mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 21:21:41 +00:00
6d3bc4c02d
On SAM9 hardware two cascaded 16 bit timers are used to form a 32 bit high resolution timer that is used as scheduler clock when the kernel has been configured that way (CONFIG_ATMEL_CLOCKSOURCE_TCB). The driver initially triggers a reset-to-zero of the two timers but this reset is only performed on the next rising clock. For the first timer this is ok - it will be in the next 60ns (16MHz clock). For the chained second timer this will only happen after the first timer overflows, i.e. after 2^16 clocks (~4ms with a 16MHz clock). So with other words the scheduler clock resets to 0 after the first 2^16 clock cycles. It looks like that the scheduler does not like this and behaves wrongly over its lifetime, e.g. some tasks are scheduled with a long delay. Why that is and if there are additional requirements for this behaviour has not been further analysed. There is a simple fix for resetting the second timer as well when the first timer is reset and this is to set the ATMEL_TC_ASWTRG_SET bit in the Channel Mode register (CMR) of the first timer. This will also rise the TIOA line (clock input of the second timer) when a software trigger respective SYNC is issued. Signed-off-by: Ronald Wahl <ronald.wahl@raritan.com> Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org> Link: https://lore.kernel.org/r/20231007161803.31342-1-rwahl@gmx.de
512 lines
13 KiB
C
512 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/init.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/err.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <soc/at91/atmel_tcb.h>
|
|
|
|
|
|
/*
|
|
* We're configured to use a specific TC block, one that's not hooked
|
|
* up to external hardware, to provide a time solution:
|
|
*
|
|
* - Two channels combine to create a free-running 32 bit counter
|
|
* with a base rate of 5+ MHz, packaged as a clocksource (with
|
|
* resolution better than 200 nsec).
|
|
* - Some chips support 32 bit counter. A single channel is used for
|
|
* this 32 bit free-running counter. the second channel is not used.
|
|
*
|
|
* - The third channel may be used to provide a clockevent source, used in
|
|
* either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
|
|
* and can handle delays of up to two seconds. For 32-bit counters, it runs at
|
|
* the same rate as the clocksource
|
|
*
|
|
* REVISIT behavior during system suspend states... we should disable
|
|
* all clocks and save the power. Easily done for clockevent devices,
|
|
* but clocksources won't necessarily get the needed notifications.
|
|
* For deeper system sleep states, this will be mandatory...
|
|
*/
|
|
|
|
static void __iomem *tcaddr;
|
|
static struct
|
|
{
|
|
u32 cmr;
|
|
u32 imr;
|
|
u32 rc;
|
|
bool clken;
|
|
} tcb_cache[3];
|
|
static u32 bmr_cache;
|
|
|
|
static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
|
|
|
|
static u64 tc_get_cycles(struct clocksource *cs)
|
|
{
|
|
unsigned long flags;
|
|
u32 lower, upper;
|
|
|
|
raw_local_irq_save(flags);
|
|
do {
|
|
upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
|
|
lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
|
|
} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
|
|
|
|
raw_local_irq_restore(flags);
|
|
return (upper << 16) | lower;
|
|
}
|
|
|
|
static u64 tc_get_cycles32(struct clocksource *cs)
|
|
{
|
|
return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
|
|
}
|
|
|
|
static void tc_clksrc_suspend(struct clocksource *cs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
|
|
tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
|
|
tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
|
|
tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
|
|
tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
|
|
ATMEL_TC_CLKSTA);
|
|
}
|
|
|
|
bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
|
|
}
|
|
|
|
static void tc_clksrc_resume(struct clocksource *cs)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
|
|
/* Restore registers for the channel, RA and RB are not used */
|
|
writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
|
|
writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
|
|
writel(0, tcaddr + ATMEL_TC_REG(i, RA));
|
|
writel(0, tcaddr + ATMEL_TC_REG(i, RB));
|
|
/* Disable all the interrupts */
|
|
writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
|
|
/* Reenable interrupts that were enabled before suspending */
|
|
writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
|
|
/* Start the clock if it was used */
|
|
if (tcb_cache[i].clken)
|
|
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
|
|
}
|
|
|
|
/* Dual channel, chain channels */
|
|
writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
|
|
/* Finally, trigger all the channels*/
|
|
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
|
|
}
|
|
|
|
static struct clocksource clksrc = {
|
|
.rating = 200,
|
|
.read = tc_get_cycles,
|
|
.mask = CLOCKSOURCE_MASK(32),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
.suspend = tc_clksrc_suspend,
|
|
.resume = tc_clksrc_resume,
|
|
};
|
|
|
|
static u64 notrace tc_sched_clock_read(void)
|
|
{
|
|
return tc_get_cycles(&clksrc);
|
|
}
|
|
|
|
static u64 notrace tc_sched_clock_read32(void)
|
|
{
|
|
return tc_get_cycles32(&clksrc);
|
|
}
|
|
|
|
static struct delay_timer tc_delay_timer;
|
|
|
|
static unsigned long tc_delay_timer_read(void)
|
|
{
|
|
return tc_get_cycles(&clksrc);
|
|
}
|
|
|
|
static unsigned long notrace tc_delay_timer_read32(void)
|
|
{
|
|
return tc_get_cycles32(&clksrc);
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS
|
|
|
|
struct tc_clkevt_device {
|
|
struct clock_event_device clkevt;
|
|
struct clk *clk;
|
|
u32 rate;
|
|
void __iomem *regs;
|
|
};
|
|
|
|
static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
|
|
{
|
|
return container_of(clkevt, struct tc_clkevt_device, clkevt);
|
|
}
|
|
|
|
static u32 timer_clock;
|
|
|
|
static int tc_shutdown(struct clock_event_device *d)
|
|
{
|
|
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
|
|
void __iomem *regs = tcd->regs;
|
|
|
|
writel(0xff, regs + ATMEL_TC_REG(2, IDR));
|
|
writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
|
|
if (!clockevent_state_detached(d))
|
|
clk_disable(tcd->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tc_set_oneshot(struct clock_event_device *d)
|
|
{
|
|
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
|
|
void __iomem *regs = tcd->regs;
|
|
|
|
if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
|
|
tc_shutdown(d);
|
|
|
|
clk_enable(tcd->clk);
|
|
|
|
/* count up to RC, then irq and stop */
|
|
writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
|
|
ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
|
|
writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
|
|
|
|
/* set_next_event() configures and starts the timer */
|
|
return 0;
|
|
}
|
|
|
|
static int tc_set_periodic(struct clock_event_device *d)
|
|
{
|
|
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
|
|
void __iomem *regs = tcd->regs;
|
|
|
|
if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
|
|
tc_shutdown(d);
|
|
|
|
/* By not making the gentime core emulate periodic mode on top
|
|
* of oneshot, we get lower overhead and improved accuracy.
|
|
*/
|
|
clk_enable(tcd->clk);
|
|
|
|
/* count up to RC, then irq and restart */
|
|
writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
|
|
regs + ATMEL_TC_REG(2, CMR));
|
|
writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
|
|
|
|
/* Enable clock and interrupts on RC compare */
|
|
writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
|
|
|
|
/* go go gadget! */
|
|
writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
|
|
ATMEL_TC_REG(2, CCR));
|
|
return 0;
|
|
}
|
|
|
|
static int tc_next_event(unsigned long delta, struct clock_event_device *d)
|
|
{
|
|
writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
|
|
|
|
/* go go gadget! */
|
|
writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
|
|
tcaddr + ATMEL_TC_REG(2, CCR));
|
|
return 0;
|
|
}
|
|
|
|
static struct tc_clkevt_device clkevt = {
|
|
.clkevt = {
|
|
.features = CLOCK_EVT_FEAT_PERIODIC |
|
|
CLOCK_EVT_FEAT_ONESHOT,
|
|
/* Should be lower than at91rm9200's system timer */
|
|
.rating = 125,
|
|
.set_next_event = tc_next_event,
|
|
.set_state_shutdown = tc_shutdown,
|
|
.set_state_periodic = tc_set_periodic,
|
|
.set_state_oneshot = tc_set_oneshot,
|
|
},
|
|
};
|
|
|
|
static irqreturn_t ch2_irq(int irq, void *handle)
|
|
{
|
|
struct tc_clkevt_device *dev = handle;
|
|
unsigned int sr;
|
|
|
|
sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
|
|
if (sr & ATMEL_TC_CPCS) {
|
|
dev->clkevt.event_handler(&dev->clkevt);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
|
|
{
|
|
int ret;
|
|
struct clk *t2_clk = tc->clk[2];
|
|
int irq = tc->irq[2];
|
|
int bits = tc->tcb_config->counter_width;
|
|
|
|
/* try to enable t2 clk to avoid future errors in mode change */
|
|
ret = clk_prepare_enable(t2_clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
clkevt.regs = tc->regs;
|
|
clkevt.clk = t2_clk;
|
|
|
|
if (bits == 32) {
|
|
timer_clock = divisor_idx;
|
|
clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx];
|
|
} else {
|
|
ret = clk_prepare_enable(tc->slow_clk);
|
|
if (ret) {
|
|
clk_disable_unprepare(t2_clk);
|
|
return ret;
|
|
}
|
|
|
|
clkevt.rate = clk_get_rate(tc->slow_clk);
|
|
timer_clock = ATMEL_TC_TIMER_CLOCK5;
|
|
}
|
|
|
|
clk_disable(t2_clk);
|
|
|
|
clkevt.clkevt.cpumask = cpumask_of(0);
|
|
|
|
ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
|
|
if (ret) {
|
|
clk_unprepare(t2_clk);
|
|
if (bits != 32)
|
|
clk_disable_unprepare(tc->slow_clk);
|
|
return ret;
|
|
}
|
|
|
|
clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#else /* !CONFIG_GENERIC_CLOCKEVENTS */
|
|
|
|
static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
|
|
{
|
|
/* NOTHING */
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
|
|
{
|
|
/* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
|
|
writel(mck_divisor_idx /* likely divide-by-8 */
|
|
| ATMEL_TC_WAVE
|
|
| ATMEL_TC_WAVESEL_UP /* free-run */
|
|
| ATMEL_TC_ASWTRG_SET /* TIOA0 rises at software trigger */
|
|
| ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
|
|
| ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
|
|
tcaddr + ATMEL_TC_REG(0, CMR));
|
|
writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
|
|
writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
|
|
writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
|
|
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
|
|
|
|
/* channel 1: waveform mode, input TIOA0 */
|
|
writel(ATMEL_TC_XC1 /* input: TIOA0 */
|
|
| ATMEL_TC_WAVE
|
|
| ATMEL_TC_WAVESEL_UP, /* free-run */
|
|
tcaddr + ATMEL_TC_REG(1, CMR));
|
|
writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
|
|
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
|
|
|
|
/* chain channel 0 to channel 1*/
|
|
writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
|
|
/* then reset all the timers */
|
|
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
|
|
}
|
|
|
|
static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
|
|
{
|
|
/* channel 0: waveform mode, input mclk/8 */
|
|
writel(mck_divisor_idx /* likely divide-by-8 */
|
|
| ATMEL_TC_WAVE
|
|
| ATMEL_TC_WAVESEL_UP, /* free-run */
|
|
tcaddr + ATMEL_TC_REG(0, CMR));
|
|
writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
|
|
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
|
|
|
|
/* then reset all the timers */
|
|
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
|
|
}
|
|
|
|
static struct atmel_tcb_config tcb_rm9200_config = {
|
|
.counter_width = 16,
|
|
};
|
|
|
|
static struct atmel_tcb_config tcb_sam9x5_config = {
|
|
.counter_width = 32,
|
|
};
|
|
|
|
static struct atmel_tcb_config tcb_sama5d2_config = {
|
|
.counter_width = 32,
|
|
.has_gclk = 1,
|
|
};
|
|
|
|
static const struct of_device_id atmel_tcb_of_match[] = {
|
|
{ .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
|
|
{ .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
|
|
{ .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
static int __init tcb_clksrc_init(struct device_node *node)
|
|
{
|
|
struct atmel_tc tc;
|
|
struct clk *t0_clk;
|
|
const struct of_device_id *match;
|
|
u64 (*tc_sched_clock)(void);
|
|
u32 rate, divided_rate = 0;
|
|
int best_divisor_idx = -1;
|
|
int bits;
|
|
int i;
|
|
int ret;
|
|
|
|
/* Protect against multiple calls */
|
|
if (tcaddr)
|
|
return 0;
|
|
|
|
tc.regs = of_iomap(node->parent, 0);
|
|
if (!tc.regs)
|
|
return -ENXIO;
|
|
|
|
t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
|
|
if (IS_ERR(t0_clk))
|
|
return PTR_ERR(t0_clk);
|
|
|
|
tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
|
|
if (IS_ERR(tc.slow_clk))
|
|
return PTR_ERR(tc.slow_clk);
|
|
|
|
tc.clk[0] = t0_clk;
|
|
tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
|
|
if (IS_ERR(tc.clk[1]))
|
|
tc.clk[1] = t0_clk;
|
|
tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
|
|
if (IS_ERR(tc.clk[2]))
|
|
tc.clk[2] = t0_clk;
|
|
|
|
tc.irq[2] = of_irq_get(node->parent, 2);
|
|
if (tc.irq[2] <= 0) {
|
|
tc.irq[2] = of_irq_get(node->parent, 0);
|
|
if (tc.irq[2] <= 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
match = of_match_node(atmel_tcb_of_match, node->parent);
|
|
if (!match)
|
|
return -ENODEV;
|
|
|
|
tc.tcb_config = match->data;
|
|
bits = tc.tcb_config->counter_width;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
|
|
writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
|
|
|
|
ret = clk_prepare_enable(t0_clk);
|
|
if (ret) {
|
|
pr_debug("can't enable T0 clk\n");
|
|
return ret;
|
|
}
|
|
|
|
/* How fast will we be counting? Pick something over 5 MHz. */
|
|
rate = (u32) clk_get_rate(t0_clk);
|
|
i = 0;
|
|
if (tc.tcb_config->has_gclk)
|
|
i = 1;
|
|
for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
|
|
unsigned divisor = atmel_tcb_divisors[i];
|
|
unsigned tmp;
|
|
|
|
tmp = rate / divisor;
|
|
pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
|
|
if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000))
|
|
break;
|
|
divided_rate = tmp;
|
|
best_divisor_idx = i;
|
|
}
|
|
|
|
clksrc.name = kbasename(node->parent->full_name);
|
|
clkevt.clkevt.name = kbasename(node->parent->full_name);
|
|
pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
|
|
((divided_rate % 1000000) + 500) / 1000);
|
|
|
|
tcaddr = tc.regs;
|
|
|
|
if (bits == 32) {
|
|
/* use appropriate function to read 32 bit counter */
|
|
clksrc.read = tc_get_cycles32;
|
|
/* setup only channel 0 */
|
|
tcb_setup_single_chan(&tc, best_divisor_idx);
|
|
tc_sched_clock = tc_sched_clock_read32;
|
|
tc_delay_timer.read_current_timer = tc_delay_timer_read32;
|
|
} else {
|
|
/* we have three clocks no matter what the
|
|
* underlying platform supports.
|
|
*/
|
|
ret = clk_prepare_enable(tc.clk[1]);
|
|
if (ret) {
|
|
pr_debug("can't enable T1 clk\n");
|
|
goto err_disable_t0;
|
|
}
|
|
/* setup both channel 0 & 1 */
|
|
tcb_setup_dual_chan(&tc, best_divisor_idx);
|
|
tc_sched_clock = tc_sched_clock_read;
|
|
tc_delay_timer.read_current_timer = tc_delay_timer_read;
|
|
}
|
|
|
|
/* and away we go! */
|
|
ret = clocksource_register_hz(&clksrc, divided_rate);
|
|
if (ret)
|
|
goto err_disable_t1;
|
|
|
|
/* channel 2: periodic and oneshot timer support */
|
|
ret = setup_clkevents(&tc, best_divisor_idx);
|
|
if (ret)
|
|
goto err_unregister_clksrc;
|
|
|
|
sched_clock_register(tc_sched_clock, 32, divided_rate);
|
|
|
|
tc_delay_timer.freq = divided_rate;
|
|
register_current_timer_delay(&tc_delay_timer);
|
|
|
|
return 0;
|
|
|
|
err_unregister_clksrc:
|
|
clocksource_unregister(&clksrc);
|
|
|
|
err_disable_t1:
|
|
if (bits != 32)
|
|
clk_disable_unprepare(tc.clk[1]);
|
|
|
|
err_disable_t0:
|
|
clk_disable_unprepare(t0_clk);
|
|
|
|
tcaddr = NULL;
|
|
|
|
return ret;
|
|
}
|
|
TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);
|