud->dev, "Only slave cyclic is supported\n");
return NULL;
}
/* estimate the number of TRs we will need */
for_each_sg(sgl, sgent, sglen, i) {
if (sg_dma_len(sgent) < SZ_64K)
num_tr++;
else
num_tr += 2;
}
/* Now allocate and setup the descriptor. */
tr_size = sizeof(struct cppi5_tr_type1_t);
d = udma_alloc_tr_desc(uc, tr_size, num_tr, dir);
if (!d)
return NULL;
d->sglen = sglen;
tr_req = d->hwdesc[0].tr_req_base;
for_each_sg(sgl, sgent, sglen, i) {
dma_addr_t sg_addr = sg_dma_address(sgent);
num_tr = udma_get_tr_counters(sg_dma_len(sgent), __ffs(sg_addr),
&tr0_cnt0, &tr0_cnt1, &tr1_cnt0);
if (num_tr < 0) {
dev_err(uc->ud->dev, "size %u is not supported\n",
sg_dma_len(sgent));
udma_free_hwdesc(uc, d);
kfree(d);
return NULL;
}
cppi5_tr_init(&tr_req[i].flags, CPPI5_TR_TYPE1, false, false,
CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
cppi5_tr_csf_set(&tr_req[i].flags, CPPI5_TR_CSF_SUPR_EVT);
tr_req[tr_idx].addr = sg_addr;
tr_req[tr_idx].icnt0 = tr0_cnt0;
tr_req[tr_idx].icnt1 = tr0_cnt1;
tr_req[tr_idx].dim1 = tr0_cnt0;
tr_idx++;
if (num_tr == 2) {
cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
false, false,
CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
cppi5_tr_csf_set(&tr_req[tr_idx].flags,
CPPI5_TR_CSF_SUPR_EVT);
tr_req[tr_idx].addr = sg_addr + tr0_cnt1 * tr0_cnt0;
tr_req[tr_idx].icnt0 = tr1_cnt0;
tr_req[tr_idx].icnt1 = 1;
tr_req[tr_idx].dim1 = tr1_cnt0;
tr_idx++;
}
d->residue += sg_dma_len(sgent);
}
cppi5_tr_csf_set(&tr_req[tr_idx - 1].flags,
CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
return d;
}
static int udma_configure_statictr(struct udma_chan *uc, struct udma_desc *d,
enum dma_slave_buswidth dev_width,
u16 elcnt)
{
if (uc->config.ep_type != PSIL_EP_PDMA_XY)
return 0;
/* Bus width translates to the element size (ES) */
switch (dev_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
d->static_tr.elsize = 0;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
d->static_tr.elsize = 1;
break;
case DMA_SLAVE_BUSWIDTH_3_BYTES:
d->static_tr.elsize = 2;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
d->static_tr.elsize = 3;
break;
case DMA_SLAVE_BUSWIDTH_8_BYTES:
d->static_tr.elsize = 4;
break;
default: /* not reached */
return -EINVAL;
}
d->static_tr.elcnt = elcnt;
/*
* PDMA must to close the packet when the channel is in packet mode.
* For TR mode when the channel is not cyclic we also need PDMA to close
* the packet otherwise the transfer will stall because PDMA holds on
* the data it has received from the peripheral.
*/
if (uc->config.pkt_mode || !uc->cyclic) {
unsigned int div = dev_width * elcnt;
if (uc->cyclic)
d->static_tr.bstcnt = d->residue / d->sglen / div;
else
d->static_tr.bstcnt = d->residue / div;
if (uc->config.dir == DMA_DEV_TO_MEM &&
d->static_tr.bstcnt > uc->ud->match_data->statictr_z_mask)
return -EINVAL;
} else {
d->static_tr.bstcnt = 0;
}
return 0;
}
static struct udma_desc *
udma_prep_slave_sg_pkt(struct udma_chan *uc, struct scatterlist *sgl,
unsigned int sglen, enum dma_transfer_direction dir,
unsigned long tx_flags, void *context)
{
struct scatterlist *sgent;
struct cppi5_host_desc_t *h_desc = NULL;
struct udma_desc *d;
u32 ring_id;
unsigned int i;
d = kzalloc(struct_size(d, hwdesc, sglen), GFP_NOWAIT);
if (!d)
return NULL;
d->sglen = sglen;
d->hwdesc_count = sglen;
if (dir == DMA_DEV_TO_MEM)
ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
else
ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
for_each_sg(sgl, sgent, sglen, i) {
struct udma_hwdesc *hwdesc = &d->hwdesc[i];
dma_addr_t sg_addr = sg_dma_address(sgent);
struct cppi5_host_desc_t *desc;
size_t sg_len = sg_dma_len(sgent);
hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
GFP_NOWAIT,
&hwdesc->cppi5_desc_paddr);
if (!hwdesc->cppi5_desc_vaddr) {
dev_err(uc->ud->dev,
"descriptor%d allocation failed\n", i);
udma_free_hwdesc(uc, d);
kfree(d);
return NULL;
}
d->residue += sg_len;
hwdesc->cppi5_desc_size = uc->config.hdesc_size;
desc = hwdesc->cppi5_desc_vaddr;
if (i == 0) {
cppi5_hdesc_init(desc, 0, 0);
/* Flow and Packed ID */
cppi5_desc_set_pktids(&desc->hdr, uc->id,
CPPI5_INFO1_DESC_FLOWID_DEFAULT);
cppi5_desc_set_retpolicy(&desc->hdr, 0, ring_id);
} else {
cppi5_hdesc_reset_hbdesc(desc);
cppi5_desc_set_retpolicy(&desc->hdr, 0, 0xffff);
}
/* attach the sg buffer to the descriptor */
cppi5_hdesc_attach_buf(desc, sg_addr, sg_len, sg_addr, sg_len);
/* Attach link as host buffer descriptor */
if (h_desc)
cppi5_hdesc_link_hbdesc(h_desc,
hwdesc->cppi5_desc_paddr);
if (dir == DMA_MEM_TO_DEV)
h_desc = desc;
}
if (d->residue >= SZ_4M) {
dev_err(uc->ud->dev,
"%s: Transfer size %u is over the supported 4M range\n",
__func__, d->residue);
udma_free_hwdesc(uc, d);
kfree(d);
return NULL;
}
h_desc = d->hwdesc[0].cppi5_desc_vaddr;
cppi5_hdesc_set_pktlen(h_desc, d->residue);
return d;
}
static int udma_attach_metadata(struct dma_async_tx_descriptor *desc,
void *data, size_t len)
{
struct udma_desc *d = to_udma_desc(desc);
struct udma_chan *uc = to_udma_chan(desc->chan);
struct cppi5_host_desc_t *h_desc;
u32 psd_size = len;
u32 flags = 0;
if (!uc->config.pkt_mode || !uc->config.metadata_size)
return -ENOTSUPP;
if (!data || len > uc->config.metadata_size)
return -EINVAL;
if (uc->config.needs_epib && len < CPPI5_INFO0_HDESC_EPIB_SIZE)
return -EINVAL;
h_desc = d->hwdesc[0].cppi5_desc_vaddr;
if (d->dir == DMA_MEM_TO_DEV)
memcpy(h_desc->epib, data, len);
if (uc->config.needs_epib)
psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
d->metadata = data;
d->metadata_size = len;
if (uc->config.needs_epib)
flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
cppi5_hdesc_update_flags(h_desc, flags);
cppi5_hdesc_update_psdata_size(h_desc, psd_size);
return 0;
}
static void *udma_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
size_t *payload_len, size_t *max_len)
{
struct udma_desc *d = to_udma_desc(desc);
struct udma_chan *uc = to_udma_chan(desc->chan);
struct cppi5_host_desc_t *h_desc;
if (!uc->config.pkt_mode || !uc->config.metadata_size)
return ERR_PTR(-ENOTSUPP);
h_desc = d->hwdesc[0].cppi5_desc_vaddr;
*max_len = uc->config.metadata_size;
*payload_len = cppi5_hdesc_epib_present(&h_desc->hdr) ?
CPPI5_INFO0_HDESC_EPIB_SIZE : 0;
*payload_len += cppi5_hdesc_get_psdata_size(h_desc);
return h_desc->epib;
}
static int udma_set_metadata_len(struct dma_async_tx_descriptor *desc,
size_t payload_len)
{
struct udma_desc *d = to_udma_desc(desc);
struct udma_chan *uc = to_udma_chan(desc->chan);
struct cppi5_host_desc_t *h_desc;
u32 psd_size = payload_len;
u32 flags = 0;
if (!uc->config.pkt_mode || !uc->config.metadata_size)
return -ENOTSUPP;
if (payload_len > uc->config.metadata_size)
return -EINVAL;
if (uc->config.needs_epib && payload_len < CPPI5_INFO0_HDESC_EPIB_SIZE)
return -EINVAL;
h_desc = d->hwdesc[0].cppi5_desc_vaddr;
if (uc->config.needs_epib) {
psd_size -= CPPI5_INFO0_HDESC_EPIB_SIZE;
flags |= CPPI5_INFO0_HDESC_EPIB_PRESENT;
}
cppi5_hdesc_update_flags(h_desc, flags);
cppi5_hdesc_update_psdata_size(h_desc, psd_size);
return 0;
}
static struct dma_descriptor_metadata_ops metadata_ops = {
.attach = udma_attach_metadata,
.get_ptr = udma_get_metadata_ptr,
.set_len = udma_set_metadata_len,
};
static struct dma_async_tx_descriptor *
udma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sglen, enum dma_transfer_direction dir,
unsigned long tx_flags, void *context)
{
struct udma_chan *uc = to_udma_chan(chan);
enum dma_slave_buswidth dev_width;
struct udma_desc *d;
u32 burst;
if (dir != uc->config.dir) {
dev_err(chan->device->dev,
"%s: chan%d is for %s, not supporting %s\n",
__func__, uc->id,
dmaengine_get_direction_text(uc->config.dir),
dmaengine_get_direction_text(dir));
return NULL;
}
if (dir == DMA_DEV_TO_MEM) {
dev_width = uc->cfg.src_addr_width;
burst = uc->cfg.src_maxburst;
} else if (dir == DMA_MEM_TO_DEV) {
dev_width = uc->cfg.dst_addr_width;
burst = uc->cfg.dst_maxburst;
} else {
dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
return NULL;
}
if (!burst)
burst = 1;
if (uc->config.pkt_mode)
d = udma_prep_slave_sg_pkt(uc, sgl, sglen, dir, tx_flags,
context);
else
d = udma_prep_slave_sg_tr(uc, sgl, sglen, dir, tx_flags,
context);
if (!d)
return NULL;
d->dir = dir;
d->desc_idx = 0;
d->tr_idx = 0;
/* static TR for remote PDMA */
if (udma_configure_statictr(uc, d, dev_width, burst)) {
dev_err(uc->ud->dev,
"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
__func__, d->static_tr.bstcnt);
udma_free_hwdesc(uc, d);
kfree(d);
return NULL;
}
if (uc->config.metadata_size)
d->vd.tx.metadata_ops = &metadata_ops;
return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
}
static struct udma_desc *
udma_prep_dma_cyclic_tr(struct udma_chan *uc, dma_addr_t buf_addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction dir, unsigned long flags)
{
struct udma_desc *d;
size_t tr_size, period_addr;
struct cppi5_tr_type1_t *tr_req;
unsigned int periods = buf_len / period_len;
u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
unsigned int i;
int num_tr;
if (!is_slave_direction(dir)) {
dev_err(uc->ud->dev, "Only slave cyclic is supported\n");
return NULL;
}
num_tr = udma_get_tr_counters(period_len, __ffs(buf_addr), &tr0_cnt0,
&tr0_cnt1, &tr1_cnt0);
if (num_tr < 0) {
dev_err(uc->ud->dev, "size %zu is not supported\n",
period_len);
return NULL;
}
/* Now allocate and setup the descriptor. */
tr_size = sizeof(struct cppi5_tr_type1_t);
d = udma_alloc_tr_desc(uc, tr_size, periods * num_tr, dir);
if (!d)
return NULL;
tr_req = d->hwdesc[0].tr_req_base;
period_addr = buf_addr;
for (i = 0; i < periods; i++) {
int tr_idx = i * num_tr;
cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1, false,
false, CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
tr_req[tr_idx].addr = period_addr;
tr_req[tr_idx].icnt0 = tr0_cnt0;
tr_req[tr_idx].icnt1 = tr0_cnt1;
tr_req[tr_idx].dim1 = tr0_cnt0;
if (num_tr == 2) {
cppi5_tr_csf_set(&tr_req[tr_idx].flags,
CPPI5_TR_CSF_SUPR_EVT);
tr_idx++;
cppi5_tr_init(&tr_req[tr_idx].flags, CPPI5_TR_TYPE1,
false, false,
CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
tr_req[tr_idx].addr = period_addr + tr0_cnt1 * tr0_cnt0;
tr_req[tr_idx].icnt0 = tr1_cnt0;
tr_req[tr_idx].icnt1 = 1;
tr_req[tr_idx].dim1 = tr1_cnt0;
}
if (!(flags & DMA_PREP_INTERRUPT))
cppi5_tr_csf_set(&tr_req[tr_idx].flags,
CPPI5_TR_CSF_SUPR_EVT);
period_addr += period_len;
}
return d;
}
static struct udma_desc *
udma_prep_dma_cyclic_pkt(struct udma_chan *uc, dma_addr_t buf_addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction dir, unsigned long flags)
{
struct udma_desc *d;
u32 ring_id;
int i;
int periods = buf_len / period_len;
if (periods > (K3_UDMA_DEFAULT_RING_SIZE - 1))
return NULL;
if (period_len >= SZ_4M)
return NULL;
d = kzalloc(struct_size(d, hwdesc, periods), GFP_NOWAIT);
if (!d)
return NULL;
d->hwdesc_count = periods;
/* TODO: re-check this... */
if (dir == DMA_DEV_TO_MEM)
ring_id = k3_ringacc_get_ring_id(uc->rflow->r_ring);
else
ring_id = k3_ringacc_get_ring_id(uc->tchan->tc_ring);
for (i = 0; i < periods; i++) {
struct udma_hwdesc *hwdesc = &d->hwdesc[i];
dma_addr_t period_addr = buf_addr + (period_len * i);
struct cppi5_host_desc_t *h_desc;
hwdesc->cppi5_desc_vaddr = dma_pool_zalloc(uc->hdesc_pool,
GFP_NOWAIT,
&hwdesc->cppi5_desc_paddr);
if (!hwdesc->cppi5_desc_vaddr) {
dev_err(uc->ud->dev,
"descriptor%d allocation failed\n", i);
udma_free_hwdesc(uc, d);
kfree(d);
return NULL;
}
hwdesc->cppi5_desc_size = uc->config.hdesc_size;
h_desc = hwdesc->cppi5_desc_vaddr;
cppi5_hdesc_init(h_desc, 0, 0);
cppi5_hdesc_set_pktlen(h_desc, period_len);
/* Flow and Packed ID */
cppi5_desc_set_pktids(&h_desc->hdr, uc->id,
CPPI5_INFO1_DESC_FLOWID_DEFAULT);
cppi5_desc_set_retpolicy(&h_desc->hdr, 0, ring_id);
/* attach each period to a new descriptor */
cppi5_hdesc_attach_buf(h_desc,
period_addr, period_len,
period_addr, period_len);
}
return d;
}
static struct dma_async_tx_descriptor *
udma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction dir,
unsigned long flags)
{
struct udma_chan *uc = to_udma_chan(chan);
enum dma_slave_buswidth dev_width;
struct udma_desc *d;
u32 burst;
if (dir != uc->config.dir) {
dev_err(chan->device->dev,
"%s: chan%d is for %s, not supporting %s\n",
__func__, uc->id,
dmaengine_get_direction_text(uc->config.dir),
dmaengine_get_direction_text(dir));
return NULL;
}
uc->cyclic = true;
if (dir == DMA_DEV_TO_MEM) {
dev_width = uc->cfg.src_addr_width;
burst = uc->cfg.src_maxburst;
} else if (dir == DMA_MEM_TO_DEV) {
dev_width = uc->cfg.dst_addr_width;
burst = uc->cfg.dst_maxburst;
} else {
dev_err(uc->ud->dev, "%s: bad direction?\n", __func__);
return NULL;
}
if (!burst)
burst = 1;
if (uc->config.pkt_mode)
d = udma_prep_dma_cyclic_pkt(uc, buf_addr, buf_len, period_len,
dir, flags);
else
d = udma_prep_dma_cyclic_tr(uc, buf_addr, buf_len, period_len,
dir, flags);
if (!d)
return NULL;
d->sglen = buf_len / period_len;
d->dir = dir;
d->residue = buf_len;
/* static TR for remote PDMA */
if (udma_configure_statictr(uc, d, dev_width, burst)) {
dev_err(uc->ud->dev,
"%s: StaticTR Z is limited to maximum 4095 (%u)\n",
__func__, d->static_tr.bstcnt);
udma_free_hwdesc(uc, d);
kfree(d);
return NULL;
}
if (uc->config.metadata_size)
d->vd.tx.metadata_ops = &metadata_ops;
return vchan_tx_prep(&uc->vc, &d->vd, flags);
}
static struct dma_async_tx_descriptor *
udma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long tx_flags)
{
struct udma_chan *uc = to_udma_chan(chan);
struct udma_desc *d;
struct cppi5_tr_type15_t *tr_req;
int num_tr;
size_t tr_size = sizeof(struct cppi5_tr_type15_t);
u16 tr0_cnt0, tr0_cnt1, tr1_cnt0;
if (uc->config.dir != DMA_MEM_TO_MEM) {
dev_err(chan->device->dev,
"%s: chan%d is for %s, not supporting %s\n",
__func__, uc->id,
dmaengine_get_direction_text(uc->config.dir),
dmaengine_get_direction_text(DMA_MEM_TO_MEM));
return NULL;
}
num_tr = udma_get_tr_counters(len, __ffs(src | dest), &tr0_cnt0,
&tr0_cnt1, &tr1_cnt0);
if (num_tr < 0) {
dev_err(uc->ud->dev, "size %zu is not supported\n",
len);
return NULL;
}
d = udma_alloc_tr_desc(uc, tr_size, num_tr, DMA_MEM_TO_MEM);
if (!d)
return NULL;
d->dir = DMA_MEM_TO_MEM;
d->desc_idx = 0;
d->tr_idx = 0;
d->residue = len;
tr_req = d->hwdesc[0].tr_req_base;
cppi5_tr_init(&tr_req[0].flags, CPPI5_TR_TYPE15, false, true,
CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
cppi5_tr_csf_set(&tr_req[0].flags, CPPI5_TR_CSF_SUPR_EVT);
tr_req[0].addr = src;
tr_req[0].icnt0 = tr0_cnt0;
tr_req[0].icnt1 = tr0_cnt1;
tr_req[0].icnt2 = 1;
tr_req[0].icnt3 = 1;
tr_req[0].dim1 = tr0_cnt0;
tr_req[0].daddr = dest;
tr_req[0].dicnt0 = tr0_cnt0;
tr_req[0].dicnt1 = tr0_cnt1;
tr_req[0].dicnt2 = 1;
tr_req[0].dicnt3 = 1;
tr_req[0].ddim1 = tr0_cnt0;
if (num_tr == 2) {
cppi5_tr_init(&tr_req[1].flags, CPPI5_TR_TYPE15, false, true,
CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
cppi5_tr_csf_set(&tr_req[1].flags, CPPI5_TR_CSF_SUPR_EVT);
tr_req[1].addr = src + tr0_cnt1 * tr0_cnt0;
tr_req[1].icnt0 = tr1_cnt0;
tr_req[1].icnt1 = 1;
tr_req[1].icnt2 = 1;
tr_req[1].icnt3 = 1;
tr_req[1].daddr = dest + tr0_cnt1 * tr0_cnt0;
tr_req[1].dicnt0 = tr1_cnt0;
tr_req[1].dicnt1 = 1;
tr_req[1].dicnt2 = 1;
tr_req[1].dicnt3 = 1;
}
cppi5_tr_csf_set(&tr_req[num_tr - 1].flags,
CPPI5_TR_CSF_SUPR_EVT | CPPI5_TR_CSF_EOP);
if (uc->config.metadata_size)
d->vd.tx.metadata_ops = &metadata_ops;
return vchan_tx_prep(&uc->vc, &d->vd, tx_flags);
}
static void udma_issue_pending(struct dma_chan *chan)
{
struct udma_chan *uc = to_udma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&uc->vc.lock, flags);
/* If we have something pending and no active descriptor, then */
if (vchan_issue_pending(&uc->vc) && !uc->desc) {
/*
* start a descriptor if the channel is NOT [marked as
* terminating _and_ it is still running (teardown has not
* completed yet)].
*/
if (!(uc->state == UDMA_CHAN_IS_TERMINATING &&
udma_is_chan_running(uc)))
udma_start(uc);
}
spin_unlock_irqrestore(&uc->vc.lock, flags);
}
static enum dma_status udma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct udma_chan *uc = to_udma_chan(chan);
enum dma_status ret;
unsigned long flags;
spin_lock_irqsave(&uc->vc.lock, flags);
ret = dma_cookie_status(chan, cookie, txstate);
if (!udma_is_chan_running(uc))
ret = DMA_COMPLETE;
if (ret == DMA_IN_PROGRESS && udma_is_chan_paused(uc))
ret = DMA_PAUSED;
if (ret == DMA_COMPLETE || !txstate)
goto out;
if (uc->desc && uc->desc->vd.tx.cookie == cookie) {
u32 peer_bcnt = 0;
u32 bcnt = 0;
u32 residue = uc->desc->residue;
u32 delay = 0;
if (uc->desc->dir == DMA_MEM_TO_DEV) {
bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_SBCNT_REG);
if (uc->config.ep_type != PSIL_EP_NATIVE) {
peer_bcnt = udma_tchanrt_read(uc,
UDMA_CHAN_RT_PEER_BCNT_REG);
if (bcnt > peer_bcnt)
delay = bcnt - peer_bcnt;
}
} else if (uc->desc->dir == DMA_DEV_TO_MEM) {
bcnt = udma_rchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
if (uc->config.ep_type != PSIL_EP_NATIVE) {
peer_bcnt = udma_rchanrt_read(uc,
UDMA_CHAN_RT_PEER_BCNT_REG);
if (peer_bcnt > bcnt)
delay = peer_bcnt - bcnt;
}
} else {
bcnt = udma_tchanrt_read(uc, UDMA_CHAN_RT_BCNT_REG);
}
bcnt -= uc->bcnt;
if (bcnt && !(bcnt % uc->desc->residue))
residue = 0;
else
residue -= bcnt % uc->desc->residue;
if (!residue && (uc->config.dir == DMA_DEV_TO_MEM || !delay)) {
ret = DMA_COMPLETE;
delay = 0;
}
dma_set_residue(txstate, residue);
dma_set_in_flight_bytes(txstate, delay);
} else {
ret = DMA_COMPLETE;
}
out:
spin_unlock_irqrestore(&uc->vc.lock, flags);
return ret;
}
static int udma_pause(struct dma_chan *chan)
{
struct udma_chan *uc = to_udma_chan(chan);
/* pause the channel */
switch (uc->config.dir) {
case DMA_DEV_TO_MEM:
udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_PAUSE,
UDMA_PEER_RT_EN_PAUSE);
break;
case DMA_MEM_TO_DEV:
udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_PAUSE,
UDMA_PEER_RT_EN_PAUSE);
break;
case DMA_MEM_TO_MEM:
udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_PAUSE,
UDMA_CHAN_RT_CTL_PAUSE);
break;
default:
return -EINVAL;
}
return 0;
}
static int udma_resume(struct dma_chan *chan)
{
struct udma_chan *uc = to_udma_chan(chan);
/* resume the channel */
switch (uc->config.dir) {
case DMA_DEV_TO_MEM:
udma_rchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_PAUSE, 0);
break;
case DMA_MEM_TO_DEV:
udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_PEER_RT_EN_REG,
UDMA_PEER_RT_EN_PAUSE, 0);
break;
case DMA_MEM_TO_MEM:
udma_tchanrt_update_bits(uc, UDMA_CHAN_RT_CTL_REG,
UDMA_CHAN_RT_CTL_PAUSE, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int udma_terminate_all(struct dma_chan *chan)
{
struct udma_chan *uc = to_udma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&uc->vc.lock, flags);
if (udma_is_chan_running(uc))
udma_stop(uc);
if (uc->desc) {
uc->terminated_desc = uc->desc;
uc->desc = NULL;
uc->terminated_desc->terminated = true;
cancel_delayed_work(&uc->tx_drain.work);
}
uc->paused = false;
vchan_get_all_descriptors(&uc->vc, &head);
spin_unlock_irqrestore(&uc->vc.lock, flags);
vchan_dma_desc_free_list(&uc->vc, &head);
return 0;
}
static void udma_synchronize(struct dma_chan *chan)
{
struct udma_chan *uc = to_udma_chan(chan);
unsigned long timeout = msecs_to_jiffies(1000);
vchan_synchronize(&uc->vc);
if (uc->state == UDMA_CHAN_IS_TERMINATING) {
timeout = wait_for_completion_timeout(&uc->teardown_completed,
timeout);
if (!timeout) {
dev_warn(uc->ud->dev, "chan%d teardown timeout!\n",
uc->id);
udma_dump_chan_stdata(uc);
udma_reset_chan(uc, true);
}
}
udma_reset_chan(uc, false);
if (udma_is_chan_running(uc))
dev_warn(uc->ud->dev, "chan%d refused to stop!\n", uc->id);
cancel_delayed_work_sync(&uc->tx_drain.work);
udma_reset_rings(uc);
}
static void udma_desc_pre_callback(struct virt_dma_chan *vc,
struct virt_dma_desc *vd,
struct dmaengine_result *result)
{
struct udma_chan *uc = to_udma_chan(&vc->chan);
struct udma_desc *d;
if (!vd)
return;
d = to_udma_desc(&vd->tx);
if (d->metadata_size)
udma_fetch_epib(uc, d);
/* Provide residue information for the client */
if (result) {
void *desc_vaddr = udma_curr_cppi5_desc_vaddr(d, d->desc_idx);
if (cppi5_desc_get_type(desc_vaddr) ==
CPPI5_INFO0_DESC_TYPE_VAL_HOST) {
result->residue = d->residue -
cppi5_hdesc_get_pktlen(desc_vaddr);
if (result->residue)
result->result = DMA_TRANS_ABORTED;
else
result->result = DMA_TRANS_NOERROR;
} else {
result->residue = 0;
result->result = DMA_TRANS_NOERROR;
}
}
}
/*
* This tasklet handles the completion of a DMA descriptor by
* calling its callback and freeing it.
*/
static void udma_vchan_complete(unsigned long arg)
{
struct virt_dma_chan *vc = (struct virt_dma_chan *)arg;
struct virt_dma_desc *vd, *_vd;
struct dmaengine_desc_callback cb;
LIST_HEAD(head);
spin_lock_irq(&vc->lock);
list_splice_tail_init(&vc->desc_completed, &head);
vd = vc->cyclic;
if (vd) {
vc->cyclic = NULL;
dmaengine_desc_get_callback(&vd->tx, &cb);
} else {
memset(&cb, 0, sizeof(cb));
}
spin_unlock_irq(&vc->lock);
udma_desc_pre_callback(vc, vd, NULL);
dmaengine_desc_callback_invoke(&cb, NULL);
list_for_each_entry_safe(vd, _vd, &head, node) {
struct dmaengine_result result;
dmaengine_desc_get_callback(&vd->tx, &cb);
list_del(&vd->node);
udma_desc_pre_callback(vc, vd, &result);
dmaengine_desc_callback_invoke(&cb, &result);
vchan_vdesc_fini(vd);
}
}
static void udma_free_chan_resources(struct dma_chan *chan)
{
struct udma_chan *uc = to_udma_chan(chan);
struct udma_dev *ud = to_udma_dev(chan->device);
udma_terminate_all(chan);
if (uc->terminated_desc) {
udma_reset_chan(uc, false);
udma_reset_rings(uc);
}
cancel_delayed_work_sync(&uc->tx_drain.work);
if (uc->irq_num_ring > 0) {
free_irq(uc->irq_num_ring, uc);
uc->irq_num_ring = 0;
}
if (uc->irq_num_udma > 0) {
free_irq(uc->irq_num_udma, uc);
uc->irq_num_udma = 0;
}
/* Release PSI-L pairing */
if (uc->psil_paired) {
navss_psil_unpair(ud, uc->config.src_thread,
uc->config.dst_thread);
uc->psil_paired = false;
}
vchan_free_chan_resources(&uc->vc);
tasklet_kill(&uc->vc.task);
udma_free_tx_resources(uc);
udma_free_rx_resources(uc);
udma_reset_uchan(uc);
if (uc->use_dma_pool) {
dma_pool_destroy(uc->hdesc_pool);
uc->use_dma_pool = false;
}
}
static struct platform_driver udma_driver;
struct udma_filter_param {
int remote_thread_id;
u32 atype;
};
static bool udma_dma_filter_fn(struct dma_chan *chan, void *param)
{
struct udma_chan_config *ucc;
struct psil_endpoint_config *ep_config;
struct udma_filter_param *filter_param;
struct udma_chan *uc;
struct udma_dev *ud;
if (chan->device->dev->driver != &udma_driver.driver)
return false;
uc = to_udma_chan(chan);
ucc = &uc->config;
ud = uc->ud;
filter_param = param;
if (filter_param->atype > 2) {
dev_err(ud->dev, "Invalid channel atype: %u\n",
filter_param->atype);
return false;
}
ucc->remote_thread_id = filter_param->remote_thread_id;
ucc->atype = filter_param->atype;
if (ucc->remote_thread_id & K3_PSIL_DST_THREAD_ID_OFFSET)
ucc->dir = DMA_MEM_TO_DEV;
else
ucc->dir = DMA_DEV_TO_MEM;
ep_config = psil_get_ep_config(ucc->remote_thread_id);
if (IS_ERR(ep_config)) {
dev_err(ud->dev, "No configuration for psi-l thread 0x%04x\n",
ucc->remote_thread_id);
ucc->dir = DMA_MEM_TO_MEM;
ucc->remote_thread_id = -1;
ucc->atype = 0;
return false;
}
ucc->pkt_mode = ep_config->pkt_mode;
ucc->channel_tpl = ep_config->channel_tpl;
ucc->notdpkt = ep_config->notdpkt;
ucc->ep_type = ep_config->ep_type;
if (ucc->ep_type != PSIL_EP_NATIVE) {
const struct udma_match_data *match_data = ud->match_data;
if (match_data->flags & UDMA_FLAG_PDMA_ACC32)
ucc->enable_acc32 = ep_config->pdma_acc32;
if (match_data->flags & UDMA_FLAG_PDMA_BURST)
ucc->enable_burst = ep_config->pdma_burst;
}
ucc->needs_epib = ep_config->needs_epib;
ucc->psd_size = ep_config->psd_size;
ucc->metadata_size =
(ucc->needs_epib ? CPPI5_INFO0_HDESC_EPIB_SIZE : 0) +
ucc->psd_size;
if (ucc->pkt_mode)
ucc->hdesc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
ucc->metadata_size, ud->desc_align);
dev_dbg(ud->dev, "chan%d: Remote thread: 0x%04x (%s)\n", uc->id,
ucc->remote_thread_id, dmaengine_get_direction_text(ucc->dir));
return true;
}
static struct dma_chan *udma_of_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct udma_dev *ud = ofdma->of_dma_data;
dma_cap_mask_t mask = ud->ddev.cap_mask;
struct udma_filter_param filter_param;
struct dma_chan *chan;
if (dma_spec->args_count != 1 && dma_spec->args_count != 2)
return NULL;
filter_param.remote_thread_id = dma_spec->args[0];
if (dma_spec->args_count == 2)
filter_param.atype = dma_spec->args[1];
else
filter_param.atype = 0;
chan = __dma_request_channel(&mask, udma_dma_filter_fn, &filter_param,
ofdma->of_node);
if (!chan) {
dev_err(ud->dev, "get channel fail in %s.\n", __func__);
return ERR_PTR(-EINVAL);
}
return chan;
}
static struct udma_match_data am654_main_data = {
.psil_base = 0x1000,
.enable_memcpy_support = true,
.statictr_z_mask = GENMASK(11, 0),
.rchan_oes_offset = 0x2000,
};
static struct udma_match_data am654_mcu_data = {
.psil_base = 0x6000,
.enable_memcpy_support = false,
.statictr_z_mask = GENMASK(11, 0),
.rchan_oes_offset = 0x2000,
};
static struct udma_match_data j721e_main_data = {
.psil_base = 0x1000,
.enable_memcpy_support = true,
.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST,
.statictr_z_mask = GENMASK(23, 0),
.rchan_oes_offset = 0x400,
};
static struct udma_match_data j721e_mcu_data = {
.psil_base = 0x6000,
.enable_memcpy_support = false, /* MEM_TO_MEM is slow via MCU UDMA */
.flags = UDMA_FLAG_PDMA_ACC32 | UDMA_FLAG_PDMA_BURST,
.statictr_z_mask = GENMASK(23, 0),
.rchan_oes_offset = 0x400,
};
static const struct of_device_id udma_of_match[] = {
{
.compatible = "ti,am654-navss-main-udmap",
.data = &am654_main_data,
},
{
.compatible = "ti,am654-navss-mcu-udmap",
.data = &am654_mcu_data,
}, {
.compatible = "ti,j721e-navss-main-udmap",
.data = &j721e_main_data,
}, {
.compatible = "ti,j721e-navss-mcu-udmap",
.data = &j721e_mcu_data,
},
{ /* Sentinel */ },
};
static int udma_get_mmrs(struct platform_device *pdev, struct udma_dev *ud)
{
struct resource *res;
int i;
for (i = 0; i < MMR_LAST; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
mmr_names[i]);
ud->mmrs[i] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ud->mmrs[i]))
return PTR_ERR(ud->mmrs[i]);
}
return 0;
}
static int udma_setup_resources(struct udma_dev *ud)
{
struct device *dev = ud->dev;
int ch_count, ret, i, j;
u32 cap2, cap3;
struct ti_sci_resource_desc *rm_desc;
struct ti_sci_resource *rm_res, irq_res;
struct udma_tisci_rm *tisci_rm = &ud->tisci_rm;
static const char * const range_names[] = { "ti,sci-rm-range-tchan",
"ti,sci-rm-range-rchan",
"ti,sci-rm-range-rflow" };
cap2 = udma_read(ud->mmrs[MMR_GCFG], UDMA_CAP_REG(2));
cap3 = udma_read(ud->mmrs[MMR_GCFG], UDMA_CAP_REG(3));
ud->rflow_cnt = UDMA_CAP3_RFLOW_CNT(cap3);
ud->tchan_cnt = UDMA_CAP2_TCHAN_CNT(cap2);
ud->echan_cnt = UDMA_CAP2_ECHAN_CNT(cap2);
ud->rchan_cnt = UDMA_CAP2_RCHAN_CNT(cap2);
ch_count = ud->tchan_cnt + ud->rchan_cnt;
/* Set up the throughput level start indexes */
if (of_device_is_compatible(dev->of_node,
"ti,am654-navss-main-udmap")) {
ud->tpl_levels = 2;
ud->tpl_start_idx[0] = 8;
} else if (of_device_is_compatible(dev->of_node,
"ti,am654-navss-mcu-udmap")) {
ud->tpl_levels = 2;
ud->tpl_start_idx[0] = 2;
} else if (UDMA_CAP3_UCHAN_CNT(cap3)) {
ud->tpl_levels = 3;
ud->tpl_start_idx[1] = UDMA_CAP3_UCHAN_CNT(cap3);
ud->tpl_start_idx[0] = ud->tpl_start_idx[1] +
UDMA_CAP3_HCHAN_CNT(cap3);
} else if (UDMA_CAP3_HCHAN_CNT(cap3)) {
ud->tpl_levels = 2;
ud->tpl_start_idx[0] = UDMA_CAP3_HCHAN_CNT(cap3);
} else {
ud->tpl_levels = 1;
}
ud->tchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->tchan_cnt),
sizeof(unsigned long), GFP_KERNEL);
ud->tchans = devm_kcalloc(dev, ud->tchan_cnt, sizeof(*ud->tchans),
GFP_KERNEL);
ud->rchan_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rchan_cnt),
sizeof(unsigned long), GFP_KERNEL);
ud->rchans = devm_kcalloc(dev, ud->rchan_cnt, sizeof(*ud->rchans),
GFP_KERNEL);
ud->rflow_gp_map = devm_kmalloc_array(dev, BITS_TO_LONGS(ud->rflow_cnt),
sizeof(unsigned long),
GFP_KERNEL);
ud->rflow_gp_map_allocated = devm_kcalloc(dev,
BITS_TO_LONGS(ud->rflow_cnt),
sizeof(unsigned long),
GFP_KERNEL);
ud->rflow_in_use = devm_kcalloc(dev, BITS_TO_LONGS(ud->rflow_cnt),
sizeof(unsigned long),
GFP_KERNEL);
ud->rflows = devm_kcalloc(dev, ud->rflow_cnt, sizeof(*ud->rflows),
GFP_KERNEL);
if (!ud->tchan_map || !ud->rchan_map || !ud->rflow_gp_map ||
!ud->rflow_gp_map_allocated || !ud->tchans || !ud->rchans ||
!ud->rflows || !ud->rflow_in_use)
return -ENOMEM;
/*
* RX flows with the same Ids as RX channels are reserved to be used
* as default flows if remote HW can't generate flow_ids. Those
* RX flows can be requested only explicitly by id.
*/
bitmap_set(ud->rflow_gp_map_allocated, 0, ud->rchan_cnt);
/* by default no GP rflows are assigned to Linux */
bitmap_set(ud->rflow_gp_map, 0, ud->rflow_cnt);
/* Get resource ranges from tisci */
for (i = 0; i < RM_RANGE_LAST; i++)
tisci_rm->rm_ranges[i] =
devm_ti_sci_get_of_resource(tisci_rm->tisci, dev,
tisci_rm->tisci_dev_id,
(char *)range_names[i]);
/* tchan ranges */
rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
if (IS_ERR(rm_res)) {
bitmap_zero(ud->tchan_map, ud->tchan_cnt);
} else {
bitmap_fill(ud->tchan_map, ud->tchan_cnt);
for (i = 0; i < rm_res->sets; i++) {
rm_desc = &rm_res->desc[i];
bitmap_clear(ud->tchan_map, rm_desc->start,
rm_desc->num);
dev_dbg(dev, "ti-sci-res: tchan: %d:%d\n",
rm_desc->start, rm_desc->num);
}
}
irq_res.sets = rm_res->sets;
/* rchan and matching default flow ranges */
rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
if (IS_ERR(rm_res)) {
bitmap_zero(ud->rchan_map, ud->rchan_cnt);
} else {
bitmap_fill(ud->rchan_map, ud->rchan_cnt);
for (i = 0; i < rm_res->sets; i++) {
rm_desc = &rm_res->desc[i];
bitmap_clear(ud->rchan_map, rm_desc->start,
rm_desc->num);
dev_dbg(dev, "ti-sci-res: rchan: %d:%d\n",
rm_desc->start, rm_desc->num);
}
}
irq_res.sets += rm_res->sets;
irq_res.desc = kcalloc(irq_res.sets, sizeof(*irq_res.desc), GFP_KERNEL);
rm_res = tisci_rm->rm_ranges[RM_RANGE_TCHAN];
for (i = 0; i < rm_res->sets; i++) {
irq_res.desc[i].start = rm_res->desc[i].start;
irq_res.desc[i].num = rm_res->desc[i].num;
}
rm_res = tisci_rm->rm_ranges[RM_RANGE_RCHAN];
for (j = 0; j < rm_res->sets; j++, i++) {
irq_res.desc[i].start = rm_res->desc[j].start +
ud->match_data->rchan_oes_offset;
irq_res.desc[i].num = rm_res->desc[j].num;
}
ret = ti_sci_inta_msi_domain_alloc_irqs(ud->dev, &irq_res);
kfree(irq_res.desc);
if (ret) {
dev_err(ud->dev, "Failed to allocate MSI interrupts\n");
return ret;
}
/* GP rflow ranges */
rm_res = tisci_rm->rm_ranges[RM_RANGE_RFLOW];
if (IS_ERR(rm_res)) {
/* all gp flows are assigned exclusively to Linux */
bitmap_clear(ud->rflow_gp_map, ud->rchan_cnt,
ud->rflow_cnt - ud->rchan_cnt);
} else {
for (i = 0; i < rm_res->sets; i++) {
rm_desc = &rm_res->desc[i];
bitmap_clear(ud->rflow_gp_map, rm_desc->start,
rm_desc->num);
dev_dbg(dev, "ti-sci-res: rflow: %d:%d\n",
rm_desc->start, rm_desc->num);
}
}
ch_count -= bitmap_weight(ud->tchan_map, ud->tchan_cnt);
ch_count -= bitmap_weight(ud->rchan_map, ud->rchan_cnt);
if (!ch_count)
return -ENODEV;
ud->channels = devm_kcalloc(dev, ch_count, sizeof(*ud->channels),
GFP_KERNEL);
if (!ud->channels)
return -ENOMEM;
dev_info(dev, "Channels: %d (tchan: %u, rchan: %u, gp-rflow: %u)\n",
ch_count,
ud->tchan_cnt - bitmap_weight(ud->tchan_map, ud->tchan_cnt),
ud->rchan_cnt - bitmap_weight(ud->rchan_map, ud->rchan_cnt),
ud->rflow_cnt - bitmap_weight(ud->rflow_gp_map,
ud->rflow_cnt));
return ch_count;
}
static int udma_setup_rx_flush(struct udma_dev *ud)
{
struct udma_rx_flush *rx_flush = &ud->rx_flush;
struct cppi5_desc_hdr_t *tr_desc;
struct cppi5_tr_type1_t *tr_req;
struct cppi5_host_desc_t *desc;
struct device *dev = ud->dev;
struct udma_hwdesc *hwdesc;
size_t tr_size;
/* Allocate 1K buffer for discarded data on RX channel teardown */
rx_flush->buffer_size = SZ_1K;
rx_flush->buffer_vaddr = devm_kzalloc(dev, rx_flush->buffer_size,
GFP_KERNEL);
if (!rx_flush->buffer_vaddr)
return -ENOMEM;
rx_flush->buffer_paddr = dma_map_single(dev, rx_flush->buffer_vaddr,
rx_flush->buffer_size,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, rx_flush->buffer_paddr))
return -ENOMEM;
/* Set up descriptor to be used for TR mode */
hwdesc = &rx_flush->hwdescs[0];
tr_size = sizeof(struct cppi5_tr_type1_t);
hwdesc->cppi5_desc_size = cppi5_trdesc_calc_size(tr_size, 1);
hwdesc->cppi5_desc_size = ALIGN(hwdesc->cppi5_desc_size,
ud->desc_align);
hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
GFP_KERNEL);
if (!hwdesc->cppi5_desc_vaddr)
return -ENOMEM;
hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
hwdesc->cppi5_desc_size,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
return -ENOMEM;
/* Start of the TR req records */
hwdesc->tr_req_base = hwdesc->cppi5_desc_vaddr + tr_size;
/* Start address of the TR response array */
hwdesc->tr_resp_base = hwdesc->tr_req_base + tr_size;
tr_desc = hwdesc->cppi5_desc_vaddr;
cppi5_trdesc_init(tr_desc, 1, tr_size, 0, 0);
cppi5_desc_set_pktids(tr_desc, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
cppi5_desc_set_retpolicy(tr_desc, 0, 0);
tr_req = hwdesc->tr_req_base;
cppi5_tr_init(&tr_req->flags, CPPI5_TR_TYPE1, false, false,
CPPI5_TR_EVENT_SIZE_COMPLETION, 0);
cppi5_tr_csf_set(&tr_req->flags, CPPI5_TR_CSF_SUPR_EVT);
tr_req->addr = rx_flush->buffer_paddr;
tr_req->icnt0 = rx_flush->buffer_size;
tr_req->icnt1 = 1;
dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
/* Set up descriptor to be used for packet mode */
hwdesc = &rx_flush->hwdescs[1];
hwdesc->cppi5_desc_size = ALIGN(sizeof(struct cppi5_host_desc_t) +
CPPI5_INFO0_HDESC_EPIB_SIZE +
CPPI5_INFO0_HDESC_PSDATA_MAX_SIZE,
ud->desc_align);
hwdesc->cppi5_desc_vaddr = devm_kzalloc(dev, hwdesc->cppi5_desc_size,
GFP_KERNEL);
if (!hwdesc->cppi5_desc_vaddr)
return -ENOMEM;
hwdesc->cppi5_desc_paddr = dma_map_single(dev, hwdesc->cppi5_desc_vaddr,
hwdesc->cppi5_desc_size,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, hwdesc->cppi5_desc_paddr))
return -ENOMEM;
desc = hwdesc->cppi5_desc_vaddr;
cppi5_hdesc_init(desc, 0, 0);
cppi5_desc_set_pktids(&desc->hdr, 0, CPPI5_INFO1_DESC_FLOWID_DEFAULT);
cppi5_desc_set_retpolicy(&desc->hdr, 0, 0);
cppi5_hdesc_attach_buf(desc,
rx_flush->buffer_paddr, rx_flush->buffer_size,
rx_flush->buffer_paddr, rx_flush->buffer_size);
dma_sync_single_for_device(dev, hwdesc->cppi5_desc_paddr,
hwdesc->cppi5_desc_size, DMA_TO_DEVICE);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static void udma_dbg_summary_show_chan(struct seq_file *s,
struct dma_chan *chan)
{
struct udma_chan *uc = to_udma_chan(chan);
struct udma_chan_config *ucc = &uc->config;
seq_printf(s, " %-13s| %s", dma_chan_name(chan),
chan->dbg_client_name ?: "in-use");
seq_printf(s, " (%s, ", dmaengine_get_direction_text(uc->config.dir));
switch (uc->config.dir) {
case DMA_MEM_TO_MEM:
seq_printf(s, "chan%d pair [0x%04x -> 0x%04x], ", uc->tchan->id,
ucc->src_thread, ucc->dst_thread);
break;
case DMA_DEV_TO_MEM:
seq_printf(s, "rchan%d [0x%04x -> 0x%04x], ", uc->rchan->id,
ucc->src_thread, ucc->dst_thread);
break;
case DMA_MEM_TO_DEV:
seq_printf(s, "tchan%d [0x%04x -> 0x%04x], ", uc->tchan->id,
ucc->src_thread, ucc->dst_thread);
break;
default:
seq_printf(s, ")\n");
return;
}
if (ucc->ep_type == PSIL_EP_NATIVE) {
seq_printf(s, "PSI-L Native");
if (ucc->metadata_size) {
seq_printf(s, "[%s", ucc->needs_epib ? " EPIB" : "");
if (ucc->psd_size)
seq_printf(s, " PSDsize:%u", ucc->psd_size);
seq_printf(s, " ]");
}
} else {
seq_printf(s, "PDMA");
if (ucc->enable_acc32 || ucc->enable_burst)
seq_printf(s, "[%s%s ]",
ucc->enable_acc32 ? " ACC32" : "",
ucc->enable_burst ? " BURST" : "");
}
seq_printf(s, ", %s)\n", ucc->pkt_mode ? "Packet mode" : "TR mode");
}
static void udma_dbg_summary_show(struct seq_file *s,
struct dma_device *dma_dev)
{
struct dma_chan *chan;
list_for_each_entry(chan, &dma_dev->channels, device_node) {
if (chan->client_count)
udma_dbg_summary_show_chan(s, chan);
}
}
#endif /* CONFIG_DEBUG_FS */
#define TI_UDMAC_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
static int udma_probe(struct platform_device *pdev)
{
struct device_node *navss_node = pdev->dev.parent->of_node;
struct device *dev = &pdev->dev;
struct udma_dev *ud;
const struct of_device_id *match;
int i, ret;
int ch_count;
ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (ret)
dev_err(dev, "failed to set dma mask stuff\n");
ud = devm_kzalloc(dev, sizeof(*ud), GFP_KERNEL);
if (!ud)
return -ENOMEM;
ret = udma_get_mmrs(pdev, ud);
if (ret)
return ret;
ud->tisci_rm.tisci = ti_sci_get_by_phandle(dev->of_node, "ti,sci");
if (IS_ERR(ud->tisci_rm.tisci))
return PTR_ERR(ud->tisci_rm.tisci);
ret = of_property_read_u32(dev->of_node, "ti,sci-dev-id",
&ud->tisci_rm.tisci_dev_id);
if (ret) {
dev_err(dev, "ti,sci-dev-id read failure %d\n", ret);
return ret;
}
pdev->id = ud->tisci_rm.tisci_dev_id;
ret = of_property_read_u32(navss_node, "ti,sci-dev-id",
&ud->tisci_rm.tisci_navss_dev_id);
if (ret) {
dev_err(dev, "NAVSS ti,sci-dev-id read failure %d\n", ret);
return ret;
}
ret = of_property_read_u32(dev->of_node, "ti,udma-atype", &ud->atype);
if (!ret && ud->atype > 2) {
dev_err(dev, "Invalid atype: %u\n", ud->atype);
return -EINVAL;
}
ud->tisci_rm.tisci_udmap_ops = &ud->tisci_rm.tisci->ops.rm_udmap_ops;
ud->tisci_rm.tisci_psil_ops = &ud->tisci_rm.tisci->ops.rm_psil_ops;
ud->ringacc = of_k3_ringacc_get_by_phandle(dev->of_node, "ti,ringacc");
if (IS_ERR(ud->ringacc))
return PTR_ERR(ud->ringacc);
dev->msi_domain = of_msi_get_domain(dev, dev->of_node,
DOMAIN_BUS_TI_SCI_INTA_MSI);
if (!dev->msi_domain) {
dev_err(dev, "Failed to get MSI domain\n");
return -EPROBE_DEFER;
}
match = of_match_node(udma_of_match, dev->of_node);
if (!match) {
dev_err(dev, "No compatible match found\n");
return -ENODEV;
}
ud->match_data = match->data;
dma_cap_set(DMA_SLAVE, ud->ddev.cap_mask);
dma_cap_set(DMA_CYCLIC, ud->ddev.cap_mask);
ud->ddev.device_alloc_chan_resources = udma_alloc_chan_resources;
ud->ddev.device_config = udma_slave_config;
ud->ddev.device_prep_slave_sg = udma_prep_slave_sg;
ud->ddev.device_prep_dma_cyclic = udma_prep_dma_cyclic;
ud->ddev.device_issue_pending = udma_issue_pending;
ud->ddev.device_tx_status = udma_tx_status;
ud->ddev.device_pause = udma_pause;
ud->ddev.device_resume = udma_resume;
ud->ddev.device_terminate_all = udma_terminate_all;
ud->ddev.device_synchronize = udma_synchronize;
#ifdef CONFIG_DEBUG_FS
ud->ddev.dbg_summary_show = udma_dbg_summary_show;
#endif
ud->ddev.device_free_chan_resources = udma_free_chan_resources;
ud->ddev.src_addr_widths = TI_UDMAC_BUSWIDTHS;
ud->ddev.dst_addr_widths = TI_UDMAC_BUSWIDTHS;
ud->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
ud->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
ud->ddev.copy_align = DMAENGINE_ALIGN_8_BYTES;
ud->ddev.desc_metadata_modes = DESC_METADATA_CLIENT |
DESC_METADATA_ENGINE;
if (ud->match_data->enable_memcpy_support) {
dma_cap_set(DMA_MEMCPY, ud->ddev.cap_mask);
ud->ddev.device_prep_dma_memcpy = udma_prep_dma_memcpy;
ud->ddev.directions |= BIT(DMA_MEM_TO_MEM);
}
ud->ddev.dev = dev;
ud->dev = dev;
ud->psil_base = ud->match_data->psil_base;
INIT_LIST_HEAD(&ud->ddev.channels);
INIT_LIST_HEAD(&ud->desc_to_purge);
ch_count = udma_setup_resources(ud);
if (ch_count <= 0)
return ch_count;
spin_lock_init(&ud->lock);
INIT_WORK(&ud->purge_work, udma_purge_desc_work);
ud->desc_align = 64;
if (ud->desc_align < dma_get_cache_alignment())
ud->desc_align = dma_get_cache_alignment();
ret = udma_setup_rx_flush(ud);
if (ret)
return ret;
for (i = 0; i < ud->tchan_cnt; i++) {
struct udma_tchan *tchan = &ud->tchans[i];
tchan->id = i;
tchan->reg_rt = ud->mmrs[MMR_TCHANRT] + i * 0x1000;
}
for (i = 0; i < ud->rchan_cnt; i++) {
struct udma_rchan *rchan = &ud->rchans[i];
rchan->id = i;
rchan->reg_rt = ud->mmrs[MMR_RCHANRT] + i * 0x1000;
}
for (i = 0; i < ud->rflow_cnt; i++) {
struct udma_rflow *rflow = &ud->rflows[i];
rflow->id = i;
}
for (i = 0; i < ch_count; i++) {
struct udma_chan *uc = &ud->channels[i];
uc->ud = ud;
uc->vc.desc_free = udma_desc_free;
uc->id = i;
uc->tchan = NULL;
uc->rchan = NULL;
uc->config.remote_thread_id = -1;
uc->config.dir = DMA_MEM_TO_MEM;
uc->name = devm_kasprintf(dev, GFP_KERNEL, "%s chan%d",
dev_name(dev), i);
vchan_init(&uc->vc, &ud->ddev);
/* Use custom vchan completion handling */
tasklet_init(&uc->vc.task, udma_vchan_complete,
(unsigned long)&uc->vc);
init_completion(&uc->teardown_completed);
INIT_DELAYED_WORK(&uc->tx_drain.work, udma_check_tx_completion);
}
ret = dma_async_device_register(&ud->ddev);
if (ret) {
dev_err(dev, "failed to register slave DMA engine: %d\n", ret);
return ret;
}
platform_set_drvdata(pdev, ud);
ret = of_dma_controller_register(dev->of_node, udma_of_xlate, ud);
if (ret) {
dev_err(dev, "failed to register of_dma controller\n");
dma_async_device_unregister(&ud->ddev);
}
return ret;
}
static struct platform_driver udma_driver = {
.driver = {
.name = "ti-udma",
.of_match_table = udma_of_match,
.suppress_bind_attrs = true,
},
.probe = udma_probe,
};
builtin_platform_driver(udma_driver);
/* Private interfaces to UDMA */
#include "k3-udma-private.c"