linux/drivers/crypto/ccp/ccp-crypto-rsa.c
Herbert Xu 99c6b20edf crypto: ccp - Set DMA alignment explicitly
This driver has been implicitly relying on kmalloc alignment
to be sufficient for DMA.  This may no longer be the case with
upcoming arm64 changes.

This patch changes it to explicitly request DMA alignment from
the Crypto API.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-12-09 18:45:00 +08:00

294 lines
6.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD Cryptographic Coprocessor (CCP) RSA crypto API support
*
* Copyright (C) 2017 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <gary.hook@amd.com>
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/internal/rsa.h>
#include <crypto/internal/akcipher.h>
#include <crypto/akcipher.h>
#include <crypto/scatterwalk.h>
#include "ccp-crypto.h"
static inline struct akcipher_request *akcipher_request_cast(
struct crypto_async_request *req)
{
return container_of(req, struct akcipher_request, base);
}
static inline int ccp_copy_and_save_keypart(u8 **kpbuf, unsigned int *kplen,
const u8 *buf, size_t sz)
{
int nskip;
for (nskip = 0; nskip < sz; nskip++)
if (buf[nskip])
break;
*kplen = sz - nskip;
*kpbuf = kmemdup(buf + nskip, *kplen, GFP_KERNEL);
if (!*kpbuf)
return -ENOMEM;
return 0;
}
static int ccp_rsa_complete(struct crypto_async_request *async_req, int ret)
{
struct akcipher_request *req = akcipher_request_cast(async_req);
struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx_dma(req);
if (ret)
return ret;
req->dst_len = rctx->cmd.u.rsa.key_size >> 3;
return 0;
}
static unsigned int ccp_rsa_maxsize(struct crypto_akcipher *tfm)
{
struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
return ctx->u.rsa.n_len;
}
static int ccp_rsa_crypt(struct akcipher_request *req, bool encrypt)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx_dma(req);
int ret = 0;
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
INIT_LIST_HEAD(&rctx->cmd.entry);
rctx->cmd.engine = CCP_ENGINE_RSA;
rctx->cmd.u.rsa.key_size = ctx->u.rsa.key_len; /* in bits */
if (encrypt) {
rctx->cmd.u.rsa.exp = &ctx->u.rsa.e_sg;
rctx->cmd.u.rsa.exp_len = ctx->u.rsa.e_len;
} else {
rctx->cmd.u.rsa.exp = &ctx->u.rsa.d_sg;
rctx->cmd.u.rsa.exp_len = ctx->u.rsa.d_len;
}
rctx->cmd.u.rsa.mod = &ctx->u.rsa.n_sg;
rctx->cmd.u.rsa.mod_len = ctx->u.rsa.n_len;
rctx->cmd.u.rsa.src = req->src;
rctx->cmd.u.rsa.src_len = req->src_len;
rctx->cmd.u.rsa.dst = req->dst;
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
return ret;
}
static int ccp_rsa_encrypt(struct akcipher_request *req)
{
return ccp_rsa_crypt(req, true);
}
static int ccp_rsa_decrypt(struct akcipher_request *req)
{
return ccp_rsa_crypt(req, false);
}
static int ccp_check_key_length(unsigned int len)
{
/* In bits */
if (len < 8 || len > 4096)
return -EINVAL;
return 0;
}
static void ccp_rsa_free_key_bufs(struct ccp_ctx *ctx)
{
/* Clean up old key data */
kfree_sensitive(ctx->u.rsa.e_buf);
ctx->u.rsa.e_buf = NULL;
ctx->u.rsa.e_len = 0;
kfree_sensitive(ctx->u.rsa.n_buf);
ctx->u.rsa.n_buf = NULL;
ctx->u.rsa.n_len = 0;
kfree_sensitive(ctx->u.rsa.d_buf);
ctx->u.rsa.d_buf = NULL;
ctx->u.rsa.d_len = 0;
}
static int ccp_rsa_setkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen, bool private)
{
struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
struct rsa_key raw_key;
int ret;
ccp_rsa_free_key_bufs(ctx);
memset(&raw_key, 0, sizeof(raw_key));
/* Code borrowed from crypto/rsa.c */
if (private)
ret = rsa_parse_priv_key(&raw_key, key, keylen);
else
ret = rsa_parse_pub_key(&raw_key, key, keylen);
if (ret)
goto n_key;
ret = ccp_copy_and_save_keypart(&ctx->u.rsa.n_buf, &ctx->u.rsa.n_len,
raw_key.n, raw_key.n_sz);
if (ret)
goto key_err;
sg_init_one(&ctx->u.rsa.n_sg, ctx->u.rsa.n_buf, ctx->u.rsa.n_len);
ctx->u.rsa.key_len = ctx->u.rsa.n_len << 3; /* convert to bits */
if (ccp_check_key_length(ctx->u.rsa.key_len)) {
ret = -EINVAL;
goto key_err;
}
ret = ccp_copy_and_save_keypart(&ctx->u.rsa.e_buf, &ctx->u.rsa.e_len,
raw_key.e, raw_key.e_sz);
if (ret)
goto key_err;
sg_init_one(&ctx->u.rsa.e_sg, ctx->u.rsa.e_buf, ctx->u.rsa.e_len);
if (private) {
ret = ccp_copy_and_save_keypart(&ctx->u.rsa.d_buf,
&ctx->u.rsa.d_len,
raw_key.d, raw_key.d_sz);
if (ret)
goto key_err;
sg_init_one(&ctx->u.rsa.d_sg,
ctx->u.rsa.d_buf, ctx->u.rsa.d_len);
}
return 0;
key_err:
ccp_rsa_free_key_bufs(ctx);
n_key:
return ret;
}
static int ccp_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
return ccp_rsa_setkey(tfm, key, keylen, true);
}
static int ccp_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
return ccp_rsa_setkey(tfm, key, keylen, false);
}
static int ccp_rsa_init_tfm(struct crypto_akcipher *tfm)
{
struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
akcipher_set_reqsize_dma(tfm, sizeof(struct ccp_rsa_req_ctx));
ctx->complete = ccp_rsa_complete;
return 0;
}
static void ccp_rsa_exit_tfm(struct crypto_akcipher *tfm)
{
struct ccp_ctx *ctx = akcipher_tfm_ctx_dma(tfm);
ccp_rsa_free_key_bufs(ctx);
}
static struct akcipher_alg ccp_rsa_defaults = {
.encrypt = ccp_rsa_encrypt,
.decrypt = ccp_rsa_decrypt,
.set_pub_key = ccp_rsa_setpubkey,
.set_priv_key = ccp_rsa_setprivkey,
.max_size = ccp_rsa_maxsize,
.init = ccp_rsa_init_tfm,
.exit = ccp_rsa_exit_tfm,
.base = {
.cra_name = "rsa",
.cra_driver_name = "rsa-ccp",
.cra_priority = CCP_CRA_PRIORITY,
.cra_module = THIS_MODULE,
.cra_ctxsize = 2 * sizeof(struct ccp_ctx) + CRYPTO_DMA_PADDING,
},
};
struct ccp_rsa_def {
unsigned int version;
const char *name;
const char *driver_name;
unsigned int reqsize;
struct akcipher_alg *alg_defaults;
};
static struct ccp_rsa_def rsa_algs[] = {
{
.version = CCP_VERSION(3, 0),
.name = "rsa",
.driver_name = "rsa-ccp",
.reqsize = sizeof(struct ccp_rsa_req_ctx),
.alg_defaults = &ccp_rsa_defaults,
}
};
static int ccp_register_rsa_alg(struct list_head *head,
const struct ccp_rsa_def *def)
{
struct ccp_crypto_akcipher_alg *ccp_alg;
struct akcipher_alg *alg;
int ret;
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
if (!ccp_alg)
return -ENOMEM;
INIT_LIST_HEAD(&ccp_alg->entry);
alg = &ccp_alg->alg;
*alg = *def->alg_defaults;
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->driver_name);
ret = crypto_register_akcipher(alg);
if (ret) {
pr_err("%s akcipher algorithm registration error (%d)\n",
alg->base.cra_name, ret);
kfree(ccp_alg);
return ret;
}
list_add(&ccp_alg->entry, head);
return 0;
}
int ccp_register_rsa_algs(struct list_head *head)
{
int i, ret;
unsigned int ccpversion = ccp_version();
/* Register the RSA algorithm in standard mode
* This works for CCP v3 and later
*/
for (i = 0; i < ARRAY_SIZE(rsa_algs); i++) {
if (rsa_algs[i].version > ccpversion)
continue;
ret = ccp_register_rsa_alg(head, &rsa_algs[i]);
if (ret)
return ret;
}
return 0;
}