mirror of
https://github.com/torvalds/linux.git
synced 2024-12-27 05:11:48 +00:00
01c031945f
There is no reason to for the split between __writeback_single_inode and __sync_single_inode, the former just does a couple of checks before tail-calling the latter. So merge the two, and while we're at it split out the I_SYNC waiting case for data integrity writers, as it's logically separate function. Finally rename __writeback_single_inode to writeback_single_inode. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
794 lines
22 KiB
C
794 lines
22 KiB
C
/*
|
|
* fs/fs-writeback.c
|
|
*
|
|
* Copyright (C) 2002, Linus Torvalds.
|
|
*
|
|
* Contains all the functions related to writing back and waiting
|
|
* upon dirty inodes against superblocks, and writing back dirty
|
|
* pages against inodes. ie: data writeback. Writeout of the
|
|
* inode itself is not handled here.
|
|
*
|
|
* 10Apr2002 Andrew Morton
|
|
* Split out of fs/inode.c
|
|
* Additions for address_space-based writeback
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include "internal.h"
|
|
|
|
|
|
/**
|
|
* writeback_acquire - attempt to get exclusive writeback access to a device
|
|
* @bdi: the device's backing_dev_info structure
|
|
*
|
|
* It is a waste of resources to have more than one pdflush thread blocked on
|
|
* a single request queue. Exclusion at the request_queue level is obtained
|
|
* via a flag in the request_queue's backing_dev_info.state.
|
|
*
|
|
* Non-request_queue-backed address_spaces will share default_backing_dev_info,
|
|
* unless they implement their own. Which is somewhat inefficient, as this
|
|
* may prevent concurrent writeback against multiple devices.
|
|
*/
|
|
static int writeback_acquire(struct backing_dev_info *bdi)
|
|
{
|
|
return !test_and_set_bit(BDI_pdflush, &bdi->state);
|
|
}
|
|
|
|
/**
|
|
* writeback_in_progress - determine whether there is writeback in progress
|
|
* @bdi: the device's backing_dev_info structure.
|
|
*
|
|
* Determine whether there is writeback in progress against a backing device.
|
|
*/
|
|
int writeback_in_progress(struct backing_dev_info *bdi)
|
|
{
|
|
return test_bit(BDI_pdflush, &bdi->state);
|
|
}
|
|
|
|
/**
|
|
* writeback_release - relinquish exclusive writeback access against a device.
|
|
* @bdi: the device's backing_dev_info structure
|
|
*/
|
|
static void writeback_release(struct backing_dev_info *bdi)
|
|
{
|
|
BUG_ON(!writeback_in_progress(bdi));
|
|
clear_bit(BDI_pdflush, &bdi->state);
|
|
}
|
|
|
|
static noinline void block_dump___mark_inode_dirty(struct inode *inode)
|
|
{
|
|
if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
|
|
struct dentry *dentry;
|
|
const char *name = "?";
|
|
|
|
dentry = d_find_alias(inode);
|
|
if (dentry) {
|
|
spin_lock(&dentry->d_lock);
|
|
name = (const char *) dentry->d_name.name;
|
|
}
|
|
printk(KERN_DEBUG
|
|
"%s(%d): dirtied inode %lu (%s) on %s\n",
|
|
current->comm, task_pid_nr(current), inode->i_ino,
|
|
name, inode->i_sb->s_id);
|
|
if (dentry) {
|
|
spin_unlock(&dentry->d_lock);
|
|
dput(dentry);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __mark_inode_dirty - internal function
|
|
* @inode: inode to mark
|
|
* @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
|
|
* Mark an inode as dirty. Callers should use mark_inode_dirty or
|
|
* mark_inode_dirty_sync.
|
|
*
|
|
* Put the inode on the super block's dirty list.
|
|
*
|
|
* CAREFUL! We mark it dirty unconditionally, but move it onto the
|
|
* dirty list only if it is hashed or if it refers to a blockdev.
|
|
* If it was not hashed, it will never be added to the dirty list
|
|
* even if it is later hashed, as it will have been marked dirty already.
|
|
*
|
|
* In short, make sure you hash any inodes _before_ you start marking
|
|
* them dirty.
|
|
*
|
|
* This function *must* be atomic for the I_DIRTY_PAGES case -
|
|
* set_page_dirty() is called under spinlock in several places.
|
|
*
|
|
* Note that for blockdevs, inode->dirtied_when represents the dirtying time of
|
|
* the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
|
|
* the kernel-internal blockdev inode represents the dirtying time of the
|
|
* blockdev's pages. This is why for I_DIRTY_PAGES we always use
|
|
* page->mapping->host, so the page-dirtying time is recorded in the internal
|
|
* blockdev inode.
|
|
*/
|
|
void __mark_inode_dirty(struct inode *inode, int flags)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
/*
|
|
* Don't do this for I_DIRTY_PAGES - that doesn't actually
|
|
* dirty the inode itself
|
|
*/
|
|
if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
|
|
if (sb->s_op->dirty_inode)
|
|
sb->s_op->dirty_inode(inode);
|
|
}
|
|
|
|
/*
|
|
* make sure that changes are seen by all cpus before we test i_state
|
|
* -- mikulas
|
|
*/
|
|
smp_mb();
|
|
|
|
/* avoid the locking if we can */
|
|
if ((inode->i_state & flags) == flags)
|
|
return;
|
|
|
|
if (unlikely(block_dump))
|
|
block_dump___mark_inode_dirty(inode);
|
|
|
|
spin_lock(&inode_lock);
|
|
if ((inode->i_state & flags) != flags) {
|
|
const int was_dirty = inode->i_state & I_DIRTY;
|
|
|
|
inode->i_state |= flags;
|
|
|
|
/*
|
|
* If the inode is being synced, just update its dirty state.
|
|
* The unlocker will place the inode on the appropriate
|
|
* superblock list, based upon its state.
|
|
*/
|
|
if (inode->i_state & I_SYNC)
|
|
goto out;
|
|
|
|
/*
|
|
* Only add valid (hashed) inodes to the superblock's
|
|
* dirty list. Add blockdev inodes as well.
|
|
*/
|
|
if (!S_ISBLK(inode->i_mode)) {
|
|
if (hlist_unhashed(&inode->i_hash))
|
|
goto out;
|
|
}
|
|
if (inode->i_state & (I_FREEING|I_CLEAR))
|
|
goto out;
|
|
|
|
/*
|
|
* If the inode was already on s_dirty/s_io/s_more_io, don't
|
|
* reposition it (that would break s_dirty time-ordering).
|
|
*/
|
|
if (!was_dirty) {
|
|
inode->dirtied_when = jiffies;
|
|
list_move(&inode->i_list, &sb->s_dirty);
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock(&inode_lock);
|
|
}
|
|
|
|
EXPORT_SYMBOL(__mark_inode_dirty);
|
|
|
|
static int write_inode(struct inode *inode, int sync)
|
|
{
|
|
if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
|
|
return inode->i_sb->s_op->write_inode(inode, sync);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Redirty an inode: set its when-it-was dirtied timestamp and move it to the
|
|
* furthest end of its superblock's dirty-inode list.
|
|
*
|
|
* Before stamping the inode's ->dirtied_when, we check to see whether it is
|
|
* already the most-recently-dirtied inode on the s_dirty list. If that is
|
|
* the case then the inode must have been redirtied while it was being written
|
|
* out and we don't reset its dirtied_when.
|
|
*/
|
|
static void redirty_tail(struct inode *inode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
if (!list_empty(&sb->s_dirty)) {
|
|
struct inode *tail_inode;
|
|
|
|
tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
|
|
if (time_before(inode->dirtied_when,
|
|
tail_inode->dirtied_when))
|
|
inode->dirtied_when = jiffies;
|
|
}
|
|
list_move(&inode->i_list, &sb->s_dirty);
|
|
}
|
|
|
|
/*
|
|
* requeue inode for re-scanning after sb->s_io list is exhausted.
|
|
*/
|
|
static void requeue_io(struct inode *inode)
|
|
{
|
|
list_move(&inode->i_list, &inode->i_sb->s_more_io);
|
|
}
|
|
|
|
static void inode_sync_complete(struct inode *inode)
|
|
{
|
|
/*
|
|
* Prevent speculative execution through spin_unlock(&inode_lock);
|
|
*/
|
|
smp_mb();
|
|
wake_up_bit(&inode->i_state, __I_SYNC);
|
|
}
|
|
|
|
static bool inode_dirtied_after(struct inode *inode, unsigned long t)
|
|
{
|
|
bool ret = time_after(inode->dirtied_when, t);
|
|
#ifndef CONFIG_64BIT
|
|
/*
|
|
* For inodes being constantly redirtied, dirtied_when can get stuck.
|
|
* It _appears_ to be in the future, but is actually in distant past.
|
|
* This test is necessary to prevent such wrapped-around relative times
|
|
* from permanently stopping the whole pdflush writeback.
|
|
*/
|
|
ret = ret && time_before_eq(inode->dirtied_when, jiffies);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Move expired dirty inodes from @delaying_queue to @dispatch_queue.
|
|
*/
|
|
static void move_expired_inodes(struct list_head *delaying_queue,
|
|
struct list_head *dispatch_queue,
|
|
unsigned long *older_than_this)
|
|
{
|
|
while (!list_empty(delaying_queue)) {
|
|
struct inode *inode = list_entry(delaying_queue->prev,
|
|
struct inode, i_list);
|
|
if (older_than_this &&
|
|
inode_dirtied_after(inode, *older_than_this))
|
|
break;
|
|
list_move(&inode->i_list, dispatch_queue);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue all expired dirty inodes for io, eldest first.
|
|
*/
|
|
static void queue_io(struct super_block *sb,
|
|
unsigned long *older_than_this)
|
|
{
|
|
list_splice_init(&sb->s_more_io, sb->s_io.prev);
|
|
move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
|
|
}
|
|
|
|
int sb_has_dirty_inodes(struct super_block *sb)
|
|
{
|
|
return !list_empty(&sb->s_dirty) ||
|
|
!list_empty(&sb->s_io) ||
|
|
!list_empty(&sb->s_more_io);
|
|
}
|
|
EXPORT_SYMBOL(sb_has_dirty_inodes);
|
|
|
|
/*
|
|
* Wait for writeback on an inode to complete.
|
|
*/
|
|
static void inode_wait_for_writeback(struct inode *inode)
|
|
{
|
|
DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
|
|
wait_queue_head_t *wqh;
|
|
|
|
wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
|
|
do {
|
|
spin_unlock(&inode_lock);
|
|
__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
|
|
spin_lock(&inode_lock);
|
|
} while (inode->i_state & I_SYNC);
|
|
}
|
|
|
|
/*
|
|
* Write out an inode's dirty pages. Called under inode_lock. Either the
|
|
* caller has ref on the inode (either via __iget or via syscall against an fd)
|
|
* or the inode has I_WILL_FREE set (via generic_forget_inode)
|
|
*
|
|
* If `wait' is set, wait on the writeout.
|
|
*
|
|
* The whole writeout design is quite complex and fragile. We want to avoid
|
|
* starvation of particular inodes when others are being redirtied, prevent
|
|
* livelocks, etc.
|
|
*
|
|
* Called under inode_lock.
|
|
*/
|
|
static int
|
|
writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
int wait = wbc->sync_mode == WB_SYNC_ALL;
|
|
unsigned dirty;
|
|
int ret;
|
|
|
|
if (!atomic_read(&inode->i_count))
|
|
WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
|
|
else
|
|
WARN_ON(inode->i_state & I_WILL_FREE);
|
|
|
|
if (inode->i_state & I_SYNC) {
|
|
/*
|
|
* If this inode is locked for writeback and we are not doing
|
|
* writeback-for-data-integrity, move it to s_more_io so that
|
|
* writeback can proceed with the other inodes on s_io.
|
|
*
|
|
* We'll have another go at writing back this inode when we
|
|
* completed a full scan of s_io.
|
|
*/
|
|
if (!wait) {
|
|
requeue_io(inode);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It's a data-integrity sync. We must wait.
|
|
*/
|
|
inode_wait_for_writeback(inode);
|
|
}
|
|
|
|
BUG_ON(inode->i_state & I_SYNC);
|
|
|
|
/* Set I_SYNC, reset I_DIRTY */
|
|
dirty = inode->i_state & I_DIRTY;
|
|
inode->i_state |= I_SYNC;
|
|
inode->i_state &= ~I_DIRTY;
|
|
|
|
spin_unlock(&inode_lock);
|
|
|
|
ret = do_writepages(mapping, wbc);
|
|
|
|
/* Don't write the inode if only I_DIRTY_PAGES was set */
|
|
if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
|
|
int err = write_inode(inode, wait);
|
|
if (ret == 0)
|
|
ret = err;
|
|
}
|
|
|
|
if (wait) {
|
|
int err = filemap_fdatawait(mapping);
|
|
if (ret == 0)
|
|
ret = err;
|
|
}
|
|
|
|
spin_lock(&inode_lock);
|
|
inode->i_state &= ~I_SYNC;
|
|
if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
|
|
if (!(inode->i_state & I_DIRTY) &&
|
|
mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
|
|
/*
|
|
* We didn't write back all the pages. nfs_writepages()
|
|
* sometimes bales out without doing anything. Redirty
|
|
* the inode; Move it from s_io onto s_more_io/s_dirty.
|
|
*/
|
|
/*
|
|
* akpm: if the caller was the kupdate function we put
|
|
* this inode at the head of s_dirty so it gets first
|
|
* consideration. Otherwise, move it to the tail, for
|
|
* the reasons described there. I'm not really sure
|
|
* how much sense this makes. Presumably I had a good
|
|
* reasons for doing it this way, and I'd rather not
|
|
* muck with it at present.
|
|
*/
|
|
if (wbc->for_kupdate) {
|
|
/*
|
|
* For the kupdate function we move the inode
|
|
* to s_more_io so it will get more writeout as
|
|
* soon as the queue becomes uncongested.
|
|
*/
|
|
inode->i_state |= I_DIRTY_PAGES;
|
|
if (wbc->nr_to_write <= 0) {
|
|
/*
|
|
* slice used up: queue for next turn
|
|
*/
|
|
requeue_io(inode);
|
|
} else {
|
|
/*
|
|
* somehow blocked: retry later
|
|
*/
|
|
redirty_tail(inode);
|
|
}
|
|
} else {
|
|
/*
|
|
* Otherwise fully redirty the inode so that
|
|
* other inodes on this superblock will get some
|
|
* writeout. Otherwise heavy writing to one
|
|
* file would indefinitely suspend writeout of
|
|
* all the other files.
|
|
*/
|
|
inode->i_state |= I_DIRTY_PAGES;
|
|
redirty_tail(inode);
|
|
}
|
|
} else if (inode->i_state & I_DIRTY) {
|
|
/*
|
|
* Someone redirtied the inode while were writing back
|
|
* the pages.
|
|
*/
|
|
redirty_tail(inode);
|
|
} else if (atomic_read(&inode->i_count)) {
|
|
/*
|
|
* The inode is clean, inuse
|
|
*/
|
|
list_move(&inode->i_list, &inode_in_use);
|
|
} else {
|
|
/*
|
|
* The inode is clean, unused
|
|
*/
|
|
list_move(&inode->i_list, &inode_unused);
|
|
}
|
|
}
|
|
inode_sync_complete(inode);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write out a superblock's list of dirty inodes. A wait will be performed
|
|
* upon no inodes, all inodes or the final one, depending upon sync_mode.
|
|
*
|
|
* If older_than_this is non-NULL, then only write out inodes which
|
|
* had their first dirtying at a time earlier than *older_than_this.
|
|
*
|
|
* If we're a pdflush thread, then implement pdflush collision avoidance
|
|
* against the entire list.
|
|
*
|
|
* If `bdi' is non-zero then we're being asked to writeback a specific queue.
|
|
* This function assumes that the blockdev superblock's inodes are backed by
|
|
* a variety of queues, so all inodes are searched. For other superblocks,
|
|
* assume that all inodes are backed by the same queue.
|
|
*
|
|
* FIXME: this linear search could get expensive with many fileystems. But
|
|
* how to fix? We need to go from an address_space to all inodes which share
|
|
* a queue with that address_space. (Easy: have a global "dirty superblocks"
|
|
* list).
|
|
*
|
|
* The inodes to be written are parked on sb->s_io. They are moved back onto
|
|
* sb->s_dirty as they are selected for writing. This way, none can be missed
|
|
* on the writer throttling path, and we get decent balancing between many
|
|
* throttled threads: we don't want them all piling up on inode_sync_wait.
|
|
*/
|
|
void generic_sync_sb_inodes(struct super_block *sb,
|
|
struct writeback_control *wbc)
|
|
{
|
|
const unsigned long start = jiffies; /* livelock avoidance */
|
|
int sync = wbc->sync_mode == WB_SYNC_ALL;
|
|
|
|
spin_lock(&inode_lock);
|
|
if (!wbc->for_kupdate || list_empty(&sb->s_io))
|
|
queue_io(sb, wbc->older_than_this);
|
|
|
|
while (!list_empty(&sb->s_io)) {
|
|
struct inode *inode = list_entry(sb->s_io.prev,
|
|
struct inode, i_list);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct backing_dev_info *bdi = mapping->backing_dev_info;
|
|
long pages_skipped;
|
|
|
|
if (!bdi_cap_writeback_dirty(bdi)) {
|
|
redirty_tail(inode);
|
|
if (sb_is_blkdev_sb(sb)) {
|
|
/*
|
|
* Dirty memory-backed blockdev: the ramdisk
|
|
* driver does this. Skip just this inode
|
|
*/
|
|
continue;
|
|
}
|
|
/*
|
|
* Dirty memory-backed inode against a filesystem other
|
|
* than the kernel-internal bdev filesystem. Skip the
|
|
* entire superblock.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
if (inode->i_state & (I_NEW | I_WILL_FREE)) {
|
|
requeue_io(inode);
|
|
continue;
|
|
}
|
|
|
|
if (wbc->nonblocking && bdi_write_congested(bdi)) {
|
|
wbc->encountered_congestion = 1;
|
|
if (!sb_is_blkdev_sb(sb))
|
|
break; /* Skip a congested fs */
|
|
requeue_io(inode);
|
|
continue; /* Skip a congested blockdev */
|
|
}
|
|
|
|
if (wbc->bdi && bdi != wbc->bdi) {
|
|
if (!sb_is_blkdev_sb(sb))
|
|
break; /* fs has the wrong queue */
|
|
requeue_io(inode);
|
|
continue; /* blockdev has wrong queue */
|
|
}
|
|
|
|
/*
|
|
* Was this inode dirtied after sync_sb_inodes was called?
|
|
* This keeps sync from extra jobs and livelock.
|
|
*/
|
|
if (inode_dirtied_after(inode, start))
|
|
break;
|
|
|
|
/* Is another pdflush already flushing this queue? */
|
|
if (current_is_pdflush() && !writeback_acquire(bdi))
|
|
break;
|
|
|
|
BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
|
|
__iget(inode);
|
|
pages_skipped = wbc->pages_skipped;
|
|
writeback_single_inode(inode, wbc);
|
|
if (current_is_pdflush())
|
|
writeback_release(bdi);
|
|
if (wbc->pages_skipped != pages_skipped) {
|
|
/*
|
|
* writeback is not making progress due to locked
|
|
* buffers. Skip this inode for now.
|
|
*/
|
|
redirty_tail(inode);
|
|
}
|
|
spin_unlock(&inode_lock);
|
|
iput(inode);
|
|
cond_resched();
|
|
spin_lock(&inode_lock);
|
|
if (wbc->nr_to_write <= 0) {
|
|
wbc->more_io = 1;
|
|
break;
|
|
}
|
|
if (!list_empty(&sb->s_more_io))
|
|
wbc->more_io = 1;
|
|
}
|
|
|
|
if (sync) {
|
|
struct inode *inode, *old_inode = NULL;
|
|
|
|
/*
|
|
* Data integrity sync. Must wait for all pages under writeback,
|
|
* because there may have been pages dirtied before our sync
|
|
* call, but which had writeout started before we write it out.
|
|
* In which case, the inode may not be on the dirty list, but
|
|
* we still have to wait for that writeout.
|
|
*/
|
|
list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
|
|
struct address_space *mapping;
|
|
|
|
if (inode->i_state &
|
|
(I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
|
|
continue;
|
|
mapping = inode->i_mapping;
|
|
if (mapping->nrpages == 0)
|
|
continue;
|
|
__iget(inode);
|
|
spin_unlock(&inode_lock);
|
|
/*
|
|
* We hold a reference to 'inode' so it couldn't have
|
|
* been removed from s_inodes list while we dropped the
|
|
* inode_lock. We cannot iput the inode now as we can
|
|
* be holding the last reference and we cannot iput it
|
|
* under inode_lock. So we keep the reference and iput
|
|
* it later.
|
|
*/
|
|
iput(old_inode);
|
|
old_inode = inode;
|
|
|
|
filemap_fdatawait(mapping);
|
|
|
|
cond_resched();
|
|
|
|
spin_lock(&inode_lock);
|
|
}
|
|
spin_unlock(&inode_lock);
|
|
iput(old_inode);
|
|
} else
|
|
spin_unlock(&inode_lock);
|
|
|
|
return; /* Leave any unwritten inodes on s_io */
|
|
}
|
|
EXPORT_SYMBOL_GPL(generic_sync_sb_inodes);
|
|
|
|
static void sync_sb_inodes(struct super_block *sb,
|
|
struct writeback_control *wbc)
|
|
{
|
|
generic_sync_sb_inodes(sb, wbc);
|
|
}
|
|
|
|
/*
|
|
* Start writeback of dirty pagecache data against all unlocked inodes.
|
|
*
|
|
* Note:
|
|
* We don't need to grab a reference to superblock here. If it has non-empty
|
|
* ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
|
|
* past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
|
|
* empty. Since __sync_single_inode() regains inode_lock before it finally moves
|
|
* inode from superblock lists we are OK.
|
|
*
|
|
* If `older_than_this' is non-zero then only flush inodes which have a
|
|
* flushtime older than *older_than_this.
|
|
*
|
|
* If `bdi' is non-zero then we will scan the first inode against each
|
|
* superblock until we find the matching ones. One group will be the dirty
|
|
* inodes against a filesystem. Then when we hit the dummy blockdev superblock,
|
|
* sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
|
|
* super-efficient but we're about to do a ton of I/O...
|
|
*/
|
|
void
|
|
writeback_inodes(struct writeback_control *wbc)
|
|
{
|
|
struct super_block *sb;
|
|
|
|
might_sleep();
|
|
spin_lock(&sb_lock);
|
|
restart:
|
|
list_for_each_entry_reverse(sb, &super_blocks, s_list) {
|
|
if (sb_has_dirty_inodes(sb)) {
|
|
/* we're making our own get_super here */
|
|
sb->s_count++;
|
|
spin_unlock(&sb_lock);
|
|
/*
|
|
* If we can't get the readlock, there's no sense in
|
|
* waiting around, most of the time the FS is going to
|
|
* be unmounted by the time it is released.
|
|
*/
|
|
if (down_read_trylock(&sb->s_umount)) {
|
|
if (sb->s_root)
|
|
sync_sb_inodes(sb, wbc);
|
|
up_read(&sb->s_umount);
|
|
}
|
|
spin_lock(&sb_lock);
|
|
if (__put_super_and_need_restart(sb))
|
|
goto restart;
|
|
}
|
|
if (wbc->nr_to_write <= 0)
|
|
break;
|
|
}
|
|
spin_unlock(&sb_lock);
|
|
}
|
|
|
|
/*
|
|
* writeback and wait upon the filesystem's dirty inodes. The caller will
|
|
* do this in two passes - one to write, and one to wait.
|
|
*
|
|
* A finite limit is set on the number of pages which will be written.
|
|
* To prevent infinite livelock of sys_sync().
|
|
*
|
|
* We add in the number of potentially dirty inodes, because each inode write
|
|
* can dirty pagecache in the underlying blockdev.
|
|
*/
|
|
void sync_inodes_sb(struct super_block *sb, int wait)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
};
|
|
|
|
if (!wait) {
|
|
unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
|
|
unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
|
|
|
|
wbc.nr_to_write = nr_dirty + nr_unstable +
|
|
(inodes_stat.nr_inodes - inodes_stat.nr_unused);
|
|
} else
|
|
wbc.nr_to_write = LONG_MAX; /* doesn't actually matter */
|
|
|
|
sync_sb_inodes(sb, &wbc);
|
|
}
|
|
|
|
/**
|
|
* write_inode_now - write an inode to disk
|
|
* @inode: inode to write to disk
|
|
* @sync: whether the write should be synchronous or not
|
|
*
|
|
* This function commits an inode to disk immediately if it is dirty. This is
|
|
* primarily needed by knfsd.
|
|
*
|
|
* The caller must either have a ref on the inode or must have set I_WILL_FREE.
|
|
*/
|
|
int write_inode_now(struct inode *inode, int sync)
|
|
{
|
|
int ret;
|
|
struct writeback_control wbc = {
|
|
.nr_to_write = LONG_MAX,
|
|
.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
};
|
|
|
|
if (!mapping_cap_writeback_dirty(inode->i_mapping))
|
|
wbc.nr_to_write = 0;
|
|
|
|
might_sleep();
|
|
spin_lock(&inode_lock);
|
|
ret = writeback_single_inode(inode, &wbc);
|
|
spin_unlock(&inode_lock);
|
|
if (sync)
|
|
inode_sync_wait(inode);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(write_inode_now);
|
|
|
|
/**
|
|
* sync_inode - write an inode and its pages to disk.
|
|
* @inode: the inode to sync
|
|
* @wbc: controls the writeback mode
|
|
*
|
|
* sync_inode() will write an inode and its pages to disk. It will also
|
|
* correctly update the inode on its superblock's dirty inode lists and will
|
|
* update inode->i_state.
|
|
*
|
|
* The caller must have a ref on the inode.
|
|
*/
|
|
int sync_inode(struct inode *inode, struct writeback_control *wbc)
|
|
{
|
|
int ret;
|
|
|
|
spin_lock(&inode_lock);
|
|
ret = writeback_single_inode(inode, wbc);
|
|
spin_unlock(&inode_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(sync_inode);
|
|
|
|
/**
|
|
* generic_osync_inode - flush all dirty data for a given inode to disk
|
|
* @inode: inode to write
|
|
* @mapping: the address_space that should be flushed
|
|
* @what: what to write and wait upon
|
|
*
|
|
* This can be called by file_write functions for files which have the
|
|
* O_SYNC flag set, to flush dirty writes to disk.
|
|
*
|
|
* @what is a bitmask, specifying which part of the inode's data should be
|
|
* written and waited upon.
|
|
*
|
|
* OSYNC_DATA: i_mapping's dirty data
|
|
* OSYNC_METADATA: the buffers at i_mapping->private_list
|
|
* OSYNC_INODE: the inode itself
|
|
*/
|
|
|
|
int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
|
|
{
|
|
int err = 0;
|
|
int need_write_inode_now = 0;
|
|
int err2;
|
|
|
|
if (what & OSYNC_DATA)
|
|
err = filemap_fdatawrite(mapping);
|
|
if (what & (OSYNC_METADATA|OSYNC_DATA)) {
|
|
err2 = sync_mapping_buffers(mapping);
|
|
if (!err)
|
|
err = err2;
|
|
}
|
|
if (what & OSYNC_DATA) {
|
|
err2 = filemap_fdatawait(mapping);
|
|
if (!err)
|
|
err = err2;
|
|
}
|
|
|
|
spin_lock(&inode_lock);
|
|
if ((inode->i_state & I_DIRTY) &&
|
|
((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
|
|
need_write_inode_now = 1;
|
|
spin_unlock(&inode_lock);
|
|
|
|
if (need_write_inode_now) {
|
|
err2 = write_inode_now(inode, 1);
|
|
if (!err)
|
|
err = err2;
|
|
}
|
|
else
|
|
inode_sync_wait(inode);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(generic_osync_inode);
|