mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 04:02:20 +00:00
6fadb4a61d
Finalize the conversion from static variables to struct based data. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <jstultz@google.com> Link: https://lore.kernel.org/all/20240911-devel-anna-maria-b4-timers-ptp-ntp-v1-21-2d52f4e13476@linutronix.de
1102 lines
32 KiB
C
1102 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NTP state machine interfaces and logic.
|
|
*
|
|
* This code was mainly moved from kernel/timer.c and kernel/time.c
|
|
* Please see those files for relevant copyright info and historical
|
|
* changelogs.
|
|
*/
|
|
#include <linux/capability.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/time.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/audit.h>
|
|
|
|
#include "ntp_internal.h"
|
|
#include "timekeeping_internal.h"
|
|
|
|
/**
|
|
* struct ntp_data - Structure holding all NTP related state
|
|
* @tick_usec: USER_HZ period in microseconds
|
|
* @tick_length: Adjusted tick length
|
|
* @tick_length_base: Base value for @tick_length
|
|
* @time_state: State of the clock synchronization
|
|
* @time_status: Clock status bits
|
|
* @time_offset: Time adjustment in nanoseconds
|
|
* @time_constant: PLL time constant
|
|
* @time_maxerror: Maximum error in microseconds holding the NTP sync distance
|
|
* (NTP dispersion + delay / 2)
|
|
* @time_esterror: Estimated error in microseconds holding NTP dispersion
|
|
* @time_freq: Frequency offset scaled nsecs/secs
|
|
* @time_reftime: Time at last adjustment in seconds
|
|
* @time_adjust: Adjustment value
|
|
* @ntp_tick_adj: Constant boot-param configurable NTP tick adjustment (upscaled)
|
|
* @ntp_next_leap_sec: Second value of the next pending leapsecond, or TIME64_MAX if no leap
|
|
*
|
|
* @pps_valid: PPS signal watchdog counter
|
|
* @pps_tf: PPS phase median filter
|
|
* @pps_jitter: PPS current jitter in nanoseconds
|
|
* @pps_fbase: PPS beginning of the last freq interval
|
|
* @pps_shift: PPS current interval duration in seconds (shift value)
|
|
* @pps_intcnt: PPS interval counter
|
|
* @pps_freq: PPS frequency offset in scaled ns/s
|
|
* @pps_stabil: PPS current stability in scaled ns/s
|
|
* @pps_calcnt: PPS monitor: calibration intervals
|
|
* @pps_jitcnt: PPS monitor: jitter limit exceeded
|
|
* @pps_stbcnt: PPS monitor: stability limit exceeded
|
|
* @pps_errcnt: PPS monitor: calibration errors
|
|
*
|
|
* Protected by the timekeeping locks.
|
|
*/
|
|
struct ntp_data {
|
|
unsigned long tick_usec;
|
|
u64 tick_length;
|
|
u64 tick_length_base;
|
|
int time_state;
|
|
int time_status;
|
|
s64 time_offset;
|
|
long time_constant;
|
|
long time_maxerror;
|
|
long time_esterror;
|
|
s64 time_freq;
|
|
time64_t time_reftime;
|
|
long time_adjust;
|
|
s64 ntp_tick_adj;
|
|
time64_t ntp_next_leap_sec;
|
|
#ifdef CONFIG_NTP_PPS
|
|
int pps_valid;
|
|
long pps_tf[3];
|
|
long pps_jitter;
|
|
struct timespec64 pps_fbase;
|
|
int pps_shift;
|
|
int pps_intcnt;
|
|
s64 pps_freq;
|
|
long pps_stabil;
|
|
long pps_calcnt;
|
|
long pps_jitcnt;
|
|
long pps_stbcnt;
|
|
long pps_errcnt;
|
|
#endif
|
|
};
|
|
|
|
static struct ntp_data tk_ntp_data = {
|
|
.tick_usec = USER_TICK_USEC,
|
|
.time_state = TIME_OK,
|
|
.time_status = STA_UNSYNC,
|
|
.time_constant = 2,
|
|
.time_maxerror = NTP_PHASE_LIMIT,
|
|
.time_esterror = NTP_PHASE_LIMIT,
|
|
.ntp_next_leap_sec = TIME64_MAX,
|
|
};
|
|
|
|
#define SECS_PER_DAY 86400
|
|
#define MAX_TICKADJ 500LL /* usecs */
|
|
#define MAX_TICKADJ_SCALED \
|
|
(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
|
|
#define MAX_TAI_OFFSET 100000
|
|
|
|
#ifdef CONFIG_NTP_PPS
|
|
|
|
/*
|
|
* The following variables are used when a pulse-per-second (PPS) signal
|
|
* is available. They establish the engineering parameters of the clock
|
|
* discipline loop when controlled by the PPS signal.
|
|
*/
|
|
#define PPS_VALID 10 /* PPS signal watchdog max (s) */
|
|
#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
|
|
#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
|
|
#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
|
|
#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
|
|
increase pps_shift or consecutive bad
|
|
intervals to decrease it */
|
|
#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
|
|
|
|
/*
|
|
* PPS kernel consumer compensates the whole phase error immediately.
|
|
* Otherwise, reduce the offset by a fixed factor times the time constant.
|
|
*/
|
|
static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
|
|
{
|
|
if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
|
|
return offset;
|
|
else
|
|
return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
|
|
}
|
|
|
|
static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
|
|
{
|
|
/* The PPS calibration interval may end surprisingly early */
|
|
ntpdata->pps_shift = PPS_INTMIN;
|
|
ntpdata->pps_intcnt = 0;
|
|
}
|
|
|
|
/**
|
|
* pps_clear - Clears the PPS state variables
|
|
* @ntpdata: Pointer to ntp data
|
|
*/
|
|
static inline void pps_clear(struct ntp_data *ntpdata)
|
|
{
|
|
pps_reset_freq_interval(ntpdata);
|
|
ntpdata->pps_tf[0] = 0;
|
|
ntpdata->pps_tf[1] = 0;
|
|
ntpdata->pps_tf[2] = 0;
|
|
ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
|
|
ntpdata->pps_freq = 0;
|
|
}
|
|
|
|
/*
|
|
* Decrease pps_valid to indicate that another second has passed since the
|
|
* last PPS signal. When it reaches 0, indicate that PPS signal is missing.
|
|
*/
|
|
static inline void pps_dec_valid(struct ntp_data *ntpdata)
|
|
{
|
|
if (ntpdata->pps_valid > 0) {
|
|
ntpdata->pps_valid--;
|
|
} else {
|
|
ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
|
|
STA_PPSWANDER | STA_PPSERROR);
|
|
pps_clear(ntpdata);
|
|
}
|
|
}
|
|
|
|
static inline void pps_set_freq(struct ntp_data *ntpdata)
|
|
{
|
|
ntpdata->pps_freq = ntpdata->time_freq;
|
|
}
|
|
|
|
static inline bool is_error_status(int status)
|
|
{
|
|
return (status & (STA_UNSYNC|STA_CLOCKERR))
|
|
/*
|
|
* PPS signal lost when either PPS time or PPS frequency
|
|
* synchronization requested
|
|
*/
|
|
|| ((status & (STA_PPSFREQ|STA_PPSTIME))
|
|
&& !(status & STA_PPSSIGNAL))
|
|
/*
|
|
* PPS jitter exceeded when PPS time synchronization
|
|
* requested
|
|
*/
|
|
|| ((status & (STA_PPSTIME|STA_PPSJITTER))
|
|
== (STA_PPSTIME|STA_PPSJITTER))
|
|
/*
|
|
* PPS wander exceeded or calibration error when PPS
|
|
* frequency synchronization requested
|
|
*/
|
|
|| ((status & STA_PPSFREQ)
|
|
&& (status & (STA_PPSWANDER|STA_PPSERROR)));
|
|
}
|
|
|
|
static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
|
|
{
|
|
txc->ppsfreq = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
|
|
PPM_SCALE_INV, NTP_SCALE_SHIFT);
|
|
txc->jitter = ntpdata->pps_jitter;
|
|
if (!(ntpdata->time_status & STA_NANO))
|
|
txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
|
|
txc->shift = ntpdata->pps_shift;
|
|
txc->stabil = ntpdata->pps_stabil;
|
|
txc->jitcnt = ntpdata->pps_jitcnt;
|
|
txc->calcnt = ntpdata->pps_calcnt;
|
|
txc->errcnt = ntpdata->pps_errcnt;
|
|
txc->stbcnt = ntpdata->pps_stbcnt;
|
|
}
|
|
|
|
#else /* !CONFIG_NTP_PPS */
|
|
|
|
static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
|
|
{
|
|
return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
|
|
}
|
|
|
|
static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
|
|
static inline void pps_clear(struct ntp_data *ntpdata) {}
|
|
static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
|
|
static inline void pps_set_freq(struct ntp_data *ntpdata) {}
|
|
|
|
static inline bool is_error_status(int status)
|
|
{
|
|
return status & (STA_UNSYNC|STA_CLOCKERR);
|
|
}
|
|
|
|
static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
|
|
{
|
|
/* PPS is not implemented, so these are zero */
|
|
txc->ppsfreq = 0;
|
|
txc->jitter = 0;
|
|
txc->shift = 0;
|
|
txc->stabil = 0;
|
|
txc->jitcnt = 0;
|
|
txc->calcnt = 0;
|
|
txc->errcnt = 0;
|
|
txc->stbcnt = 0;
|
|
}
|
|
|
|
#endif /* CONFIG_NTP_PPS */
|
|
|
|
/*
|
|
* Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
|
|
* time_freq:
|
|
*/
|
|
static void ntp_update_frequency(struct ntp_data *ntpdata)
|
|
{
|
|
u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
|
|
|
|
second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
|
|
|
|
second_length += ntpdata->ntp_tick_adj;
|
|
second_length += ntpdata->time_freq;
|
|
|
|
new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
|
|
|
|
/*
|
|
* Don't wait for the next second_overflow, apply the change to the
|
|
* tick length immediately:
|
|
*/
|
|
ntpdata->tick_length += new_base - ntpdata->tick_length_base;
|
|
ntpdata->tick_length_base = new_base;
|
|
}
|
|
|
|
static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
|
|
{
|
|
ntpdata->time_status &= ~STA_MODE;
|
|
|
|
if (secs < MINSEC)
|
|
return 0;
|
|
|
|
if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
|
|
return 0;
|
|
|
|
ntpdata->time_status |= STA_MODE;
|
|
|
|
return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
|
|
}
|
|
|
|
static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
|
|
{
|
|
s64 freq_adj, offset64;
|
|
long secs, real_secs;
|
|
|
|
if (!(ntpdata->time_status & STA_PLL))
|
|
return;
|
|
|
|
if (!(ntpdata->time_status & STA_NANO)) {
|
|
/* Make sure the multiplication below won't overflow */
|
|
offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
|
|
offset *= NSEC_PER_USEC;
|
|
}
|
|
|
|
/* Scale the phase adjustment and clamp to the operating range. */
|
|
offset = clamp(offset, -MAXPHASE, MAXPHASE);
|
|
|
|
/*
|
|
* Select how the frequency is to be controlled
|
|
* and in which mode (PLL or FLL).
|
|
*/
|
|
real_secs = __ktime_get_real_seconds();
|
|
secs = (long)(real_secs - ntpdata->time_reftime);
|
|
if (unlikely(ntpdata->time_status & STA_FREQHOLD))
|
|
secs = 0;
|
|
|
|
ntpdata->time_reftime = real_secs;
|
|
|
|
offset64 = offset;
|
|
freq_adj = ntp_update_offset_fll(ntpdata, offset64, secs);
|
|
|
|
/*
|
|
* Clamp update interval to reduce PLL gain with low
|
|
* sampling rate (e.g. intermittent network connection)
|
|
* to avoid instability.
|
|
*/
|
|
if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
|
|
secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
|
|
|
|
freq_adj += (offset64 * secs) <<
|
|
(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
|
|
|
|
freq_adj = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
|
|
|
|
ntpdata->time_freq = max(freq_adj, -MAXFREQ_SCALED);
|
|
|
|
ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
|
|
}
|
|
|
|
static void __ntp_clear(struct ntp_data *ntpdata)
|
|
{
|
|
/* Stop active adjtime() */
|
|
ntpdata->time_adjust = 0;
|
|
ntpdata->time_status |= STA_UNSYNC;
|
|
ntpdata->time_maxerror = NTP_PHASE_LIMIT;
|
|
ntpdata->time_esterror = NTP_PHASE_LIMIT;
|
|
|
|
ntp_update_frequency(ntpdata);
|
|
|
|
ntpdata->tick_length = ntpdata->tick_length_base;
|
|
ntpdata->time_offset = 0;
|
|
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
/* Clear PPS state variables */
|
|
pps_clear(ntpdata);
|
|
}
|
|
|
|
/**
|
|
* ntp_clear - Clears the NTP state variables
|
|
*/
|
|
void ntp_clear(void)
|
|
{
|
|
__ntp_clear(&tk_ntp_data);
|
|
}
|
|
|
|
|
|
u64 ntp_tick_length(void)
|
|
{
|
|
return tk_ntp_data.tick_length;
|
|
}
|
|
|
|
/**
|
|
* ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
|
|
*
|
|
* Provides the time of the next leapsecond against CLOCK_REALTIME in
|
|
* a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
|
|
*/
|
|
ktime_t ntp_get_next_leap(void)
|
|
{
|
|
struct ntp_data *ntpdata = &tk_ntp_data;
|
|
ktime_t ret;
|
|
|
|
if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
|
|
return ktime_set(ntpdata->ntp_next_leap_sec, 0);
|
|
ret = KTIME_MAX;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This routine handles the overflow of the microsecond field
|
|
*
|
|
* The tricky bits of code to handle the accurate clock support
|
|
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
|
|
* They were originally developed for SUN and DEC kernels.
|
|
* All the kudos should go to Dave for this stuff.
|
|
*
|
|
* Also handles leap second processing, and returns leap offset
|
|
*/
|
|
int second_overflow(time64_t secs)
|
|
{
|
|
struct ntp_data *ntpdata = &tk_ntp_data;
|
|
s64 delta;
|
|
int leap = 0;
|
|
s32 rem;
|
|
|
|
/*
|
|
* Leap second processing. If in leap-insert state at the end of the
|
|
* day, the system clock is set back one second; if in leap-delete
|
|
* state, the system clock is set ahead one second.
|
|
*/
|
|
switch (ntpdata->time_state) {
|
|
case TIME_OK:
|
|
if (ntpdata->time_status & STA_INS) {
|
|
ntpdata->time_state = TIME_INS;
|
|
div_s64_rem(secs, SECS_PER_DAY, &rem);
|
|
ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
|
|
} else if (ntpdata->time_status & STA_DEL) {
|
|
ntpdata->time_state = TIME_DEL;
|
|
div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
|
|
ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
|
|
}
|
|
break;
|
|
case TIME_INS:
|
|
if (!(ntpdata->time_status & STA_INS)) {
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
ntpdata->time_state = TIME_OK;
|
|
} else if (secs == ntpdata->ntp_next_leap_sec) {
|
|
leap = -1;
|
|
ntpdata->time_state = TIME_OOP;
|
|
pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
|
|
}
|
|
break;
|
|
case TIME_DEL:
|
|
if (!(ntpdata->time_status & STA_DEL)) {
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
ntpdata->time_state = TIME_OK;
|
|
} else if (secs == ntpdata->ntp_next_leap_sec) {
|
|
leap = 1;
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
ntpdata->time_state = TIME_WAIT;
|
|
pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
|
|
}
|
|
break;
|
|
case TIME_OOP:
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
ntpdata->time_state = TIME_WAIT;
|
|
break;
|
|
case TIME_WAIT:
|
|
if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
|
|
ntpdata->time_state = TIME_OK;
|
|
break;
|
|
}
|
|
|
|
/* Bump the maxerror field */
|
|
ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
|
|
if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
|
|
ntpdata->time_maxerror = NTP_PHASE_LIMIT;
|
|
ntpdata->time_status |= STA_UNSYNC;
|
|
}
|
|
|
|
/* Compute the phase adjustment for the next second */
|
|
ntpdata->tick_length = ntpdata->tick_length_base;
|
|
|
|
delta = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
|
|
ntpdata->time_offset -= delta;
|
|
ntpdata->tick_length += delta;
|
|
|
|
/* Check PPS signal */
|
|
pps_dec_valid(ntpdata);
|
|
|
|
if (!ntpdata->time_adjust)
|
|
goto out;
|
|
|
|
if (ntpdata->time_adjust > MAX_TICKADJ) {
|
|
ntpdata->time_adjust -= MAX_TICKADJ;
|
|
ntpdata->tick_length += MAX_TICKADJ_SCALED;
|
|
goto out;
|
|
}
|
|
|
|
if (ntpdata->time_adjust < -MAX_TICKADJ) {
|
|
ntpdata->time_adjust += MAX_TICKADJ;
|
|
ntpdata->tick_length -= MAX_TICKADJ_SCALED;
|
|
goto out;
|
|
}
|
|
|
|
ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
|
|
<< NTP_SCALE_SHIFT;
|
|
ntpdata->time_adjust = 0;
|
|
|
|
out:
|
|
return leap;
|
|
}
|
|
|
|
#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
|
|
static void sync_hw_clock(struct work_struct *work);
|
|
static DECLARE_WORK(sync_work, sync_hw_clock);
|
|
static struct hrtimer sync_hrtimer;
|
|
#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
|
|
|
|
static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
|
|
{
|
|
queue_work(system_freezable_power_efficient_wq, &sync_work);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
|
|
{
|
|
ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
|
|
|
|
if (retry)
|
|
exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
|
|
else
|
|
exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
|
|
|
|
hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
/*
|
|
* Check whether @now is correct versus the required time to update the RTC
|
|
* and calculate the value which needs to be written to the RTC so that the
|
|
* next seconds increment of the RTC after the write is aligned with the next
|
|
* seconds increment of clock REALTIME.
|
|
*
|
|
* tsched t1 write(t2.tv_sec - 1sec)) t2 RTC increments seconds
|
|
*
|
|
* t2.tv_nsec == 0
|
|
* tsched = t2 - set_offset_nsec
|
|
* newval = t2 - NSEC_PER_SEC
|
|
*
|
|
* ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
|
|
*
|
|
* As the execution of this code is not guaranteed to happen exactly at
|
|
* tsched this allows it to happen within a fuzzy region:
|
|
*
|
|
* abs(now - tsched) < FUZZ
|
|
*
|
|
* If @now is not inside the allowed window the function returns false.
|
|
*/
|
|
static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
|
|
struct timespec64 *to_set,
|
|
const struct timespec64 *now)
|
|
{
|
|
/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
|
|
const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
|
|
struct timespec64 delay = {.tv_sec = -1,
|
|
.tv_nsec = set_offset_nsec};
|
|
|
|
*to_set = timespec64_add(*now, delay);
|
|
|
|
if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
|
|
to_set->tv_nsec = 0;
|
|
return true;
|
|
}
|
|
|
|
if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
|
|
to_set->tv_sec++;
|
|
to_set->tv_nsec = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_CMOS_UPDATE
|
|
int __weak update_persistent_clock64(struct timespec64 now64)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#else
|
|
static inline int update_persistent_clock64(struct timespec64 now64)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_RTC_SYSTOHC
|
|
/* Save NTP synchronized time to the RTC */
|
|
static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
|
|
{
|
|
struct rtc_device *rtc;
|
|
struct rtc_time tm;
|
|
int err = -ENODEV;
|
|
|
|
rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
|
|
if (!rtc)
|
|
return -ENODEV;
|
|
|
|
if (!rtc->ops || !rtc->ops->set_time)
|
|
goto out_close;
|
|
|
|
/* First call might not have the correct offset */
|
|
if (*offset_nsec == rtc->set_offset_nsec) {
|
|
rtc_time64_to_tm(to_set->tv_sec, &tm);
|
|
err = rtc_set_time(rtc, &tm);
|
|
} else {
|
|
/* Store the update offset and let the caller try again */
|
|
*offset_nsec = rtc->set_offset_nsec;
|
|
err = -EAGAIN;
|
|
}
|
|
out_close:
|
|
rtc_class_close(rtc);
|
|
return err;
|
|
}
|
|
#else
|
|
static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* ntp_synced - Tells whether the NTP status is not UNSYNC
|
|
* Returns: true if not UNSYNC, false otherwise
|
|
*/
|
|
static inline bool ntp_synced(void)
|
|
{
|
|
return !(tk_ntp_data.time_status & STA_UNSYNC);
|
|
}
|
|
|
|
/*
|
|
* If we have an externally synchronized Linux clock, then update RTC clock
|
|
* accordingly every ~11 minutes. Generally RTCs can only store second
|
|
* precision, but many RTCs will adjust the phase of their second tick to
|
|
* match the moment of update. This infrastructure arranges to call to the RTC
|
|
* set at the correct moment to phase synchronize the RTC second tick over
|
|
* with the kernel clock.
|
|
*/
|
|
static void sync_hw_clock(struct work_struct *work)
|
|
{
|
|
/*
|
|
* The default synchronization offset is 500ms for the deprecated
|
|
* update_persistent_clock64() under the assumption that it uses
|
|
* the infamous CMOS clock (MC146818).
|
|
*/
|
|
static unsigned long offset_nsec = NSEC_PER_SEC / 2;
|
|
struct timespec64 now, to_set;
|
|
int res = -EAGAIN;
|
|
|
|
/*
|
|
* Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
|
|
* managed to schedule the work between the timer firing and the
|
|
* work being able to rearm the timer. Wait for the timer to expire.
|
|
*/
|
|
if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
|
|
return;
|
|
|
|
ktime_get_real_ts64(&now);
|
|
/* If @now is not in the allowed window, try again */
|
|
if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
|
|
goto rearm;
|
|
|
|
/* Take timezone adjusted RTCs into account */
|
|
if (persistent_clock_is_local)
|
|
to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
|
|
|
|
/* Try the legacy RTC first. */
|
|
res = update_persistent_clock64(to_set);
|
|
if (res != -ENODEV)
|
|
goto rearm;
|
|
|
|
/* Try the RTC class */
|
|
res = update_rtc(&to_set, &offset_nsec);
|
|
if (res == -ENODEV)
|
|
return;
|
|
rearm:
|
|
sched_sync_hw_clock(offset_nsec, res != 0);
|
|
}
|
|
|
|
void ntp_notify_cmos_timer(bool offset_set)
|
|
{
|
|
/*
|
|
* If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
|
|
* which may have been running if the time was synchronized
|
|
* prior to the ADJ_SETOFFSET call.
|
|
*/
|
|
if (offset_set)
|
|
hrtimer_cancel(&sync_hrtimer);
|
|
|
|
/*
|
|
* When the work is currently executed but has not yet the timer
|
|
* rearmed this queues the work immediately again. No big issue,
|
|
* just a pointless work scheduled.
|
|
*/
|
|
if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
|
|
queue_work(system_freezable_power_efficient_wq, &sync_work);
|
|
}
|
|
|
|
static void __init ntp_init_cmos_sync(void)
|
|
{
|
|
hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
|
|
sync_hrtimer.function = sync_timer_callback;
|
|
}
|
|
#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
|
|
static inline void __init ntp_init_cmos_sync(void) { }
|
|
#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
|
|
|
|
/*
|
|
* Propagate a new txc->status value into the NTP state:
|
|
*/
|
|
static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
|
|
{
|
|
if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
|
|
ntpdata->time_state = TIME_OK;
|
|
ntpdata->time_status = STA_UNSYNC;
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
/* Restart PPS frequency calibration */
|
|
pps_reset_freq_interval(ntpdata);
|
|
}
|
|
|
|
/*
|
|
* If we turn on PLL adjustments then reset the
|
|
* reference time to current time.
|
|
*/
|
|
if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
|
|
ntpdata->time_reftime = __ktime_get_real_seconds();
|
|
|
|
/* only set allowed bits */
|
|
ntpdata->time_status &= STA_RONLY;
|
|
ntpdata->time_status |= txc->status & ~STA_RONLY;
|
|
}
|
|
|
|
static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
|
|
s32 *time_tai)
|
|
{
|
|
if (txc->modes & ADJ_STATUS)
|
|
process_adj_status(ntpdata, txc);
|
|
|
|
if (txc->modes & ADJ_NANO)
|
|
ntpdata->time_status |= STA_NANO;
|
|
|
|
if (txc->modes & ADJ_MICRO)
|
|
ntpdata->time_status &= ~STA_NANO;
|
|
|
|
if (txc->modes & ADJ_FREQUENCY) {
|
|
ntpdata->time_freq = txc->freq * PPM_SCALE;
|
|
ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
|
|
ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
|
|
/* Update pps_freq */
|
|
pps_set_freq(ntpdata);
|
|
}
|
|
|
|
if (txc->modes & ADJ_MAXERROR)
|
|
ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
|
|
|
|
if (txc->modes & ADJ_ESTERROR)
|
|
ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
|
|
|
|
if (txc->modes & ADJ_TIMECONST) {
|
|
ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
|
|
if (!(ntpdata->time_status & STA_NANO))
|
|
ntpdata->time_constant += 4;
|
|
ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
|
|
}
|
|
|
|
if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
|
|
*time_tai = txc->constant;
|
|
|
|
if (txc->modes & ADJ_OFFSET)
|
|
ntp_update_offset(ntpdata, txc->offset);
|
|
|
|
if (txc->modes & ADJ_TICK)
|
|
ntpdata->tick_usec = txc->tick;
|
|
|
|
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
|
|
ntp_update_frequency(ntpdata);
|
|
}
|
|
|
|
/*
|
|
* adjtimex() mainly allows reading (and writing, if superuser) of
|
|
* kernel time-keeping variables. used by xntpd.
|
|
*/
|
|
int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
|
|
s32 *time_tai, struct audit_ntp_data *ad)
|
|
{
|
|
struct ntp_data *ntpdata = &tk_ntp_data;
|
|
int result;
|
|
|
|
if (txc->modes & ADJ_ADJTIME) {
|
|
long save_adjust = ntpdata->time_adjust;
|
|
|
|
if (!(txc->modes & ADJ_OFFSET_READONLY)) {
|
|
/* adjtime() is independent from ntp_adjtime() */
|
|
ntpdata->time_adjust = txc->offset;
|
|
ntp_update_frequency(ntpdata);
|
|
|
|
audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, ntpdata->time_adjust);
|
|
}
|
|
txc->offset = save_adjust;
|
|
} else {
|
|
/* If there are input parameters, then process them: */
|
|
if (txc->modes) {
|
|
audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
|
|
audit_ntp_set_old(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
|
|
audit_ntp_set_old(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
|
|
audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai);
|
|
audit_ntp_set_old(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
|
|
|
|
process_adjtimex_modes(ntpdata, txc, time_tai);
|
|
|
|
audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
|
|
}
|
|
|
|
txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
|
|
if (!(ntpdata->time_status & STA_NANO))
|
|
txc->offset = (u32)txc->offset / NSEC_PER_USEC;
|
|
}
|
|
|
|
result = ntpdata->time_state;
|
|
if (is_error_status(ntpdata->time_status))
|
|
result = TIME_ERROR;
|
|
|
|
txc->freq = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
|
|
PPM_SCALE_INV, NTP_SCALE_SHIFT);
|
|
txc->maxerror = ntpdata->time_maxerror;
|
|
txc->esterror = ntpdata->time_esterror;
|
|
txc->status = ntpdata->time_status;
|
|
txc->constant = ntpdata->time_constant;
|
|
txc->precision = 1;
|
|
txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
|
|
txc->tick = ntpdata->tick_usec;
|
|
txc->tai = *time_tai;
|
|
|
|
/* Fill PPS status fields */
|
|
pps_fill_timex(ntpdata, txc);
|
|
|
|
txc->time.tv_sec = ts->tv_sec;
|
|
txc->time.tv_usec = ts->tv_nsec;
|
|
if (!(ntpdata->time_status & STA_NANO))
|
|
txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
|
|
|
|
/* Handle leapsec adjustments */
|
|
if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
|
|
if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
|
|
result = TIME_OOP;
|
|
txc->tai++;
|
|
txc->time.tv_sec--;
|
|
}
|
|
if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
|
|
result = TIME_WAIT;
|
|
txc->tai--;
|
|
txc->time.tv_sec++;
|
|
}
|
|
if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
|
|
result = TIME_WAIT;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifdef CONFIG_NTP_PPS
|
|
|
|
/*
|
|
* struct pps_normtime is basically a struct timespec, but it is
|
|
* semantically different (and it is the reason why it was invented):
|
|
* pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
|
|
* while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
|
|
*/
|
|
struct pps_normtime {
|
|
s64 sec; /* seconds */
|
|
long nsec; /* nanoseconds */
|
|
};
|
|
|
|
/*
|
|
* Normalize the timestamp so that nsec is in the
|
|
* [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
|
|
*/
|
|
static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
|
|
{
|
|
struct pps_normtime norm = {
|
|
.sec = ts.tv_sec,
|
|
.nsec = ts.tv_nsec
|
|
};
|
|
|
|
if (norm.nsec > (NSEC_PER_SEC >> 1)) {
|
|
norm.nsec -= NSEC_PER_SEC;
|
|
norm.sec++;
|
|
}
|
|
|
|
return norm;
|
|
}
|
|
|
|
/* Get current phase correction and jitter */
|
|
static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
|
|
{
|
|
*jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
|
|
if (*jitter < 0)
|
|
*jitter = -*jitter;
|
|
|
|
/* TODO: test various filters */
|
|
return ntpdata->pps_tf[0];
|
|
}
|
|
|
|
/* Add the sample to the phase filter */
|
|
static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
|
|
{
|
|
ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
|
|
ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
|
|
ntpdata->pps_tf[0] = err;
|
|
}
|
|
|
|
/*
|
|
* Decrease frequency calibration interval length. It is halved after four
|
|
* consecutive unstable intervals.
|
|
*/
|
|
static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
|
|
{
|
|
if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
|
|
ntpdata->pps_intcnt = -PPS_INTCOUNT;
|
|
if (ntpdata->pps_shift > PPS_INTMIN) {
|
|
ntpdata->pps_shift--;
|
|
ntpdata->pps_intcnt = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Increase frequency calibration interval length. It is doubled after
|
|
* four consecutive stable intervals.
|
|
*/
|
|
static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
|
|
{
|
|
if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
|
|
ntpdata->pps_intcnt = PPS_INTCOUNT;
|
|
if (ntpdata->pps_shift < PPS_INTMAX) {
|
|
ntpdata->pps_shift++;
|
|
ntpdata->pps_intcnt = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update clock frequency based on MONOTONIC_RAW clock PPS signal
|
|
* timestamps
|
|
*
|
|
* At the end of the calibration interval the difference between the
|
|
* first and last MONOTONIC_RAW clock timestamps divided by the length
|
|
* of the interval becomes the frequency update. If the interval was
|
|
* too long, the data are discarded.
|
|
* Returns the difference between old and new frequency values.
|
|
*/
|
|
static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
|
|
{
|
|
long delta, delta_mod;
|
|
s64 ftemp;
|
|
|
|
/* Check if the frequency interval was too long */
|
|
if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
|
|
ntpdata->time_status |= STA_PPSERROR;
|
|
ntpdata->pps_errcnt++;
|
|
pps_dec_freq_interval(ntpdata);
|
|
printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
|
|
freq_norm.sec);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Here the raw frequency offset and wander (stability) is
|
|
* calculated. If the wander is less than the wander threshold the
|
|
* interval is increased; otherwise it is decreased.
|
|
*/
|
|
ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
|
|
freq_norm.sec);
|
|
delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
|
|
ntpdata->pps_freq = ftemp;
|
|
if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
|
|
printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
|
|
ntpdata->time_status |= STA_PPSWANDER;
|
|
ntpdata->pps_stbcnt++;
|
|
pps_dec_freq_interval(ntpdata);
|
|
} else {
|
|
/* Good sample */
|
|
pps_inc_freq_interval(ntpdata);
|
|
}
|
|
|
|
/*
|
|
* The stability metric is calculated as the average of recent
|
|
* frequency changes, but is used only for performance monitoring
|
|
*/
|
|
delta_mod = delta;
|
|
if (delta_mod < 0)
|
|
delta_mod = -delta_mod;
|
|
ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
|
|
NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
|
|
|
|
/* If enabled, the system clock frequency is updated */
|
|
if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
|
|
ntpdata->time_freq = ntpdata->pps_freq;
|
|
ntp_update_frequency(ntpdata);
|
|
}
|
|
|
|
return delta;
|
|
}
|
|
|
|
/* Correct REALTIME clock phase error against PPS signal */
|
|
static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
|
|
{
|
|
long correction = -error;
|
|
long jitter;
|
|
|
|
/* Add the sample to the median filter */
|
|
pps_phase_filter_add(ntpdata, correction);
|
|
correction = pps_phase_filter_get(ntpdata, &jitter);
|
|
|
|
/*
|
|
* Nominal jitter is due to PPS signal noise. If it exceeds the
|
|
* threshold, the sample is discarded; otherwise, if so enabled,
|
|
* the time offset is updated.
|
|
*/
|
|
if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
|
|
printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
|
|
jitter, (ntpdata->pps_jitter << PPS_POPCORN));
|
|
ntpdata->time_status |= STA_PPSJITTER;
|
|
ntpdata->pps_jitcnt++;
|
|
} else if (ntpdata->time_status & STA_PPSTIME) {
|
|
/* Correct the time using the phase offset */
|
|
ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
|
|
NTP_INTERVAL_FREQ);
|
|
/* Cancel running adjtime() */
|
|
ntpdata->time_adjust = 0;
|
|
}
|
|
/* Update jitter */
|
|
ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
|
|
}
|
|
|
|
/*
|
|
* __hardpps() - discipline CPU clock oscillator to external PPS signal
|
|
*
|
|
* This routine is called at each PPS signal arrival in order to
|
|
* discipline the CPU clock oscillator to the PPS signal. It takes two
|
|
* parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
|
|
* is used to correct clock phase error and the latter is used to
|
|
* correct the frequency.
|
|
*
|
|
* This code is based on David Mills's reference nanokernel
|
|
* implementation. It was mostly rewritten but keeps the same idea.
|
|
*/
|
|
void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
|
|
{
|
|
struct pps_normtime pts_norm, freq_norm;
|
|
struct ntp_data *ntpdata = &tk_ntp_data;
|
|
|
|
pts_norm = pps_normalize_ts(*phase_ts);
|
|
|
|
/* Clear the error bits, they will be set again if needed */
|
|
ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
|
|
|
|
/* indicate signal presence */
|
|
ntpdata->time_status |= STA_PPSSIGNAL;
|
|
ntpdata->pps_valid = PPS_VALID;
|
|
|
|
/*
|
|
* When called for the first time, just start the frequency
|
|
* interval
|
|
*/
|
|
if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
|
|
ntpdata->pps_fbase = *raw_ts;
|
|
return;
|
|
}
|
|
|
|
/* Ok, now we have a base for frequency calculation */
|
|
freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
|
|
|
|
/*
|
|
* Check that the signal is in the range
|
|
* [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
|
|
*/
|
|
if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
|
|
(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
|
|
ntpdata->time_status |= STA_PPSJITTER;
|
|
/* Restart the frequency calibration interval */
|
|
ntpdata->pps_fbase = *raw_ts;
|
|
printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
|
|
return;
|
|
}
|
|
|
|
/* Signal is ok. Check if the current frequency interval is finished */
|
|
if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
|
|
ntpdata->pps_calcnt++;
|
|
/* Restart the frequency calibration interval */
|
|
ntpdata->pps_fbase = *raw_ts;
|
|
hardpps_update_freq(ntpdata, freq_norm);
|
|
}
|
|
|
|
hardpps_update_phase(ntpdata, pts_norm.nsec);
|
|
|
|
}
|
|
#endif /* CONFIG_NTP_PPS */
|
|
|
|
static int __init ntp_tick_adj_setup(char *str)
|
|
{
|
|
int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
|
|
if (rc)
|
|
return rc;
|
|
|
|
tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
|
|
return 1;
|
|
}
|
|
|
|
__setup("ntp_tick_adj=", ntp_tick_adj_setup);
|
|
|
|
void __init ntp_init(void)
|
|
{
|
|
ntp_clear();
|
|
ntp_init_cmos_sync();
|
|
}
|