linux/arch/x86/mm/init.c
Yinghai Lu f82f64dd9f x86, mm: Undo incorrect revert in arch/x86/mm/init.c
Commit

    844ab6f9 x86, mm: Find_early_table_space based on ranges that are actually being mapped

added back some lines back wrongly that has been removed in commit

    7b16bbf97 Revert "x86/mm: Fix the size calculation of mapping tables"

remove them again.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQW_vuaYQbmagVnxT2DGsYc=9tNeAbdBq53sYkitPOwxSQ@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-10-25 15:45:45 -07:00

427 lines
12 KiB
C

#include <linux/gfp.h>
#include <linux/initrd.h>
#include <linux/ioport.h>
#include <linux/swap.h>
#include <linux/memblock.h>
#include <linux/bootmem.h> /* for max_low_pfn */
#include <asm/cacheflush.h>
#include <asm/e820.h>
#include <asm/init.h>
#include <asm/page.h>
#include <asm/page_types.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
#include <asm/proto.h>
#include <asm/dma.h> /* for MAX_DMA_PFN */
unsigned long __initdata pgt_buf_start;
unsigned long __meminitdata pgt_buf_end;
unsigned long __meminitdata pgt_buf_top;
int after_bootmem;
int direct_gbpages
#ifdef CONFIG_DIRECT_GBPAGES
= 1
#endif
;
struct map_range {
unsigned long start;
unsigned long end;
unsigned page_size_mask;
};
/*
* First calculate space needed for kernel direct mapping page tables to cover
* mr[0].start to mr[nr_range - 1].end, while accounting for possible 2M and 1GB
* pages. Then find enough contiguous space for those page tables.
*/
static void __init find_early_table_space(struct map_range *mr, int nr_range)
{
int i;
unsigned long puds = 0, pmds = 0, ptes = 0, tables;
unsigned long start = 0, good_end;
phys_addr_t base;
for (i = 0; i < nr_range; i++) {
unsigned long range, extra;
range = mr[i].end - mr[i].start;
puds += (range + PUD_SIZE - 1) >> PUD_SHIFT;
if (mr[i].page_size_mask & (1 << PG_LEVEL_1G)) {
extra = range - ((range >> PUD_SHIFT) << PUD_SHIFT);
pmds += (extra + PMD_SIZE - 1) >> PMD_SHIFT;
} else {
pmds += (range + PMD_SIZE - 1) >> PMD_SHIFT;
}
if (mr[i].page_size_mask & (1 << PG_LEVEL_2M)) {
extra = range - ((range >> PMD_SHIFT) << PMD_SHIFT);
#ifdef CONFIG_X86_32
extra += PMD_SIZE;
#endif
ptes += (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
} else {
ptes += (range + PAGE_SIZE - 1) >> PAGE_SHIFT;
}
}
tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
#ifdef CONFIG_X86_32
/* for fixmap */
tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
#endif
good_end = max_pfn_mapped << PAGE_SHIFT;
base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
if (!base)
panic("Cannot find space for the kernel page tables");
pgt_buf_start = base >> PAGE_SHIFT;
pgt_buf_end = pgt_buf_start;
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
printk(KERN_DEBUG "kernel direct mapping tables up to %#lx @ [mem %#010lx-%#010lx]\n",
mr[nr_range - 1].end - 1, pgt_buf_start << PAGE_SHIFT,
(pgt_buf_top << PAGE_SHIFT) - 1);
}
void __init native_pagetable_reserve(u64 start, u64 end)
{
memblock_reserve(start, end - start);
}
#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif
static int __meminit save_mr(struct map_range *mr, int nr_range,
unsigned long start_pfn, unsigned long end_pfn,
unsigned long page_size_mask)
{
if (start_pfn < end_pfn) {
if (nr_range >= NR_RANGE_MR)
panic("run out of range for init_memory_mapping\n");
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
mr[nr_range].page_size_mask = page_size_mask;
nr_range++;
}
return nr_range;
}
/*
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
* This runs before bootmem is initialized and gets pages directly from
* the physical memory. To access them they are temporarily mapped.
*/
unsigned long __init_refok init_memory_mapping(unsigned long start,
unsigned long end)
{
unsigned long page_size_mask = 0;
unsigned long start_pfn, end_pfn;
unsigned long ret = 0;
unsigned long pos;
struct map_range mr[NR_RANGE_MR];
int nr_range, i;
int use_pse, use_gbpages;
printk(KERN_INFO "init_memory_mapping: [mem %#010lx-%#010lx]\n",
start, end - 1);
#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
/*
* For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
* This will simplify cpa(), which otherwise needs to support splitting
* large pages into small in interrupt context, etc.
*/
use_pse = use_gbpages = 0;
#else
use_pse = cpu_has_pse;
use_gbpages = direct_gbpages;
#endif
/* Enable PSE if available */
if (cpu_has_pse)
set_in_cr4(X86_CR4_PSE);
/* Enable PGE if available */
if (cpu_has_pge) {
set_in_cr4(X86_CR4_PGE);
__supported_pte_mask |= _PAGE_GLOBAL;
}
if (use_gbpages)
page_size_mask |= 1 << PG_LEVEL_1G;
if (use_pse)
page_size_mask |= 1 << PG_LEVEL_2M;
memset(mr, 0, sizeof(mr));
nr_range = 0;
/* head if not big page alignment ? */
start_pfn = start >> PAGE_SHIFT;
pos = start_pfn << PAGE_SHIFT;
#ifdef CONFIG_X86_32
/*
* Don't use a large page for the first 2/4MB of memory
* because there are often fixed size MTRRs in there
* and overlapping MTRRs into large pages can cause
* slowdowns.
*/
if (pos == 0)
end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
else
end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
#else /* CONFIG_X86_64 */
end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
#endif
if (end_pfn > (end >> PAGE_SHIFT))
end_pfn = end >> PAGE_SHIFT;
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
pos = end_pfn << PAGE_SHIFT;
}
/* big page (2M) range */
start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
#ifdef CONFIG_X86_32
end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
#else /* CONFIG_X86_64 */
end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
<< (PUD_SHIFT - PAGE_SHIFT);
if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
#endif
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pos = end_pfn << PAGE_SHIFT;
}
#ifdef CONFIG_X86_64
/* big page (1G) range */
start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
<< (PUD_SHIFT - PAGE_SHIFT);
end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask &
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
pos = end_pfn << PAGE_SHIFT;
}
/* tail is not big page (1G) alignment */
start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
<< (PMD_SHIFT - PAGE_SHIFT);
end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
if (start_pfn < end_pfn) {
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
page_size_mask & (1<<PG_LEVEL_2M));
pos = end_pfn << PAGE_SHIFT;
}
#endif
/* tail is not big page (2M) alignment */
start_pfn = pos>>PAGE_SHIFT;
end_pfn = end>>PAGE_SHIFT;
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
/* try to merge same page size and continuous */
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
unsigned long old_start;
if (mr[i].end != mr[i+1].start ||
mr[i].page_size_mask != mr[i+1].page_size_mask)
continue;
/* move it */
old_start = mr[i].start;
memmove(&mr[i], &mr[i+1],
(nr_range - 1 - i) * sizeof(struct map_range));
mr[i--].start = old_start;
nr_range--;
}
for (i = 0; i < nr_range; i++)
printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
mr[i].start, mr[i].end - 1,
(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
(mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
/*
* Find space for the kernel direct mapping tables.
*
* Later we should allocate these tables in the local node of the
* memory mapped. Unfortunately this is done currently before the
* nodes are discovered.
*/
if (!after_bootmem)
find_early_table_space(mr, nr_range);
for (i = 0; i < nr_range; i++)
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
mr[i].page_size_mask);
#ifdef CONFIG_X86_32
early_ioremap_page_table_range_init();
load_cr3(swapper_pg_dir);
#endif
__flush_tlb_all();
/*
* Reserve the kernel pagetable pages we used (pgt_buf_start -
* pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
* so that they can be reused for other purposes.
*
* On native it just means calling memblock_reserve, on Xen it also
* means marking RW the pagetable pages that we allocated before
* but that haven't been used.
*
* In fact on xen we mark RO the whole range pgt_buf_start -
* pgt_buf_top, because we have to make sure that when
* init_memory_mapping reaches the pagetable pages area, it maps
* RO all the pagetable pages, including the ones that are beyond
* pgt_buf_end at that time.
*/
if (!after_bootmem && pgt_buf_end > pgt_buf_start)
x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
PFN_PHYS(pgt_buf_end));
if (!after_bootmem)
early_memtest(start, end);
return ret >> PAGE_SHIFT;
}
/*
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
* is valid. The argument is a physical page number.
*
*
* On x86, access has to be given to the first megabyte of ram because that area
* contains bios code and data regions used by X and dosemu and similar apps.
* Access has to be given to non-kernel-ram areas as well, these contain the PCI
* mmio resources as well as potential bios/acpi data regions.
*/
int devmem_is_allowed(unsigned long pagenr)
{
if (pagenr < 256)
return 1;
if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
return 0;
if (!page_is_ram(pagenr))
return 1;
return 0;
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
unsigned long begin_aligned, end_aligned;
/* Make sure boundaries are page aligned */
begin_aligned = PAGE_ALIGN(begin);
end_aligned = end & PAGE_MASK;
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
begin = begin_aligned;
end = end_aligned;
}
if (begin >= end)
return;
addr = begin;
/*
* If debugging page accesses then do not free this memory but
* mark them not present - any buggy init-section access will
* create a kernel page fault:
*/
#ifdef CONFIG_DEBUG_PAGEALLOC
printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
begin, end - 1);
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
/*
* We just marked the kernel text read only above, now that
* we are going to free part of that, we need to make that
* writeable and non-executable first.
*/
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
for (; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
#endif
}
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
/*
* end could be not aligned, and We can not align that,
* decompresser could be confused by aligned initrd_end
* We already reserve the end partial page before in
* - i386_start_kernel()
* - x86_64_start_kernel()
* - relocate_initrd()
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
*/
free_init_pages("initrd memory", start, PAGE_ALIGN(end));
}
#endif
void __init zone_sizes_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
#ifdef CONFIG_ZONE_DMA
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
#endif
#ifdef CONFIG_ZONE_DMA32
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
#endif
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
#ifdef CONFIG_HIGHMEM
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
#endif
free_area_init_nodes(max_zone_pfns);
}