mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
a311a08a42
File contents can only be shared (i.e. reflinked) below EOF, so it makes
no sense to try to unshare ranges beyond EOF. Constrain the file range
parameters here so that we don't have to do that in the callers.
Fixes: 5f4e5752a8
("fs: add iomap_file_dirty")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20241002150213.GC21853@frogsfrogsfrogs
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2069 lines
60 KiB
C
2069 lines
60 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Red Hat, Inc.
|
|
* Copyright (C) 2016-2023 Christoph Hellwig.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/iomap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/migrate.h>
|
|
#include "trace.h"
|
|
|
|
#include "../internal.h"
|
|
|
|
#define IOEND_BATCH_SIZE 4096
|
|
|
|
/*
|
|
* Structure allocated for each folio to track per-block uptodate, dirty state
|
|
* and I/O completions.
|
|
*/
|
|
struct iomap_folio_state {
|
|
spinlock_t state_lock;
|
|
unsigned int read_bytes_pending;
|
|
atomic_t write_bytes_pending;
|
|
|
|
/*
|
|
* Each block has two bits in this bitmap:
|
|
* Bits [0..blocks_per_folio) has the uptodate status.
|
|
* Bits [b_p_f...(2*b_p_f)) has the dirty status.
|
|
*/
|
|
unsigned long state[];
|
|
};
|
|
|
|
static struct bio_set iomap_ioend_bioset;
|
|
|
|
static inline bool ifs_is_fully_uptodate(struct folio *folio,
|
|
struct iomap_folio_state *ifs)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
|
|
return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
|
|
}
|
|
|
|
static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
|
|
unsigned int block)
|
|
{
|
|
return test_bit(block, ifs->state);
|
|
}
|
|
|
|
static bool ifs_set_range_uptodate(struct folio *folio,
|
|
struct iomap_folio_state *ifs, size_t off, size_t len)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
unsigned int first_blk = off >> inode->i_blkbits;
|
|
unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
|
|
unsigned int nr_blks = last_blk - first_blk + 1;
|
|
|
|
bitmap_set(ifs->state, first_blk, nr_blks);
|
|
return ifs_is_fully_uptodate(folio, ifs);
|
|
}
|
|
|
|
static void iomap_set_range_uptodate(struct folio *folio, size_t off,
|
|
size_t len)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
unsigned long flags;
|
|
bool uptodate = true;
|
|
|
|
if (ifs) {
|
|
spin_lock_irqsave(&ifs->state_lock, flags);
|
|
uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
|
|
spin_unlock_irqrestore(&ifs->state_lock, flags);
|
|
}
|
|
|
|
if (uptodate)
|
|
folio_mark_uptodate(folio);
|
|
}
|
|
|
|
static inline bool ifs_block_is_dirty(struct folio *folio,
|
|
struct iomap_folio_state *ifs, int block)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
|
|
|
|
return test_bit(block + blks_per_folio, ifs->state);
|
|
}
|
|
|
|
static unsigned ifs_find_dirty_range(struct folio *folio,
|
|
struct iomap_folio_state *ifs, u64 *range_start, u64 range_end)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
unsigned start_blk =
|
|
offset_in_folio(folio, *range_start) >> inode->i_blkbits;
|
|
unsigned end_blk = min_not_zero(
|
|
offset_in_folio(folio, range_end) >> inode->i_blkbits,
|
|
i_blocks_per_folio(inode, folio));
|
|
unsigned nblks = 1;
|
|
|
|
while (!ifs_block_is_dirty(folio, ifs, start_blk))
|
|
if (++start_blk == end_blk)
|
|
return 0;
|
|
|
|
while (start_blk + nblks < end_blk) {
|
|
if (!ifs_block_is_dirty(folio, ifs, start_blk + nblks))
|
|
break;
|
|
nblks++;
|
|
}
|
|
|
|
*range_start = folio_pos(folio) + (start_blk << inode->i_blkbits);
|
|
return nblks << inode->i_blkbits;
|
|
}
|
|
|
|
static unsigned iomap_find_dirty_range(struct folio *folio, u64 *range_start,
|
|
u64 range_end)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
|
|
if (*range_start >= range_end)
|
|
return 0;
|
|
|
|
if (ifs)
|
|
return ifs_find_dirty_range(folio, ifs, range_start, range_end);
|
|
return range_end - *range_start;
|
|
}
|
|
|
|
static void ifs_clear_range_dirty(struct folio *folio,
|
|
struct iomap_folio_state *ifs, size_t off, size_t len)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
|
|
unsigned int first_blk = (off >> inode->i_blkbits);
|
|
unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
|
|
unsigned int nr_blks = last_blk - first_blk + 1;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ifs->state_lock, flags);
|
|
bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
|
|
spin_unlock_irqrestore(&ifs->state_lock, flags);
|
|
}
|
|
|
|
static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
|
|
if (ifs)
|
|
ifs_clear_range_dirty(folio, ifs, off, len);
|
|
}
|
|
|
|
static void ifs_set_range_dirty(struct folio *folio,
|
|
struct iomap_folio_state *ifs, size_t off, size_t len)
|
|
{
|
|
struct inode *inode = folio->mapping->host;
|
|
unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
|
|
unsigned int first_blk = (off >> inode->i_blkbits);
|
|
unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
|
|
unsigned int nr_blks = last_blk - first_blk + 1;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ifs->state_lock, flags);
|
|
bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
|
|
spin_unlock_irqrestore(&ifs->state_lock, flags);
|
|
}
|
|
|
|
static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
|
|
if (ifs)
|
|
ifs_set_range_dirty(folio, ifs, off, len);
|
|
}
|
|
|
|
static struct iomap_folio_state *ifs_alloc(struct inode *inode,
|
|
struct folio *folio, unsigned int flags)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
|
|
gfp_t gfp;
|
|
|
|
if (ifs || nr_blocks <= 1)
|
|
return ifs;
|
|
|
|
if (flags & IOMAP_NOWAIT)
|
|
gfp = GFP_NOWAIT;
|
|
else
|
|
gfp = GFP_NOFS | __GFP_NOFAIL;
|
|
|
|
/*
|
|
* ifs->state tracks two sets of state flags when the
|
|
* filesystem block size is smaller than the folio size.
|
|
* The first state tracks per-block uptodate and the
|
|
* second tracks per-block dirty state.
|
|
*/
|
|
ifs = kzalloc(struct_size(ifs, state,
|
|
BITS_TO_LONGS(2 * nr_blocks)), gfp);
|
|
if (!ifs)
|
|
return ifs;
|
|
|
|
spin_lock_init(&ifs->state_lock);
|
|
if (folio_test_uptodate(folio))
|
|
bitmap_set(ifs->state, 0, nr_blocks);
|
|
if (folio_test_dirty(folio))
|
|
bitmap_set(ifs->state, nr_blocks, nr_blocks);
|
|
folio_attach_private(folio, ifs);
|
|
|
|
return ifs;
|
|
}
|
|
|
|
static void ifs_free(struct folio *folio)
|
|
{
|
|
struct iomap_folio_state *ifs = folio_detach_private(folio);
|
|
|
|
if (!ifs)
|
|
return;
|
|
WARN_ON_ONCE(ifs->read_bytes_pending != 0);
|
|
WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
|
|
WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
|
|
folio_test_uptodate(folio));
|
|
kfree(ifs);
|
|
}
|
|
|
|
/*
|
|
* Calculate the range inside the folio that we actually need to read.
|
|
*/
|
|
static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
|
|
loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
loff_t orig_pos = *pos;
|
|
loff_t isize = i_size_read(inode);
|
|
unsigned block_bits = inode->i_blkbits;
|
|
unsigned block_size = (1 << block_bits);
|
|
size_t poff = offset_in_folio(folio, *pos);
|
|
size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
|
|
size_t orig_plen = plen;
|
|
unsigned first = poff >> block_bits;
|
|
unsigned last = (poff + plen - 1) >> block_bits;
|
|
|
|
/*
|
|
* If the block size is smaller than the page size, we need to check the
|
|
* per-block uptodate status and adjust the offset and length if needed
|
|
* to avoid reading in already uptodate ranges.
|
|
*/
|
|
if (ifs) {
|
|
unsigned int i;
|
|
|
|
/* move forward for each leading block marked uptodate */
|
|
for (i = first; i <= last; i++) {
|
|
if (!ifs_block_is_uptodate(ifs, i))
|
|
break;
|
|
*pos += block_size;
|
|
poff += block_size;
|
|
plen -= block_size;
|
|
first++;
|
|
}
|
|
|
|
/* truncate len if we find any trailing uptodate block(s) */
|
|
for ( ; i <= last; i++) {
|
|
if (ifs_block_is_uptodate(ifs, i)) {
|
|
plen -= (last - i + 1) * block_size;
|
|
last = i - 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the extent spans the block that contains the i_size, we need to
|
|
* handle both halves separately so that we properly zero data in the
|
|
* page cache for blocks that are entirely outside of i_size.
|
|
*/
|
|
if (orig_pos <= isize && orig_pos + orig_plen > isize) {
|
|
unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
|
|
|
|
if (first <= end && last > end)
|
|
plen -= (last - end) * block_size;
|
|
}
|
|
|
|
*offp = poff;
|
|
*lenp = plen;
|
|
}
|
|
|
|
static void iomap_finish_folio_read(struct folio *folio, size_t off,
|
|
size_t len, int error)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
bool uptodate = !error;
|
|
bool finished = true;
|
|
|
|
if (ifs) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ifs->state_lock, flags);
|
|
if (!error)
|
|
uptodate = ifs_set_range_uptodate(folio, ifs, off, len);
|
|
ifs->read_bytes_pending -= len;
|
|
finished = !ifs->read_bytes_pending;
|
|
spin_unlock_irqrestore(&ifs->state_lock, flags);
|
|
}
|
|
|
|
if (finished)
|
|
folio_end_read(folio, uptodate);
|
|
}
|
|
|
|
static void iomap_read_end_io(struct bio *bio)
|
|
{
|
|
int error = blk_status_to_errno(bio->bi_status);
|
|
struct folio_iter fi;
|
|
|
|
bio_for_each_folio_all(fi, bio)
|
|
iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
|
|
bio_put(bio);
|
|
}
|
|
|
|
struct iomap_readpage_ctx {
|
|
struct folio *cur_folio;
|
|
bool cur_folio_in_bio;
|
|
struct bio *bio;
|
|
struct readahead_control *rac;
|
|
};
|
|
|
|
/**
|
|
* iomap_read_inline_data - copy inline data into the page cache
|
|
* @iter: iteration structure
|
|
* @folio: folio to copy to
|
|
*
|
|
* Copy the inline data in @iter into @folio and zero out the rest of the folio.
|
|
* Only a single IOMAP_INLINE extent is allowed at the end of each file.
|
|
* Returns zero for success to complete the read, or the usual negative errno.
|
|
*/
|
|
static int iomap_read_inline_data(const struct iomap_iter *iter,
|
|
struct folio *folio)
|
|
{
|
|
const struct iomap *iomap = iomap_iter_srcmap(iter);
|
|
size_t size = i_size_read(iter->inode) - iomap->offset;
|
|
size_t offset = offset_in_folio(folio, iomap->offset);
|
|
|
|
if (folio_test_uptodate(folio))
|
|
return 0;
|
|
|
|
if (WARN_ON_ONCE(size > iomap->length))
|
|
return -EIO;
|
|
if (offset > 0)
|
|
ifs_alloc(iter->inode, folio, iter->flags);
|
|
|
|
folio_fill_tail(folio, offset, iomap->inline_data, size);
|
|
iomap_set_range_uptodate(folio, offset, folio_size(folio) - offset);
|
|
return 0;
|
|
}
|
|
|
|
static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
|
|
loff_t pos)
|
|
{
|
|
const struct iomap *srcmap = iomap_iter_srcmap(iter);
|
|
|
|
return srcmap->type != IOMAP_MAPPED ||
|
|
(srcmap->flags & IOMAP_F_NEW) ||
|
|
pos >= i_size_read(iter->inode);
|
|
}
|
|
|
|
static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
|
|
struct iomap_readpage_ctx *ctx, loff_t offset)
|
|
{
|
|
const struct iomap *iomap = &iter->iomap;
|
|
loff_t pos = iter->pos + offset;
|
|
loff_t length = iomap_length(iter) - offset;
|
|
struct folio *folio = ctx->cur_folio;
|
|
struct iomap_folio_state *ifs;
|
|
loff_t orig_pos = pos;
|
|
size_t poff, plen;
|
|
sector_t sector;
|
|
|
|
if (iomap->type == IOMAP_INLINE)
|
|
return iomap_read_inline_data(iter, folio);
|
|
|
|
/* zero post-eof blocks as the page may be mapped */
|
|
ifs = ifs_alloc(iter->inode, folio, iter->flags);
|
|
iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
|
|
if (plen == 0)
|
|
goto done;
|
|
|
|
if (iomap_block_needs_zeroing(iter, pos)) {
|
|
folio_zero_range(folio, poff, plen);
|
|
iomap_set_range_uptodate(folio, poff, plen);
|
|
goto done;
|
|
}
|
|
|
|
ctx->cur_folio_in_bio = true;
|
|
if (ifs) {
|
|
spin_lock_irq(&ifs->state_lock);
|
|
ifs->read_bytes_pending += plen;
|
|
spin_unlock_irq(&ifs->state_lock);
|
|
}
|
|
|
|
sector = iomap_sector(iomap, pos);
|
|
if (!ctx->bio ||
|
|
bio_end_sector(ctx->bio) != sector ||
|
|
!bio_add_folio(ctx->bio, folio, plen, poff)) {
|
|
gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
|
|
gfp_t orig_gfp = gfp;
|
|
unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
|
|
|
|
if (ctx->bio)
|
|
submit_bio(ctx->bio);
|
|
|
|
if (ctx->rac) /* same as readahead_gfp_mask */
|
|
gfp |= __GFP_NORETRY | __GFP_NOWARN;
|
|
ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
|
|
REQ_OP_READ, gfp);
|
|
/*
|
|
* If the bio_alloc fails, try it again for a single page to
|
|
* avoid having to deal with partial page reads. This emulates
|
|
* what do_mpage_read_folio does.
|
|
*/
|
|
if (!ctx->bio) {
|
|
ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
|
|
orig_gfp);
|
|
}
|
|
if (ctx->rac)
|
|
ctx->bio->bi_opf |= REQ_RAHEAD;
|
|
ctx->bio->bi_iter.bi_sector = sector;
|
|
ctx->bio->bi_end_io = iomap_read_end_io;
|
|
bio_add_folio_nofail(ctx->bio, folio, plen, poff);
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* Move the caller beyond our range so that it keeps making progress.
|
|
* For that, we have to include any leading non-uptodate ranges, but
|
|
* we can skip trailing ones as they will be handled in the next
|
|
* iteration.
|
|
*/
|
|
return pos - orig_pos + plen;
|
|
}
|
|
|
|
static loff_t iomap_read_folio_iter(const struct iomap_iter *iter,
|
|
struct iomap_readpage_ctx *ctx)
|
|
{
|
|
struct folio *folio = ctx->cur_folio;
|
|
size_t offset = offset_in_folio(folio, iter->pos);
|
|
loff_t length = min_t(loff_t, folio_size(folio) - offset,
|
|
iomap_length(iter));
|
|
loff_t done, ret;
|
|
|
|
for (done = 0; done < length; done += ret) {
|
|
ret = iomap_readpage_iter(iter, ctx, done);
|
|
if (ret <= 0)
|
|
return ret;
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_iter iter = {
|
|
.inode = folio->mapping->host,
|
|
.pos = folio_pos(folio),
|
|
.len = folio_size(folio),
|
|
};
|
|
struct iomap_readpage_ctx ctx = {
|
|
.cur_folio = folio,
|
|
};
|
|
int ret;
|
|
|
|
trace_iomap_readpage(iter.inode, 1);
|
|
|
|
while ((ret = iomap_iter(&iter, ops)) > 0)
|
|
iter.processed = iomap_read_folio_iter(&iter, &ctx);
|
|
|
|
if (ctx.bio) {
|
|
submit_bio(ctx.bio);
|
|
WARN_ON_ONCE(!ctx.cur_folio_in_bio);
|
|
} else {
|
|
WARN_ON_ONCE(ctx.cur_folio_in_bio);
|
|
folio_unlock(folio);
|
|
}
|
|
|
|
/*
|
|
* Just like mpage_readahead and block_read_full_folio, we always
|
|
* return 0 and just set the folio error flag on errors. This
|
|
* should be cleaned up throughout the stack eventually.
|
|
*/
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_read_folio);
|
|
|
|
static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
|
|
struct iomap_readpage_ctx *ctx)
|
|
{
|
|
loff_t length = iomap_length(iter);
|
|
loff_t done, ret;
|
|
|
|
for (done = 0; done < length; done += ret) {
|
|
if (ctx->cur_folio &&
|
|
offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
|
|
if (!ctx->cur_folio_in_bio)
|
|
folio_unlock(ctx->cur_folio);
|
|
ctx->cur_folio = NULL;
|
|
}
|
|
if (!ctx->cur_folio) {
|
|
ctx->cur_folio = readahead_folio(ctx->rac);
|
|
ctx->cur_folio_in_bio = false;
|
|
}
|
|
ret = iomap_readpage_iter(iter, ctx, done);
|
|
if (ret <= 0)
|
|
return ret;
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
/**
|
|
* iomap_readahead - Attempt to read pages from a file.
|
|
* @rac: Describes the pages to be read.
|
|
* @ops: The operations vector for the filesystem.
|
|
*
|
|
* This function is for filesystems to call to implement their readahead
|
|
* address_space operation.
|
|
*
|
|
* Context: The @ops callbacks may submit I/O (eg to read the addresses of
|
|
* blocks from disc), and may wait for it. The caller may be trying to
|
|
* access a different page, and so sleeping excessively should be avoided.
|
|
* It may allocate memory, but should avoid costly allocations. This
|
|
* function is called with memalloc_nofs set, so allocations will not cause
|
|
* the filesystem to be reentered.
|
|
*/
|
|
void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_iter iter = {
|
|
.inode = rac->mapping->host,
|
|
.pos = readahead_pos(rac),
|
|
.len = readahead_length(rac),
|
|
};
|
|
struct iomap_readpage_ctx ctx = {
|
|
.rac = rac,
|
|
};
|
|
|
|
trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
|
|
|
|
while (iomap_iter(&iter, ops) > 0)
|
|
iter.processed = iomap_readahead_iter(&iter, &ctx);
|
|
|
|
if (ctx.bio)
|
|
submit_bio(ctx.bio);
|
|
if (ctx.cur_folio) {
|
|
if (!ctx.cur_folio_in_bio)
|
|
folio_unlock(ctx.cur_folio);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_readahead);
|
|
|
|
/*
|
|
* iomap_is_partially_uptodate checks whether blocks within a folio are
|
|
* uptodate or not.
|
|
*
|
|
* Returns true if all blocks which correspond to the specified part
|
|
* of the folio are uptodate.
|
|
*/
|
|
bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
struct inode *inode = folio->mapping->host;
|
|
unsigned first, last, i;
|
|
|
|
if (!ifs)
|
|
return false;
|
|
|
|
/* Caller's range may extend past the end of this folio */
|
|
count = min(folio_size(folio) - from, count);
|
|
|
|
/* First and last blocks in range within folio */
|
|
first = from >> inode->i_blkbits;
|
|
last = (from + count - 1) >> inode->i_blkbits;
|
|
|
|
for (i = first; i <= last; i++)
|
|
if (!ifs_block_is_uptodate(ifs, i))
|
|
return false;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
|
|
|
|
/**
|
|
* iomap_get_folio - get a folio reference for writing
|
|
* @iter: iteration structure
|
|
* @pos: start offset of write
|
|
* @len: Suggested size of folio to create.
|
|
*
|
|
* Returns a locked reference to the folio at @pos, or an error pointer if the
|
|
* folio could not be obtained.
|
|
*/
|
|
struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
|
|
{
|
|
fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
|
|
|
|
if (iter->flags & IOMAP_NOWAIT)
|
|
fgp |= FGP_NOWAIT;
|
|
fgp |= fgf_set_order(len);
|
|
|
|
return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
|
|
fgp, mapping_gfp_mask(iter->inode->i_mapping));
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_get_folio);
|
|
|
|
bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
|
|
{
|
|
trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
|
|
folio_size(folio));
|
|
|
|
/*
|
|
* If the folio is dirty, we refuse to release our metadata because
|
|
* it may be partially dirty. Once we track per-block dirty state,
|
|
* we can release the metadata if every block is dirty.
|
|
*/
|
|
if (folio_test_dirty(folio))
|
|
return false;
|
|
ifs_free(folio);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_release_folio);
|
|
|
|
void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
|
|
{
|
|
trace_iomap_invalidate_folio(folio->mapping->host,
|
|
folio_pos(folio) + offset, len);
|
|
|
|
/*
|
|
* If we're invalidating the entire folio, clear the dirty state
|
|
* from it and release it to avoid unnecessary buildup of the LRU.
|
|
*/
|
|
if (offset == 0 && len == folio_size(folio)) {
|
|
WARN_ON_ONCE(folio_test_writeback(folio));
|
|
folio_cancel_dirty(folio);
|
|
ifs_free(folio);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
|
|
|
|
bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
size_t len = folio_size(folio);
|
|
|
|
ifs_alloc(inode, folio, 0);
|
|
iomap_set_range_dirty(folio, 0, len);
|
|
return filemap_dirty_folio(mapping, folio);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_dirty_folio);
|
|
|
|
static void
|
|
iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
|
|
{
|
|
loff_t i_size = i_size_read(inode);
|
|
|
|
/*
|
|
* Only truncate newly allocated pages beyoned EOF, even if the
|
|
* write started inside the existing inode size.
|
|
*/
|
|
if (pos + len > i_size)
|
|
truncate_pagecache_range(inode, max(pos, i_size),
|
|
pos + len - 1);
|
|
}
|
|
|
|
static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
|
|
size_t poff, size_t plen, const struct iomap *iomap)
|
|
{
|
|
struct bio_vec bvec;
|
|
struct bio bio;
|
|
|
|
bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
|
|
bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
|
|
bio_add_folio_nofail(&bio, folio, plen, poff);
|
|
return submit_bio_wait(&bio);
|
|
}
|
|
|
|
static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
|
|
size_t len, struct folio *folio)
|
|
{
|
|
const struct iomap *srcmap = iomap_iter_srcmap(iter);
|
|
struct iomap_folio_state *ifs;
|
|
loff_t block_size = i_blocksize(iter->inode);
|
|
loff_t block_start = round_down(pos, block_size);
|
|
loff_t block_end = round_up(pos + len, block_size);
|
|
unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
|
|
size_t from = offset_in_folio(folio, pos), to = from + len;
|
|
size_t poff, plen;
|
|
|
|
/*
|
|
* If the write or zeroing completely overlaps the current folio, then
|
|
* entire folio will be dirtied so there is no need for
|
|
* per-block state tracking structures to be attached to this folio.
|
|
* For the unshare case, we must read in the ondisk contents because we
|
|
* are not changing pagecache contents.
|
|
*/
|
|
if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
|
|
pos + len >= folio_pos(folio) + folio_size(folio))
|
|
return 0;
|
|
|
|
ifs = ifs_alloc(iter->inode, folio, iter->flags);
|
|
if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
|
|
return -EAGAIN;
|
|
|
|
if (folio_test_uptodate(folio))
|
|
return 0;
|
|
|
|
do {
|
|
iomap_adjust_read_range(iter->inode, folio, &block_start,
|
|
block_end - block_start, &poff, &plen);
|
|
if (plen == 0)
|
|
break;
|
|
|
|
if (!(iter->flags & IOMAP_UNSHARE) &&
|
|
(from <= poff || from >= poff + plen) &&
|
|
(to <= poff || to >= poff + plen))
|
|
continue;
|
|
|
|
if (iomap_block_needs_zeroing(iter, block_start)) {
|
|
if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
|
|
return -EIO;
|
|
folio_zero_segments(folio, poff, from, to, poff + plen);
|
|
} else {
|
|
int status;
|
|
|
|
if (iter->flags & IOMAP_NOWAIT)
|
|
return -EAGAIN;
|
|
|
|
status = iomap_read_folio_sync(block_start, folio,
|
|
poff, plen, srcmap);
|
|
if (status)
|
|
return status;
|
|
}
|
|
iomap_set_range_uptodate(folio, poff, plen);
|
|
} while ((block_start += plen) < block_end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
|
|
size_t len)
|
|
{
|
|
const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
|
|
|
|
if (folio_ops && folio_ops->get_folio)
|
|
return folio_ops->get_folio(iter, pos, len);
|
|
else
|
|
return iomap_get_folio(iter, pos, len);
|
|
}
|
|
|
|
static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
|
|
struct folio *folio)
|
|
{
|
|
const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
|
|
|
|
if (folio_ops && folio_ops->put_folio) {
|
|
folio_ops->put_folio(iter->inode, pos, ret, folio);
|
|
} else {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
}
|
|
|
|
static int iomap_write_begin_inline(const struct iomap_iter *iter,
|
|
struct folio *folio)
|
|
{
|
|
/* needs more work for the tailpacking case; disable for now */
|
|
if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
|
|
return -EIO;
|
|
return iomap_read_inline_data(iter, folio);
|
|
}
|
|
|
|
static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
|
|
size_t len, struct folio **foliop)
|
|
{
|
|
const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
|
|
const struct iomap *srcmap = iomap_iter_srcmap(iter);
|
|
struct folio *folio;
|
|
int status = 0;
|
|
|
|
BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
|
|
if (srcmap != &iter->iomap)
|
|
BUG_ON(pos + len > srcmap->offset + srcmap->length);
|
|
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
|
|
if (!mapping_large_folio_support(iter->inode->i_mapping))
|
|
len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
|
|
|
|
folio = __iomap_get_folio(iter, pos, len);
|
|
if (IS_ERR(folio))
|
|
return PTR_ERR(folio);
|
|
|
|
/*
|
|
* Now we have a locked folio, before we do anything with it we need to
|
|
* check that the iomap we have cached is not stale. The inode extent
|
|
* mapping can change due to concurrent IO in flight (e.g.
|
|
* IOMAP_UNWRITTEN state can change and memory reclaim could have
|
|
* reclaimed a previously partially written page at this index after IO
|
|
* completion before this write reaches this file offset) and hence we
|
|
* could do the wrong thing here (zero a page range incorrectly or fail
|
|
* to zero) and corrupt data.
|
|
*/
|
|
if (folio_ops && folio_ops->iomap_valid) {
|
|
bool iomap_valid = folio_ops->iomap_valid(iter->inode,
|
|
&iter->iomap);
|
|
if (!iomap_valid) {
|
|
iter->iomap.flags |= IOMAP_F_STALE;
|
|
status = 0;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (pos + len > folio_pos(folio) + folio_size(folio))
|
|
len = folio_pos(folio) + folio_size(folio) - pos;
|
|
|
|
if (srcmap->type == IOMAP_INLINE)
|
|
status = iomap_write_begin_inline(iter, folio);
|
|
else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
|
|
status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
|
|
else
|
|
status = __iomap_write_begin(iter, pos, len, folio);
|
|
|
|
if (unlikely(status))
|
|
goto out_unlock;
|
|
|
|
*foliop = folio;
|
|
return 0;
|
|
|
|
out_unlock:
|
|
__iomap_put_folio(iter, pos, 0, folio);
|
|
|
|
return status;
|
|
}
|
|
|
|
static bool __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
|
|
size_t copied, struct folio *folio)
|
|
{
|
|
flush_dcache_folio(folio);
|
|
|
|
/*
|
|
* The blocks that were entirely written will now be uptodate, so we
|
|
* don't have to worry about a read_folio reading them and overwriting a
|
|
* partial write. However, if we've encountered a short write and only
|
|
* partially written into a block, it will not be marked uptodate, so a
|
|
* read_folio might come in and destroy our partial write.
|
|
*
|
|
* Do the simplest thing and just treat any short write to a
|
|
* non-uptodate page as a zero-length write, and force the caller to
|
|
* redo the whole thing.
|
|
*/
|
|
if (unlikely(copied < len && !folio_test_uptodate(folio)))
|
|
return false;
|
|
iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
|
|
iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
|
|
filemap_dirty_folio(inode->i_mapping, folio);
|
|
return true;
|
|
}
|
|
|
|
static void iomap_write_end_inline(const struct iomap_iter *iter,
|
|
struct folio *folio, loff_t pos, size_t copied)
|
|
{
|
|
const struct iomap *iomap = &iter->iomap;
|
|
void *addr;
|
|
|
|
WARN_ON_ONCE(!folio_test_uptodate(folio));
|
|
BUG_ON(!iomap_inline_data_valid(iomap));
|
|
|
|
flush_dcache_folio(folio);
|
|
addr = kmap_local_folio(folio, pos);
|
|
memcpy(iomap_inline_data(iomap, pos), addr, copied);
|
|
kunmap_local(addr);
|
|
|
|
mark_inode_dirty(iter->inode);
|
|
}
|
|
|
|
/*
|
|
* Returns true if all copied bytes have been written to the pagecache,
|
|
* otherwise return false.
|
|
*/
|
|
static bool iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
|
|
size_t copied, struct folio *folio)
|
|
{
|
|
const struct iomap *srcmap = iomap_iter_srcmap(iter);
|
|
|
|
if (srcmap->type == IOMAP_INLINE) {
|
|
iomap_write_end_inline(iter, folio, pos, copied);
|
|
return true;
|
|
}
|
|
|
|
if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
|
|
size_t bh_written;
|
|
|
|
bh_written = block_write_end(NULL, iter->inode->i_mapping, pos,
|
|
len, copied, folio, NULL);
|
|
WARN_ON_ONCE(bh_written != copied && bh_written != 0);
|
|
return bh_written == copied;
|
|
}
|
|
|
|
return __iomap_write_end(iter->inode, pos, len, copied, folio);
|
|
}
|
|
|
|
static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
|
|
{
|
|
loff_t length = iomap_length(iter);
|
|
loff_t pos = iter->pos;
|
|
ssize_t total_written = 0;
|
|
long status = 0;
|
|
struct address_space *mapping = iter->inode->i_mapping;
|
|
size_t chunk = mapping_max_folio_size(mapping);
|
|
unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
|
|
|
|
do {
|
|
struct folio *folio;
|
|
loff_t old_size;
|
|
size_t offset; /* Offset into folio */
|
|
size_t bytes; /* Bytes to write to folio */
|
|
size_t copied; /* Bytes copied from user */
|
|
size_t written; /* Bytes have been written */
|
|
|
|
bytes = iov_iter_count(i);
|
|
retry:
|
|
offset = pos & (chunk - 1);
|
|
bytes = min(chunk - offset, bytes);
|
|
status = balance_dirty_pages_ratelimited_flags(mapping,
|
|
bdp_flags);
|
|
if (unlikely(status))
|
|
break;
|
|
|
|
if (bytes > length)
|
|
bytes = length;
|
|
|
|
/*
|
|
* Bring in the user page that we'll copy from _first_.
|
|
* Otherwise there's a nasty deadlock on copying from the
|
|
* same page as we're writing to, without it being marked
|
|
* up-to-date.
|
|
*
|
|
* For async buffered writes the assumption is that the user
|
|
* page has already been faulted in. This can be optimized by
|
|
* faulting the user page.
|
|
*/
|
|
if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
|
|
status = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
status = iomap_write_begin(iter, pos, bytes, &folio);
|
|
if (unlikely(status)) {
|
|
iomap_write_failed(iter->inode, pos, bytes);
|
|
break;
|
|
}
|
|
if (iter->iomap.flags & IOMAP_F_STALE)
|
|
break;
|
|
|
|
offset = offset_in_folio(folio, pos);
|
|
if (bytes > folio_size(folio) - offset)
|
|
bytes = folio_size(folio) - offset;
|
|
|
|
if (mapping_writably_mapped(mapping))
|
|
flush_dcache_folio(folio);
|
|
|
|
copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
|
|
written = iomap_write_end(iter, pos, bytes, copied, folio) ?
|
|
copied : 0;
|
|
|
|
/*
|
|
* Update the in-memory inode size after copying the data into
|
|
* the page cache. It's up to the file system to write the
|
|
* updated size to disk, preferably after I/O completion so that
|
|
* no stale data is exposed. Only once that's done can we
|
|
* unlock and release the folio.
|
|
*/
|
|
old_size = iter->inode->i_size;
|
|
if (pos + written > old_size) {
|
|
i_size_write(iter->inode, pos + written);
|
|
iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
|
|
}
|
|
__iomap_put_folio(iter, pos, written, folio);
|
|
|
|
if (old_size < pos)
|
|
pagecache_isize_extended(iter->inode, old_size, pos);
|
|
|
|
cond_resched();
|
|
if (unlikely(written == 0)) {
|
|
/*
|
|
* A short copy made iomap_write_end() reject the
|
|
* thing entirely. Might be memory poisoning
|
|
* halfway through, might be a race with munmap,
|
|
* might be severe memory pressure.
|
|
*/
|
|
iomap_write_failed(iter->inode, pos, bytes);
|
|
iov_iter_revert(i, copied);
|
|
|
|
if (chunk > PAGE_SIZE)
|
|
chunk /= 2;
|
|
if (copied) {
|
|
bytes = copied;
|
|
goto retry;
|
|
}
|
|
} else {
|
|
pos += written;
|
|
total_written += written;
|
|
length -= written;
|
|
}
|
|
} while (iov_iter_count(i) && length);
|
|
|
|
if (status == -EAGAIN) {
|
|
iov_iter_revert(i, total_written);
|
|
return -EAGAIN;
|
|
}
|
|
return total_written ? total_written : status;
|
|
}
|
|
|
|
ssize_t
|
|
iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
|
|
const struct iomap_ops *ops, void *private)
|
|
{
|
|
struct iomap_iter iter = {
|
|
.inode = iocb->ki_filp->f_mapping->host,
|
|
.pos = iocb->ki_pos,
|
|
.len = iov_iter_count(i),
|
|
.flags = IOMAP_WRITE,
|
|
.private = private,
|
|
};
|
|
ssize_t ret;
|
|
|
|
if (iocb->ki_flags & IOCB_NOWAIT)
|
|
iter.flags |= IOMAP_NOWAIT;
|
|
|
|
while ((ret = iomap_iter(&iter, ops)) > 0)
|
|
iter.processed = iomap_write_iter(&iter, i);
|
|
|
|
if (unlikely(iter.pos == iocb->ki_pos))
|
|
return ret;
|
|
ret = iter.pos - iocb->ki_pos;
|
|
iocb->ki_pos = iter.pos;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
|
|
|
|
static void iomap_write_delalloc_ifs_punch(struct inode *inode,
|
|
struct folio *folio, loff_t start_byte, loff_t end_byte,
|
|
struct iomap *iomap, iomap_punch_t punch)
|
|
{
|
|
unsigned int first_blk, last_blk, i;
|
|
loff_t last_byte;
|
|
u8 blkbits = inode->i_blkbits;
|
|
struct iomap_folio_state *ifs;
|
|
|
|
/*
|
|
* When we have per-block dirty tracking, there can be
|
|
* blocks within a folio which are marked uptodate
|
|
* but not dirty. In that case it is necessary to punch
|
|
* out such blocks to avoid leaking any delalloc blocks.
|
|
*/
|
|
ifs = folio->private;
|
|
if (!ifs)
|
|
return;
|
|
|
|
last_byte = min_t(loff_t, end_byte - 1,
|
|
folio_pos(folio) + folio_size(folio) - 1);
|
|
first_blk = offset_in_folio(folio, start_byte) >> blkbits;
|
|
last_blk = offset_in_folio(folio, last_byte) >> blkbits;
|
|
for (i = first_blk; i <= last_blk; i++) {
|
|
if (!ifs_block_is_dirty(folio, ifs, i))
|
|
punch(inode, folio_pos(folio) + (i << blkbits),
|
|
1 << blkbits, iomap);
|
|
}
|
|
}
|
|
|
|
static void iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
|
|
loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
|
|
struct iomap *iomap, iomap_punch_t punch)
|
|
{
|
|
if (!folio_test_dirty(folio))
|
|
return;
|
|
|
|
/* if dirty, punch up to offset */
|
|
if (start_byte > *punch_start_byte) {
|
|
punch(inode, *punch_start_byte, start_byte - *punch_start_byte,
|
|
iomap);
|
|
}
|
|
|
|
/* Punch non-dirty blocks within folio */
|
|
iomap_write_delalloc_ifs_punch(inode, folio, start_byte, end_byte,
|
|
iomap, punch);
|
|
|
|
/*
|
|
* Make sure the next punch start is correctly bound to
|
|
* the end of this data range, not the end of the folio.
|
|
*/
|
|
*punch_start_byte = min_t(loff_t, end_byte,
|
|
folio_pos(folio) + folio_size(folio));
|
|
}
|
|
|
|
/*
|
|
* Scan the data range passed to us for dirty page cache folios. If we find a
|
|
* dirty folio, punch out the preceding range and update the offset from which
|
|
* the next punch will start from.
|
|
*
|
|
* We can punch out storage reservations under clean pages because they either
|
|
* contain data that has been written back - in which case the delalloc punch
|
|
* over that range is a no-op - or they have been read faults in which case they
|
|
* contain zeroes and we can remove the delalloc backing range and any new
|
|
* writes to those pages will do the normal hole filling operation...
|
|
*
|
|
* This makes the logic simple: we only need to keep the delalloc extents only
|
|
* over the dirty ranges of the page cache.
|
|
*
|
|
* This function uses [start_byte, end_byte) intervals (i.e. open ended) to
|
|
* simplify range iterations.
|
|
*/
|
|
static void iomap_write_delalloc_scan(struct inode *inode,
|
|
loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
|
|
struct iomap *iomap, iomap_punch_t punch)
|
|
{
|
|
while (start_byte < end_byte) {
|
|
struct folio *folio;
|
|
|
|
/* grab locked page */
|
|
folio = filemap_lock_folio(inode->i_mapping,
|
|
start_byte >> PAGE_SHIFT);
|
|
if (IS_ERR(folio)) {
|
|
start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
|
|
PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
iomap_write_delalloc_punch(inode, folio, punch_start_byte,
|
|
start_byte, end_byte, iomap, punch);
|
|
|
|
/* move offset to start of next folio in range */
|
|
start_byte = folio_next_index(folio) << PAGE_SHIFT;
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Punch out all the delalloc blocks in the range given except for those that
|
|
* have dirty data still pending in the page cache - those are going to be
|
|
* written and so must still retain the delalloc backing for writeback.
|
|
*
|
|
* As we are scanning the page cache for data, we don't need to reimplement the
|
|
* wheel - mapping_seek_hole_data() does exactly what we need to identify the
|
|
* start and end of data ranges correctly even for sub-folio block sizes. This
|
|
* byte range based iteration is especially convenient because it means we
|
|
* don't have to care about variable size folios, nor where the start or end of
|
|
* the data range lies within a folio, if they lie within the same folio or even
|
|
* if there are multiple discontiguous data ranges within the folio.
|
|
*
|
|
* It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
|
|
* can return data ranges that exist in the cache beyond EOF. e.g. a page fault
|
|
* spanning EOF will initialise the post-EOF data to zeroes and mark it up to
|
|
* date. A write page fault can then mark it dirty. If we then fail a write()
|
|
* beyond EOF into that up to date cached range, we allocate a delalloc block
|
|
* beyond EOF and then have to punch it out. Because the range is up to date,
|
|
* mapping_seek_hole_data() will return it, and we will skip the punch because
|
|
* the folio is dirty. THis is incorrect - we always need to punch out delalloc
|
|
* beyond EOF in this case as writeback will never write back and covert that
|
|
* delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
|
|
* resulting in always punching out the range from the EOF to the end of the
|
|
* range the iomap spans.
|
|
*
|
|
* Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
|
|
* matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
|
|
* returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
|
|
* returns the end of the data range (data_end). Using closed intervals would
|
|
* require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
|
|
* the code to subtle off-by-one bugs....
|
|
*/
|
|
static void iomap_write_delalloc_release(struct inode *inode, loff_t start_byte,
|
|
loff_t end_byte, unsigned flags, struct iomap *iomap,
|
|
iomap_punch_t punch)
|
|
{
|
|
loff_t punch_start_byte = start_byte;
|
|
loff_t scan_end_byte = min(i_size_read(inode), end_byte);
|
|
|
|
/*
|
|
* Lock the mapping to avoid races with page faults re-instantiating
|
|
* folios and dirtying them via ->page_mkwrite whilst we walk the
|
|
* cache and perform delalloc extent removal. Failing to do this can
|
|
* leave dirty pages with no space reservation in the cache.
|
|
*/
|
|
filemap_invalidate_lock(inode->i_mapping);
|
|
while (start_byte < scan_end_byte) {
|
|
loff_t data_end;
|
|
|
|
start_byte = mapping_seek_hole_data(inode->i_mapping,
|
|
start_byte, scan_end_byte, SEEK_DATA);
|
|
/*
|
|
* If there is no more data to scan, all that is left is to
|
|
* punch out the remaining range.
|
|
*
|
|
* Note that mapping_seek_hole_data is only supposed to return
|
|
* either an offset or -ENXIO, so WARN on any other error as
|
|
* that would be an API change without updating the callers.
|
|
*/
|
|
if (start_byte == -ENXIO || start_byte == scan_end_byte)
|
|
break;
|
|
if (WARN_ON_ONCE(start_byte < 0))
|
|
goto out_unlock;
|
|
WARN_ON_ONCE(start_byte < punch_start_byte);
|
|
WARN_ON_ONCE(start_byte > scan_end_byte);
|
|
|
|
/*
|
|
* We find the end of this contiguous cached data range by
|
|
* seeking from start_byte to the beginning of the next hole.
|
|
*/
|
|
data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
|
|
scan_end_byte, SEEK_HOLE);
|
|
if (WARN_ON_ONCE(data_end < 0))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If we race with post-direct I/O invalidation of the page cache,
|
|
* there might be no data left at start_byte.
|
|
*/
|
|
if (data_end == start_byte)
|
|
continue;
|
|
|
|
WARN_ON_ONCE(data_end < start_byte);
|
|
WARN_ON_ONCE(data_end > scan_end_byte);
|
|
|
|
iomap_write_delalloc_scan(inode, &punch_start_byte, start_byte,
|
|
data_end, iomap, punch);
|
|
|
|
/* The next data search starts at the end of this one. */
|
|
start_byte = data_end;
|
|
}
|
|
|
|
if (punch_start_byte < end_byte)
|
|
punch(inode, punch_start_byte, end_byte - punch_start_byte,
|
|
iomap);
|
|
out_unlock:
|
|
filemap_invalidate_unlock(inode->i_mapping);
|
|
}
|
|
|
|
/*
|
|
* When a short write occurs, the filesystem may need to remove reserved space
|
|
* that was allocated in ->iomap_begin from it's ->iomap_end method. For
|
|
* filesystems that use delayed allocation, we need to punch out delalloc
|
|
* extents from the range that are not dirty in the page cache. As the write can
|
|
* race with page faults, there can be dirty pages over the delalloc extent
|
|
* outside the range of a short write but still within the delalloc extent
|
|
* allocated for this iomap.
|
|
*
|
|
* This function uses [start_byte, end_byte) intervals (i.e. open ended) to
|
|
* simplify range iterations.
|
|
*
|
|
* The punch() callback *must* only punch delalloc extents in the range passed
|
|
* to it. It must skip over all other types of extents in the range and leave
|
|
* them completely unchanged. It must do this punch atomically with respect to
|
|
* other extent modifications.
|
|
*
|
|
* The punch() callback may be called with a folio locked to prevent writeback
|
|
* extent allocation racing at the edge of the range we are currently punching.
|
|
* The locked folio may or may not cover the range being punched, so it is not
|
|
* safe for the punch() callback to lock folios itself.
|
|
*
|
|
* Lock order is:
|
|
*
|
|
* inode->i_rwsem (shared or exclusive)
|
|
* inode->i_mapping->invalidate_lock (exclusive)
|
|
* folio_lock()
|
|
* ->punch
|
|
* internal filesystem allocation lock
|
|
*/
|
|
void iomap_file_buffered_write_punch_delalloc(struct inode *inode,
|
|
loff_t pos, loff_t length, ssize_t written, unsigned flags,
|
|
struct iomap *iomap, iomap_punch_t punch)
|
|
{
|
|
loff_t start_byte;
|
|
loff_t end_byte;
|
|
unsigned int blocksize = i_blocksize(inode);
|
|
|
|
if (iomap->type != IOMAP_DELALLOC)
|
|
return;
|
|
|
|
/* If we didn't reserve the blocks, we're not allowed to punch them. */
|
|
if (!(iomap->flags & IOMAP_F_NEW))
|
|
return;
|
|
|
|
/*
|
|
* start_byte refers to the first unused block after a short write. If
|
|
* nothing was written, round offset down to point at the first block in
|
|
* the range.
|
|
*/
|
|
if (unlikely(!written))
|
|
start_byte = round_down(pos, blocksize);
|
|
else
|
|
start_byte = round_up(pos + written, blocksize);
|
|
end_byte = round_up(pos + length, blocksize);
|
|
|
|
/* Nothing to do if we've written the entire delalloc extent */
|
|
if (start_byte >= end_byte)
|
|
return;
|
|
|
|
iomap_write_delalloc_release(inode, start_byte, end_byte, flags, iomap,
|
|
punch);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
|
|
|
|
static loff_t iomap_unshare_iter(struct iomap_iter *iter)
|
|
{
|
|
struct iomap *iomap = &iter->iomap;
|
|
loff_t pos = iter->pos;
|
|
loff_t length = iomap_length(iter);
|
|
loff_t written = 0;
|
|
|
|
/* Don't bother with blocks that are not shared to start with. */
|
|
if (!(iomap->flags & IOMAP_F_SHARED))
|
|
return length;
|
|
|
|
/*
|
|
* Don't bother with delalloc reservations, holes or unwritten extents.
|
|
*
|
|
* Note that we use srcmap directly instead of iomap_iter_srcmap as
|
|
* unsharing requires providing a separate source map, and the presence
|
|
* of one is a good indicator that unsharing is needed, unlike
|
|
* IOMAP_F_SHARED which can be set for any data that goes into the COW
|
|
* fork for XFS.
|
|
*/
|
|
if (iter->srcmap.type == IOMAP_HOLE ||
|
|
iter->srcmap.type == IOMAP_DELALLOC ||
|
|
iter->srcmap.type == IOMAP_UNWRITTEN)
|
|
return length;
|
|
|
|
do {
|
|
struct folio *folio;
|
|
int status;
|
|
size_t offset;
|
|
size_t bytes = min_t(u64, SIZE_MAX, length);
|
|
bool ret;
|
|
|
|
status = iomap_write_begin(iter, pos, bytes, &folio);
|
|
if (unlikely(status))
|
|
return status;
|
|
if (iomap->flags & IOMAP_F_STALE)
|
|
break;
|
|
|
|
offset = offset_in_folio(folio, pos);
|
|
if (bytes > folio_size(folio) - offset)
|
|
bytes = folio_size(folio) - offset;
|
|
|
|
ret = iomap_write_end(iter, pos, bytes, bytes, folio);
|
|
__iomap_put_folio(iter, pos, bytes, folio);
|
|
if (WARN_ON_ONCE(!ret))
|
|
return -EIO;
|
|
|
|
cond_resched();
|
|
|
|
pos += bytes;
|
|
written += bytes;
|
|
length -= bytes;
|
|
|
|
balance_dirty_pages_ratelimited(iter->inode->i_mapping);
|
|
} while (length > 0);
|
|
|
|
return written;
|
|
}
|
|
|
|
int
|
|
iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_iter iter = {
|
|
.inode = inode,
|
|
.pos = pos,
|
|
.flags = IOMAP_WRITE | IOMAP_UNSHARE,
|
|
};
|
|
loff_t size = i_size_read(inode);
|
|
int ret;
|
|
|
|
if (pos < 0 || pos >= size)
|
|
return 0;
|
|
|
|
iter.len = min(len, size - pos);
|
|
while ((ret = iomap_iter(&iter, ops)) > 0)
|
|
iter.processed = iomap_unshare_iter(&iter);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_file_unshare);
|
|
|
|
/*
|
|
* Flush the remaining range of the iter and mark the current mapping stale.
|
|
* This is used when zero range sees an unwritten mapping that may have had
|
|
* dirty pagecache over it.
|
|
*/
|
|
static inline int iomap_zero_iter_flush_and_stale(struct iomap_iter *i)
|
|
{
|
|
struct address_space *mapping = i->inode->i_mapping;
|
|
loff_t end = i->pos + i->len - 1;
|
|
|
|
i->iomap.flags |= IOMAP_F_STALE;
|
|
return filemap_write_and_wait_range(mapping, i->pos, end);
|
|
}
|
|
|
|
static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero,
|
|
bool *range_dirty)
|
|
{
|
|
const struct iomap *srcmap = iomap_iter_srcmap(iter);
|
|
loff_t pos = iter->pos;
|
|
loff_t length = iomap_length(iter);
|
|
loff_t written = 0;
|
|
|
|
/*
|
|
* We must zero subranges of unwritten mappings that might be dirty in
|
|
* pagecache from previous writes. We only know whether the entire range
|
|
* was clean or not, however, and dirty folios may have been written
|
|
* back or reclaimed at any point after mapping lookup.
|
|
*
|
|
* The easiest way to deal with this is to flush pagecache to trigger
|
|
* any pending unwritten conversions and then grab the updated extents
|
|
* from the fs. The flush may change the current mapping, so mark it
|
|
* stale for the iterator to remap it for the next pass to handle
|
|
* properly.
|
|
*
|
|
* Note that holes are treated the same as unwritten because zero range
|
|
* is (ab)used for partial folio zeroing in some cases. Hole backed
|
|
* post-eof ranges can be dirtied via mapped write and the flush
|
|
* triggers writeback time post-eof zeroing.
|
|
*/
|
|
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) {
|
|
if (*range_dirty) {
|
|
*range_dirty = false;
|
|
return iomap_zero_iter_flush_and_stale(iter);
|
|
}
|
|
/* range is clean and already zeroed, nothing to do */
|
|
return length;
|
|
}
|
|
|
|
do {
|
|
struct folio *folio;
|
|
int status;
|
|
size_t offset;
|
|
size_t bytes = min_t(u64, SIZE_MAX, length);
|
|
bool ret;
|
|
|
|
status = iomap_write_begin(iter, pos, bytes, &folio);
|
|
if (status)
|
|
return status;
|
|
if (iter->iomap.flags & IOMAP_F_STALE)
|
|
break;
|
|
|
|
offset = offset_in_folio(folio, pos);
|
|
if (bytes > folio_size(folio) - offset)
|
|
bytes = folio_size(folio) - offset;
|
|
|
|
folio_zero_range(folio, offset, bytes);
|
|
folio_mark_accessed(folio);
|
|
|
|
ret = iomap_write_end(iter, pos, bytes, bytes, folio);
|
|
__iomap_put_folio(iter, pos, bytes, folio);
|
|
if (WARN_ON_ONCE(!ret))
|
|
return -EIO;
|
|
|
|
pos += bytes;
|
|
length -= bytes;
|
|
written += bytes;
|
|
} while (length > 0);
|
|
|
|
if (did_zero)
|
|
*did_zero = true;
|
|
return written;
|
|
}
|
|
|
|
int
|
|
iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_iter iter = {
|
|
.inode = inode,
|
|
.pos = pos,
|
|
.len = len,
|
|
.flags = IOMAP_ZERO,
|
|
};
|
|
int ret;
|
|
bool range_dirty;
|
|
|
|
/*
|
|
* Zero range wants to skip pre-zeroed (i.e. unwritten) mappings, but
|
|
* pagecache must be flushed to ensure stale data from previous
|
|
* buffered writes is not exposed. A flush is only required for certain
|
|
* types of mappings, but checking pagecache after mapping lookup is
|
|
* racy with writeback and reclaim.
|
|
*
|
|
* Therefore, check the entire range first and pass along whether any
|
|
* part of it is dirty. If so and an underlying mapping warrants it,
|
|
* flush the cache at that point. This trades off the occasional false
|
|
* positive (and spurious flush, if the dirty data and mapping don't
|
|
* happen to overlap) for simplicity in handling a relatively uncommon
|
|
* situation.
|
|
*/
|
|
range_dirty = filemap_range_needs_writeback(inode->i_mapping,
|
|
pos, pos + len - 1);
|
|
|
|
while ((ret = iomap_iter(&iter, ops)) > 0)
|
|
iter.processed = iomap_zero_iter(&iter, did_zero, &range_dirty);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_zero_range);
|
|
|
|
int
|
|
iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
unsigned int blocksize = i_blocksize(inode);
|
|
unsigned int off = pos & (blocksize - 1);
|
|
|
|
/* Block boundary? Nothing to do */
|
|
if (!off)
|
|
return 0;
|
|
return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_truncate_page);
|
|
|
|
static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
|
|
struct folio *folio)
|
|
{
|
|
loff_t length = iomap_length(iter);
|
|
int ret;
|
|
|
|
if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
|
|
ret = __block_write_begin_int(folio, iter->pos, length, NULL,
|
|
&iter->iomap);
|
|
if (ret)
|
|
return ret;
|
|
block_commit_write(&folio->page, 0, length);
|
|
} else {
|
|
WARN_ON_ONCE(!folio_test_uptodate(folio));
|
|
folio_mark_dirty(folio);
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
|
|
{
|
|
struct iomap_iter iter = {
|
|
.inode = file_inode(vmf->vma->vm_file),
|
|
.flags = IOMAP_WRITE | IOMAP_FAULT,
|
|
};
|
|
struct folio *folio = page_folio(vmf->page);
|
|
ssize_t ret;
|
|
|
|
folio_lock(folio);
|
|
ret = folio_mkwrite_check_truncate(folio, iter.inode);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
iter.pos = folio_pos(folio);
|
|
iter.len = ret;
|
|
while ((ret = iomap_iter(&iter, ops)) > 0)
|
|
iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
|
|
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
folio_wait_stable(folio);
|
|
return VM_FAULT_LOCKED;
|
|
out_unlock:
|
|
folio_unlock(folio);
|
|
return vmf_fs_error(ret);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
|
|
|
|
static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
|
|
size_t len)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
|
|
WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
|
|
WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
|
|
|
|
if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
|
|
folio_end_writeback(folio);
|
|
}
|
|
|
|
/*
|
|
* We're now finished for good with this ioend structure. Update the page
|
|
* state, release holds on bios, and finally free up memory. Do not use the
|
|
* ioend after this.
|
|
*/
|
|
static u32
|
|
iomap_finish_ioend(struct iomap_ioend *ioend, int error)
|
|
{
|
|
struct inode *inode = ioend->io_inode;
|
|
struct bio *bio = &ioend->io_bio;
|
|
struct folio_iter fi;
|
|
u32 folio_count = 0;
|
|
|
|
if (error) {
|
|
mapping_set_error(inode->i_mapping, error);
|
|
if (!bio_flagged(bio, BIO_QUIET)) {
|
|
pr_err_ratelimited(
|
|
"%s: writeback error on inode %lu, offset %lld, sector %llu",
|
|
inode->i_sb->s_id, inode->i_ino,
|
|
ioend->io_offset, ioend->io_sector);
|
|
}
|
|
}
|
|
|
|
/* walk all folios in bio, ending page IO on them */
|
|
bio_for_each_folio_all(fi, bio) {
|
|
iomap_finish_folio_write(inode, fi.folio, fi.length);
|
|
folio_count++;
|
|
}
|
|
|
|
bio_put(bio); /* frees the ioend */
|
|
return folio_count;
|
|
}
|
|
|
|
/*
|
|
* Ioend completion routine for merged bios. This can only be called from task
|
|
* contexts as merged ioends can be of unbound length. Hence we have to break up
|
|
* the writeback completions into manageable chunks to avoid long scheduler
|
|
* holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
|
|
* good batch processing throughput without creating adverse scheduler latency
|
|
* conditions.
|
|
*/
|
|
void
|
|
iomap_finish_ioends(struct iomap_ioend *ioend, int error)
|
|
{
|
|
struct list_head tmp;
|
|
u32 completions;
|
|
|
|
might_sleep();
|
|
|
|
list_replace_init(&ioend->io_list, &tmp);
|
|
completions = iomap_finish_ioend(ioend, error);
|
|
|
|
while (!list_empty(&tmp)) {
|
|
if (completions > IOEND_BATCH_SIZE * 8) {
|
|
cond_resched();
|
|
completions = 0;
|
|
}
|
|
ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
|
|
list_del_init(&ioend->io_list);
|
|
completions += iomap_finish_ioend(ioend, error);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_finish_ioends);
|
|
|
|
/*
|
|
* We can merge two adjacent ioends if they have the same set of work to do.
|
|
*/
|
|
static bool
|
|
iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
|
|
{
|
|
if (ioend->io_bio.bi_status != next->io_bio.bi_status)
|
|
return false;
|
|
if ((ioend->io_flags & IOMAP_F_SHARED) ^
|
|
(next->io_flags & IOMAP_F_SHARED))
|
|
return false;
|
|
if ((ioend->io_type == IOMAP_UNWRITTEN) ^
|
|
(next->io_type == IOMAP_UNWRITTEN))
|
|
return false;
|
|
if (ioend->io_offset + ioend->io_size != next->io_offset)
|
|
return false;
|
|
/*
|
|
* Do not merge physically discontiguous ioends. The filesystem
|
|
* completion functions will have to iterate the physical
|
|
* discontiguities even if we merge the ioends at a logical level, so
|
|
* we don't gain anything by merging physical discontiguities here.
|
|
*
|
|
* We cannot use bio->bi_iter.bi_sector here as it is modified during
|
|
* submission so does not point to the start sector of the bio at
|
|
* completion.
|
|
*/
|
|
if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
|
|
{
|
|
struct iomap_ioend *next;
|
|
|
|
INIT_LIST_HEAD(&ioend->io_list);
|
|
|
|
while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
|
|
io_list))) {
|
|
if (!iomap_ioend_can_merge(ioend, next))
|
|
break;
|
|
list_move_tail(&next->io_list, &ioend->io_list);
|
|
ioend->io_size += next->io_size;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
|
|
|
|
static int
|
|
iomap_ioend_compare(void *priv, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
|
|
struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
|
|
|
|
if (ia->io_offset < ib->io_offset)
|
|
return -1;
|
|
if (ia->io_offset > ib->io_offset)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iomap_sort_ioends(struct list_head *ioend_list)
|
|
{
|
|
list_sort(NULL, ioend_list, iomap_ioend_compare);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_sort_ioends);
|
|
|
|
static void iomap_writepage_end_bio(struct bio *bio)
|
|
{
|
|
iomap_finish_ioend(iomap_ioend_from_bio(bio),
|
|
blk_status_to_errno(bio->bi_status));
|
|
}
|
|
|
|
/*
|
|
* Submit the final bio for an ioend.
|
|
*
|
|
* If @error is non-zero, it means that we have a situation where some part of
|
|
* the submission process has failed after we've marked pages for writeback.
|
|
* We cannot cancel ioend directly in that case, so call the bio end I/O handler
|
|
* with the error status here to run the normal I/O completion handler to clear
|
|
* the writeback bit and let the file system proess the errors.
|
|
*/
|
|
static int iomap_submit_ioend(struct iomap_writepage_ctx *wpc, int error)
|
|
{
|
|
if (!wpc->ioend)
|
|
return error;
|
|
|
|
/*
|
|
* Let the file systems prepare the I/O submission and hook in an I/O
|
|
* comletion handler. This also needs to happen in case after a
|
|
* failure happened so that the file system end I/O handler gets called
|
|
* to clean up.
|
|
*/
|
|
if (wpc->ops->prepare_ioend)
|
|
error = wpc->ops->prepare_ioend(wpc->ioend, error);
|
|
|
|
if (error) {
|
|
wpc->ioend->io_bio.bi_status = errno_to_blk_status(error);
|
|
bio_endio(&wpc->ioend->io_bio);
|
|
} else {
|
|
submit_bio(&wpc->ioend->io_bio);
|
|
}
|
|
|
|
wpc->ioend = NULL;
|
|
return error;
|
|
}
|
|
|
|
static struct iomap_ioend *iomap_alloc_ioend(struct iomap_writepage_ctx *wpc,
|
|
struct writeback_control *wbc, struct inode *inode, loff_t pos)
|
|
{
|
|
struct iomap_ioend *ioend;
|
|
struct bio *bio;
|
|
|
|
bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
|
|
REQ_OP_WRITE | wbc_to_write_flags(wbc),
|
|
GFP_NOFS, &iomap_ioend_bioset);
|
|
bio->bi_iter.bi_sector = iomap_sector(&wpc->iomap, pos);
|
|
bio->bi_end_io = iomap_writepage_end_bio;
|
|
wbc_init_bio(wbc, bio);
|
|
bio->bi_write_hint = inode->i_write_hint;
|
|
|
|
ioend = iomap_ioend_from_bio(bio);
|
|
INIT_LIST_HEAD(&ioend->io_list);
|
|
ioend->io_type = wpc->iomap.type;
|
|
ioend->io_flags = wpc->iomap.flags;
|
|
ioend->io_inode = inode;
|
|
ioend->io_size = 0;
|
|
ioend->io_offset = pos;
|
|
ioend->io_sector = bio->bi_iter.bi_sector;
|
|
|
|
wpc->nr_folios = 0;
|
|
return ioend;
|
|
}
|
|
|
|
static bool iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t pos)
|
|
{
|
|
if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
|
|
(wpc->ioend->io_flags & IOMAP_F_SHARED))
|
|
return false;
|
|
if (wpc->iomap.type != wpc->ioend->io_type)
|
|
return false;
|
|
if (pos != wpc->ioend->io_offset + wpc->ioend->io_size)
|
|
return false;
|
|
if (iomap_sector(&wpc->iomap, pos) !=
|
|
bio_end_sector(&wpc->ioend->io_bio))
|
|
return false;
|
|
/*
|
|
* Limit ioend bio chain lengths to minimise IO completion latency. This
|
|
* also prevents long tight loops ending page writeback on all the
|
|
* folios in the ioend.
|
|
*/
|
|
if (wpc->nr_folios >= IOEND_BATCH_SIZE)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Test to see if we have an existing ioend structure that we could append to
|
|
* first; otherwise finish off the current ioend and start another.
|
|
*
|
|
* If a new ioend is created and cached, the old ioend is submitted to the block
|
|
* layer instantly. Batching optimisations are provided by higher level block
|
|
* plugging.
|
|
*
|
|
* At the end of a writeback pass, there will be a cached ioend remaining on the
|
|
* writepage context that the caller will need to submit.
|
|
*/
|
|
static int iomap_add_to_ioend(struct iomap_writepage_ctx *wpc,
|
|
struct writeback_control *wbc, struct folio *folio,
|
|
struct inode *inode, loff_t pos, unsigned len)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
size_t poff = offset_in_folio(folio, pos);
|
|
int error;
|
|
|
|
if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos)) {
|
|
new_ioend:
|
|
error = iomap_submit_ioend(wpc, 0);
|
|
if (error)
|
|
return error;
|
|
wpc->ioend = iomap_alloc_ioend(wpc, wbc, inode, pos);
|
|
}
|
|
|
|
if (!bio_add_folio(&wpc->ioend->io_bio, folio, len, poff))
|
|
goto new_ioend;
|
|
|
|
if (ifs)
|
|
atomic_add(len, &ifs->write_bytes_pending);
|
|
wpc->ioend->io_size += len;
|
|
wbc_account_cgroup_owner(wbc, &folio->page, len);
|
|
return 0;
|
|
}
|
|
|
|
static int iomap_writepage_map_blocks(struct iomap_writepage_ctx *wpc,
|
|
struct writeback_control *wbc, struct folio *folio,
|
|
struct inode *inode, u64 pos, unsigned dirty_len,
|
|
unsigned *count)
|
|
{
|
|
int error;
|
|
|
|
do {
|
|
unsigned map_len;
|
|
|
|
error = wpc->ops->map_blocks(wpc, inode, pos, dirty_len);
|
|
if (error)
|
|
break;
|
|
trace_iomap_writepage_map(inode, pos, dirty_len, &wpc->iomap);
|
|
|
|
map_len = min_t(u64, dirty_len,
|
|
wpc->iomap.offset + wpc->iomap.length - pos);
|
|
WARN_ON_ONCE(!folio->private && map_len < dirty_len);
|
|
|
|
switch (wpc->iomap.type) {
|
|
case IOMAP_INLINE:
|
|
WARN_ON_ONCE(1);
|
|
error = -EIO;
|
|
break;
|
|
case IOMAP_HOLE:
|
|
break;
|
|
default:
|
|
error = iomap_add_to_ioend(wpc, wbc, folio, inode, pos,
|
|
map_len);
|
|
if (!error)
|
|
(*count)++;
|
|
break;
|
|
}
|
|
dirty_len -= map_len;
|
|
pos += map_len;
|
|
} while (dirty_len && !error);
|
|
|
|
/*
|
|
* We cannot cancel the ioend directly here on error. We may have
|
|
* already set other pages under writeback and hence we have to run I/O
|
|
* completion to mark the error state of the pages under writeback
|
|
* appropriately.
|
|
*
|
|
* Just let the file system know what portion of the folio failed to
|
|
* map.
|
|
*/
|
|
if (error && wpc->ops->discard_folio)
|
|
wpc->ops->discard_folio(folio, pos);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Check interaction of the folio with the file end.
|
|
*
|
|
* If the folio is entirely beyond i_size, return false. If it straddles
|
|
* i_size, adjust end_pos and zero all data beyond i_size.
|
|
*/
|
|
static bool iomap_writepage_handle_eof(struct folio *folio, struct inode *inode,
|
|
u64 *end_pos)
|
|
{
|
|
u64 isize = i_size_read(inode);
|
|
|
|
if (*end_pos > isize) {
|
|
size_t poff = offset_in_folio(folio, isize);
|
|
pgoff_t end_index = isize >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* If the folio is entirely ouside of i_size, skip it.
|
|
*
|
|
* This can happen due to a truncate operation that is in
|
|
* progress and in that case truncate will finish it off once
|
|
* we've dropped the folio lock.
|
|
*
|
|
* Note that the pgoff_t used for end_index is an unsigned long.
|
|
* If the given offset is greater than 16TB on a 32-bit system,
|
|
* then if we checked if the folio is fully outside i_size with
|
|
* "if (folio->index >= end_index + 1)", "end_index + 1" would
|
|
* overflow and evaluate to 0. Hence this folio would be
|
|
* redirtied and written out repeatedly, which would result in
|
|
* an infinite loop; the user program performing this operation
|
|
* would hang. Instead, we can detect this situation by
|
|
* checking if the folio is totally beyond i_size or if its
|
|
* offset is just equal to the EOF.
|
|
*/
|
|
if (folio->index > end_index ||
|
|
(folio->index == end_index && poff == 0))
|
|
return false;
|
|
|
|
/*
|
|
* The folio straddles i_size.
|
|
*
|
|
* It must be zeroed out on each and every writepage invocation
|
|
* because it may be mmapped:
|
|
*
|
|
* A file is mapped in multiples of the page size. For a
|
|
* file that is not a multiple of the page size, the
|
|
* remaining memory is zeroed when mapped, and writes to that
|
|
* region are not written out to the file.
|
|
*
|
|
* Also adjust the writeback range to skip all blocks entirely
|
|
* beyond i_size.
|
|
*/
|
|
folio_zero_segment(folio, poff, folio_size(folio));
|
|
*end_pos = round_up(isize, i_blocksize(inode));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int iomap_writepage_map(struct iomap_writepage_ctx *wpc,
|
|
struct writeback_control *wbc, struct folio *folio)
|
|
{
|
|
struct iomap_folio_state *ifs = folio->private;
|
|
struct inode *inode = folio->mapping->host;
|
|
u64 pos = folio_pos(folio);
|
|
u64 end_pos = pos + folio_size(folio);
|
|
unsigned count = 0;
|
|
int error = 0;
|
|
u32 rlen;
|
|
|
|
WARN_ON_ONCE(!folio_test_locked(folio));
|
|
WARN_ON_ONCE(folio_test_dirty(folio));
|
|
WARN_ON_ONCE(folio_test_writeback(folio));
|
|
|
|
trace_iomap_writepage(inode, pos, folio_size(folio));
|
|
|
|
if (!iomap_writepage_handle_eof(folio, inode, &end_pos)) {
|
|
folio_unlock(folio);
|
|
return 0;
|
|
}
|
|
WARN_ON_ONCE(end_pos <= pos);
|
|
|
|
if (i_blocks_per_folio(inode, folio) > 1) {
|
|
if (!ifs) {
|
|
ifs = ifs_alloc(inode, folio, 0);
|
|
iomap_set_range_dirty(folio, 0, end_pos - pos);
|
|
}
|
|
|
|
/*
|
|
* Keep the I/O completion handler from clearing the writeback
|
|
* bit until we have submitted all blocks by adding a bias to
|
|
* ifs->write_bytes_pending, which is dropped after submitting
|
|
* all blocks.
|
|
*/
|
|
WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending) != 0);
|
|
atomic_inc(&ifs->write_bytes_pending);
|
|
}
|
|
|
|
/*
|
|
* Set the writeback bit ASAP, as the I/O completion for the single
|
|
* block per folio case happen hit as soon as we're submitting the bio.
|
|
*/
|
|
folio_start_writeback(folio);
|
|
|
|
/*
|
|
* Walk through the folio to find dirty areas to write back.
|
|
*/
|
|
while ((rlen = iomap_find_dirty_range(folio, &pos, end_pos))) {
|
|
error = iomap_writepage_map_blocks(wpc, wbc, folio, inode,
|
|
pos, rlen, &count);
|
|
if (error)
|
|
break;
|
|
pos += rlen;
|
|
}
|
|
|
|
if (count)
|
|
wpc->nr_folios++;
|
|
|
|
/*
|
|
* We can have dirty bits set past end of file in page_mkwrite path
|
|
* while mapping the last partial folio. Hence it's better to clear
|
|
* all the dirty bits in the folio here.
|
|
*/
|
|
iomap_clear_range_dirty(folio, 0, folio_size(folio));
|
|
|
|
/*
|
|
* Usually the writeback bit is cleared by the I/O completion handler.
|
|
* But we may end up either not actually writing any blocks, or (when
|
|
* there are multiple blocks in a folio) all I/O might have finished
|
|
* already at this point. In that case we need to clear the writeback
|
|
* bit ourselves right after unlocking the page.
|
|
*/
|
|
folio_unlock(folio);
|
|
if (ifs) {
|
|
if (atomic_dec_and_test(&ifs->write_bytes_pending))
|
|
folio_end_writeback(folio);
|
|
} else {
|
|
if (!count)
|
|
folio_end_writeback(folio);
|
|
}
|
|
mapping_set_error(inode->i_mapping, error);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
|
|
struct iomap_writepage_ctx *wpc,
|
|
const struct iomap_writeback_ops *ops)
|
|
{
|
|
struct folio *folio = NULL;
|
|
int error;
|
|
|
|
/*
|
|
* Writeback from reclaim context should never happen except in the case
|
|
* of a VM regression so warn about it and refuse to write the data.
|
|
*/
|
|
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC | PF_KSWAPD)) ==
|
|
PF_MEMALLOC))
|
|
return -EIO;
|
|
|
|
wpc->ops = ops;
|
|
while ((folio = writeback_iter(mapping, wbc, folio, &error)))
|
|
error = iomap_writepage_map(wpc, wbc, folio);
|
|
return iomap_submit_ioend(wpc, error);
|
|
}
|
|
EXPORT_SYMBOL_GPL(iomap_writepages);
|
|
|
|
static int __init iomap_buffered_init(void)
|
|
{
|
|
return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
|
|
offsetof(struct iomap_ioend, io_bio),
|
|
BIOSET_NEED_BVECS);
|
|
}
|
|
fs_initcall(iomap_buffered_init);
|