linux/drivers/net/wireless/ath/ath10k/snoc.c
Erik Stromdahl 7c2dd6154f ath10k: add device type enum to ath10k_bus_params
Add dev_type parameter to struct ath10k_bus_params.

The dev type specifies if the device is a high latency device (usb and
sdio) or low latency device (pci, ahb and snoc)

The setup of high latency chips is sometimes different than
for chips using low latency interfaces.

Signed-off-by: Erik Stromdahl <erik.stromdahl@gmail.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2018-09-06 19:13:58 +03:00

1409 lines
32 KiB
C

/*
* Copyright (c) 2018 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include "ce.h"
#include "debug.h"
#include "hif.h"
#include "htc.h"
#include "snoc.h"
#define ATH10K_SNOC_RX_POST_RETRY_MS 50
#define CE_POLL_PIPE 4
static char *const ce_name[] = {
"WLAN_CE_0",
"WLAN_CE_1",
"WLAN_CE_2",
"WLAN_CE_3",
"WLAN_CE_4",
"WLAN_CE_5",
"WLAN_CE_6",
"WLAN_CE_7",
"WLAN_CE_8",
"WLAN_CE_9",
"WLAN_CE_10",
"WLAN_CE_11",
};
static struct ath10k_wcn3990_vreg_info vreg_cfg[] = {
{NULL, "vdd-0.8-cx-mx", 800000, 800000, 0, 0, false},
{NULL, "vdd-1.8-xo", 1800000, 1800000, 0, 0, false},
{NULL, "vdd-1.3-rfa", 1304000, 1304000, 0, 0, false},
{NULL, "vdd-3.3-ch0", 3312000, 3312000, 0, 0, false},
};
static struct ath10k_wcn3990_clk_info clk_cfg[] = {
{NULL, "cxo_ref_clk_pin", 0, false},
};
static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
static const struct ath10k_snoc_drv_priv drv_priv = {
.hw_rev = ATH10K_HW_WCN3990,
.dma_mask = DMA_BIT_MASK(37),
};
static struct ce_attr host_ce_config_wlan[] = {
/* CE0: host->target HTC control streams */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 16,
.src_sz_max = 2048,
.dest_nentries = 0,
.send_cb = ath10k_snoc_htc_tx_cb,
},
/* CE1: target->host HTT + HTC control */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_htt_htc_rx_cb,
},
/* CE2: target->host WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 64,
.recv_cb = ath10k_snoc_htc_rx_cb,
},
/* CE3: host->target WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 32,
.src_sz_max = 2048,
.dest_nentries = 0,
.send_cb = ath10k_snoc_htc_tx_cb,
},
/* CE4: host->target HTT */
{
.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
.src_nentries = 256,
.src_sz_max = 256,
.dest_nentries = 0,
.send_cb = ath10k_snoc_htt_tx_cb,
},
/* CE5: target->host HTT (ipa_uc->target ) */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 512,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_htt_rx_cb,
},
/* CE6: target autonomous hif_memcpy */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE7: ce_diag, the Diagnostic Window */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 2,
.src_sz_max = 2048,
.dest_nentries = 2,
},
/* CE8: Target to uMC */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 128,
},
/* CE9 target->host HTT */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_htt_htc_rx_cb,
},
/* CE10: target->host HTT */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_htt_htc_rx_cb,
},
/* CE11: target -> host PKTLOG */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_pktlog_rx_cb,
},
};
static struct service_to_pipe target_service_to_ce_map_wlan[] = {
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(0),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(0),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(4),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(1),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_OUT),
__cpu_to_le32(5),
},
{ /* in = DL = target -> host */
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA2_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(9),
},
{ /* in = DL = target -> host */
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA3_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(10),
},
{ /* in = DL = target -> host pktlog */
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_LOG_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(11),
},
/* (Additions here) */
{ /* must be last */
__cpu_to_le32(0),
__cpu_to_le32(0),
__cpu_to_le32(0),
},
};
void ath10k_snoc_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
iowrite32(value, ar_snoc->mem + offset);
}
u32 ath10k_snoc_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
u32 val;
val = ioread32(ar_snoc->mem + offset);
return val;
}
static int __ath10k_snoc_rx_post_buf(struct ath10k_snoc_pipe *pipe)
{
struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct sk_buff *skb;
dma_addr_t paddr;
int ret;
skb = dev_alloc_skb(pipe->buf_sz);
if (!skb)
return -ENOMEM;
WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
paddr = dma_map_single(ar->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(ar->dev, paddr))) {
ath10k_warn(ar, "failed to dma map snoc rx buf\n");
dev_kfree_skb_any(skb);
return -EIO;
}
ATH10K_SKB_RXCB(skb)->paddr = paddr;
spin_lock_bh(&ce->ce_lock);
ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
spin_unlock_bh(&ce->ce_lock);
if (ret) {
dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
static void ath10k_snoc_rx_post_pipe(struct ath10k_snoc_pipe *pipe)
{
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
int ret, num;
if (pipe->buf_sz == 0)
return;
if (!ce_pipe->dest_ring)
return;
spin_lock_bh(&ce->ce_lock);
num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
spin_unlock_bh(&ce->ce_lock);
while (num--) {
ret = __ath10k_snoc_rx_post_buf(pipe);
if (ret) {
if (ret == -ENOSPC)
break;
ath10k_warn(ar, "failed to post rx buf: %d\n", ret);
mod_timer(&ar_snoc->rx_post_retry, jiffies +
ATH10K_SNOC_RX_POST_RETRY_MS);
break;
}
}
}
static void ath10k_snoc_rx_post(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int i;
for (i = 0; i < CE_COUNT; i++)
ath10k_snoc_rx_post_pipe(&ar_snoc->pipe_info[i]);
}
static void ath10k_snoc_process_rx_cb(struct ath10k_ce_pipe *ce_state,
void (*callback)(struct ath10k *ar,
struct sk_buff *skb))
{
struct ath10k *ar = ce_state->ar;
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_snoc_pipe *pipe_info = &ar_snoc->pipe_info[ce_state->id];
struct sk_buff *skb;
struct sk_buff_head list;
void *transfer_context;
unsigned int nbytes, max_nbytes;
__skb_queue_head_init(&list);
while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
&nbytes) == 0) {
skb = transfer_context;
max_nbytes = skb->len + skb_tailroom(skb);
dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
max_nbytes, DMA_FROM_DEVICE);
if (unlikely(max_nbytes < nbytes)) {
ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
nbytes, max_nbytes);
dev_kfree_skb_any(skb);
continue;
}
skb_put(skb, nbytes);
__skb_queue_tail(&list, skb);
}
while ((skb = __skb_dequeue(&list))) {
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc rx ce pipe %d len %d\n",
ce_state->id, skb->len);
callback(ar, skb);
}
ath10k_snoc_rx_post_pipe(pipe_info);
}
static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}
static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
/* CE4 polling needs to be done whenever CE pipe which transports
* HTT Rx (target->host) is processed.
*/
ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE);
ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}
/* Called by lower (CE) layer when data is received from the Target.
* WCN3990 firmware uses separate CE(CE11) to transfer pktlog data.
*/
static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
{
ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}
static void ath10k_snoc_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
{
skb_pull(skb, sizeof(struct ath10k_htc_hdr));
ath10k_htt_t2h_msg_handler(ar, skb);
}
static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
{
ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE);
ath10k_snoc_process_rx_cb(ce_state, ath10k_snoc_htt_rx_deliver);
}
static void ath10k_snoc_rx_replenish_retry(struct timer_list *t)
{
struct ath10k_snoc *ar_snoc = from_timer(ar_snoc, t, rx_post_retry);
struct ath10k *ar = ar_snoc->ar;
ath10k_snoc_rx_post(ar);
}
static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct sk_buff_head list;
struct sk_buff *skb;
__skb_queue_head_init(&list);
while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
if (!skb)
continue;
__skb_queue_tail(&list, skb);
}
while ((skb = __skb_dequeue(&list)))
ath10k_htc_tx_completion_handler(ar, skb);
}
static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct sk_buff *skb;
while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
if (!skb)
continue;
dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
skb->len, DMA_TO_DEVICE);
ath10k_htt_hif_tx_complete(ar, skb);
}
}
static int ath10k_snoc_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
struct ath10k_hif_sg_item *items, int n_items)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_snoc_pipe *snoc_pipe;
struct ath10k_ce_pipe *ce_pipe;
int err, i = 0;
snoc_pipe = &ar_snoc->pipe_info[pipe_id];
ce_pipe = snoc_pipe->ce_hdl;
spin_lock_bh(&ce->ce_lock);
for (i = 0; i < n_items - 1; i++) {
ath10k_dbg(ar, ATH10K_DBG_SNOC,
"snoc tx item %d paddr %pad len %d n_items %d\n",
i, &items[i].paddr, items[i].len, n_items);
err = ath10k_ce_send_nolock(ce_pipe,
items[i].transfer_context,
items[i].paddr,
items[i].len,
items[i].transfer_id,
CE_SEND_FLAG_GATHER);
if (err)
goto err;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC,
"snoc tx item %d paddr %pad len %d n_items %d\n",
i, &items[i].paddr, items[i].len, n_items);
err = ath10k_ce_send_nolock(ce_pipe,
items[i].transfer_context,
items[i].paddr,
items[i].len,
items[i].transfer_id,
0);
if (err)
goto err;
spin_unlock_bh(&ce->ce_lock);
return 0;
err:
for (; i > 0; i--)
__ath10k_ce_send_revert(ce_pipe);
spin_unlock_bh(&ce->ce_lock);
return err;
}
static int ath10k_snoc_hif_get_target_info(struct ath10k *ar,
struct bmi_target_info *target_info)
{
target_info->version = ATH10K_HW_WCN3990;
target_info->type = ATH10K_HW_WCN3990;
return 0;
}
static u16 ath10k_snoc_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_SNOC, "hif get free queue number\n");
return ath10k_ce_num_free_src_entries(ar_snoc->pipe_info[pipe].ce_hdl);
}
static void ath10k_snoc_hif_send_complete_check(struct ath10k *ar, u8 pipe,
int force)
{
int resources;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif send complete check\n");
if (!force) {
resources = ath10k_snoc_hif_get_free_queue_number(ar, pipe);
if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
return;
}
ath10k_ce_per_engine_service(ar, pipe);
}
static int ath10k_snoc_hif_map_service_to_pipe(struct ath10k *ar,
u16 service_id,
u8 *ul_pipe, u8 *dl_pipe)
{
const struct service_to_pipe *entry;
bool ul_set = false, dl_set = false;
int i;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif map service\n");
for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
entry = &target_service_to_ce_map_wlan[i];
if (__le32_to_cpu(entry->service_id) != service_id)
continue;
switch (__le32_to_cpu(entry->pipedir)) {
case PIPEDIR_NONE:
break;
case PIPEDIR_IN:
WARN_ON(dl_set);
*dl_pipe = __le32_to_cpu(entry->pipenum);
dl_set = true;
break;
case PIPEDIR_OUT:
WARN_ON(ul_set);
*ul_pipe = __le32_to_cpu(entry->pipenum);
ul_set = true;
break;
case PIPEDIR_INOUT:
WARN_ON(dl_set);
WARN_ON(ul_set);
*dl_pipe = __le32_to_cpu(entry->pipenum);
*ul_pipe = __le32_to_cpu(entry->pipenum);
dl_set = true;
ul_set = true;
break;
}
}
if (!ul_set || !dl_set)
return -ENOENT;
return 0;
}
static void ath10k_snoc_hif_get_default_pipe(struct ath10k *ar,
u8 *ul_pipe, u8 *dl_pipe)
{
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif get default pipe\n");
(void)ath10k_snoc_hif_map_service_to_pipe(ar,
ATH10K_HTC_SVC_ID_RSVD_CTRL,
ul_pipe, dl_pipe);
}
static inline void ath10k_snoc_irq_disable(struct ath10k *ar)
{
ath10k_ce_disable_interrupts(ar);
}
static inline void ath10k_snoc_irq_enable(struct ath10k *ar)
{
ath10k_ce_enable_interrupts(ar);
}
static void ath10k_snoc_rx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe)
{
struct ath10k_ce_pipe *ce_pipe;
struct ath10k_ce_ring *ce_ring;
struct sk_buff *skb;
struct ath10k *ar;
int i;
ar = snoc_pipe->hif_ce_state;
ce_pipe = snoc_pipe->ce_hdl;
ce_ring = ce_pipe->dest_ring;
if (!ce_ring)
return;
if (!snoc_pipe->buf_sz)
return;
for (i = 0; i < ce_ring->nentries; i++) {
skb = ce_ring->per_transfer_context[i];
if (!skb)
continue;
ce_ring->per_transfer_context[i] = NULL;
dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
}
static void ath10k_snoc_tx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe)
{
struct ath10k_ce_pipe *ce_pipe;
struct ath10k_ce_ring *ce_ring;
struct ath10k_snoc *ar_snoc;
struct sk_buff *skb;
struct ath10k *ar;
int i;
ar = snoc_pipe->hif_ce_state;
ar_snoc = ath10k_snoc_priv(ar);
ce_pipe = snoc_pipe->ce_hdl;
ce_ring = ce_pipe->src_ring;
if (!ce_ring)
return;
if (!snoc_pipe->buf_sz)
return;
for (i = 0; i < ce_ring->nentries; i++) {
skb = ce_ring->per_transfer_context[i];
if (!skb)
continue;
ce_ring->per_transfer_context[i] = NULL;
ath10k_htc_tx_completion_handler(ar, skb);
}
}
static void ath10k_snoc_buffer_cleanup(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_snoc_pipe *pipe_info;
int pipe_num;
del_timer_sync(&ar_snoc->rx_post_retry);
for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
pipe_info = &ar_snoc->pipe_info[pipe_num];
ath10k_snoc_rx_pipe_cleanup(pipe_info);
ath10k_snoc_tx_pipe_cleanup(pipe_info);
}
}
static void ath10k_snoc_hif_stop(struct ath10k *ar)
{
ath10k_snoc_irq_disable(ar);
ath10k_snoc_buffer_cleanup(ar);
napi_synchronize(&ar->napi);
napi_disable(&ar->napi);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
}
static int ath10k_snoc_hif_start(struct ath10k *ar)
{
ath10k_snoc_irq_enable(ar);
ath10k_snoc_rx_post(ar);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
return 0;
}
static int ath10k_snoc_init_pipes(struct ath10k *ar)
{
int i, ret;
for (i = 0; i < CE_COUNT; i++) {
ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
if (ret) {
ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
i, ret);
return ret;
}
}
return 0;
}
static int ath10k_snoc_wlan_enable(struct ath10k *ar)
{
return 0;
}
static void ath10k_snoc_wlan_disable(struct ath10k *ar)
{
}
static void ath10k_snoc_hif_power_down(struct ath10k *ar)
{
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
ath10k_snoc_wlan_disable(ar);
ath10k_ce_free_rri(ar);
}
static int ath10k_snoc_hif_power_up(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s:WCN3990 driver state = %d\n",
__func__, ar->state);
ret = ath10k_snoc_wlan_enable(ar);
if (ret) {
ath10k_err(ar, "failed to enable wcn3990: %d\n", ret);
return ret;
}
ath10k_ce_alloc_rri(ar);
ret = ath10k_snoc_init_pipes(ar);
if (ret) {
ath10k_err(ar, "failed to initialize CE: %d\n", ret);
goto err_wlan_enable;
}
napi_enable(&ar->napi);
return 0;
err_wlan_enable:
ath10k_snoc_wlan_disable(ar);
return ret;
}
static const struct ath10k_hif_ops ath10k_snoc_hif_ops = {
.read32 = ath10k_snoc_read32,
.write32 = ath10k_snoc_write32,
.start = ath10k_snoc_hif_start,
.stop = ath10k_snoc_hif_stop,
.map_service_to_pipe = ath10k_snoc_hif_map_service_to_pipe,
.get_default_pipe = ath10k_snoc_hif_get_default_pipe,
.power_up = ath10k_snoc_hif_power_up,
.power_down = ath10k_snoc_hif_power_down,
.tx_sg = ath10k_snoc_hif_tx_sg,
.send_complete_check = ath10k_snoc_hif_send_complete_check,
.get_free_queue_number = ath10k_snoc_hif_get_free_queue_number,
.get_target_info = ath10k_snoc_hif_get_target_info,
};
static const struct ath10k_bus_ops ath10k_snoc_bus_ops = {
.read32 = ath10k_snoc_read32,
.write32 = ath10k_snoc_write32,
};
static int ath10k_snoc_get_ce_id_from_irq(struct ath10k *ar, int irq)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int i;
for (i = 0; i < CE_COUNT_MAX; i++) {
if (ar_snoc->ce_irqs[i].irq_line == irq)
return i;
}
ath10k_err(ar, "No matching CE id for irq %d\n", irq);
return -EINVAL;
}
static irqreturn_t ath10k_snoc_per_engine_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int ce_id = ath10k_snoc_get_ce_id_from_irq(ar, irq);
if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_snoc->pipe_info)) {
ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
ce_id);
return IRQ_HANDLED;
}
ath10k_snoc_irq_disable(ar);
napi_schedule(&ar->napi);
return IRQ_HANDLED;
}
static int ath10k_snoc_napi_poll(struct napi_struct *ctx, int budget)
{
struct ath10k *ar = container_of(ctx, struct ath10k, napi);
int done = 0;
ath10k_ce_per_engine_service_any(ar);
done = ath10k_htt_txrx_compl_task(ar, budget);
if (done < budget) {
napi_complete(ctx);
ath10k_snoc_irq_enable(ar);
}
return done;
}
static void ath10k_snoc_init_napi(struct ath10k *ar)
{
netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_snoc_napi_poll,
ATH10K_NAPI_BUDGET);
}
static int ath10k_snoc_request_irq(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int irqflags = IRQF_TRIGGER_RISING;
int ret, id;
for (id = 0; id < CE_COUNT_MAX; id++) {
ret = request_irq(ar_snoc->ce_irqs[id].irq_line,
ath10k_snoc_per_engine_handler,
irqflags, ce_name[id], ar);
if (ret) {
ath10k_err(ar,
"failed to register IRQ handler for CE %d: %d",
id, ret);
goto err_irq;
}
}
return 0;
err_irq:
for (id -= 1; id >= 0; id--)
free_irq(ar_snoc->ce_irqs[id].irq_line, ar);
return ret;
}
static void ath10k_snoc_free_irq(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int id;
for (id = 0; id < CE_COUNT_MAX; id++)
free_irq(ar_snoc->ce_irqs[id].irq_line, ar);
}
static int ath10k_snoc_resource_init(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct platform_device *pdev;
struct resource *res;
int i, ret = 0;
pdev = ar_snoc->dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "membase");
if (!res) {
ath10k_err(ar, "Memory base not found in DT\n");
return -EINVAL;
}
ar_snoc->mem_pa = res->start;
ar_snoc->mem = devm_ioremap(&pdev->dev, ar_snoc->mem_pa,
resource_size(res));
if (!ar_snoc->mem) {
ath10k_err(ar, "Memory base ioremap failed with physical address %pa\n",
&ar_snoc->mem_pa);
return -EINVAL;
}
for (i = 0; i < CE_COUNT; i++) {
res = platform_get_resource(ar_snoc->dev, IORESOURCE_IRQ, i);
if (!res) {
ath10k_err(ar, "failed to get IRQ%d\n", i);
ret = -ENODEV;
goto out;
}
ar_snoc->ce_irqs[i].irq_line = res->start;
}
out:
return ret;
}
static int ath10k_snoc_setup_resource(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_snoc_pipe *pipe;
int i, ret;
timer_setup(&ar_snoc->rx_post_retry, ath10k_snoc_rx_replenish_retry, 0);
spin_lock_init(&ce->ce_lock);
for (i = 0; i < CE_COUNT; i++) {
pipe = &ar_snoc->pipe_info[i];
pipe->ce_hdl = &ce->ce_states[i];
pipe->pipe_num = i;
pipe->hif_ce_state = ar;
ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
if (ret) {
ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
i, ret);
return ret;
}
pipe->buf_sz = host_ce_config_wlan[i].src_sz_max;
}
ath10k_snoc_init_napi(ar);
return 0;
}
static void ath10k_snoc_release_resource(struct ath10k *ar)
{
int i;
netif_napi_del(&ar->napi);
for (i = 0; i < CE_COUNT; i++)
ath10k_ce_free_pipe(ar, i);
}
static int ath10k_get_vreg_info(struct ath10k *ar, struct device *dev,
struct ath10k_wcn3990_vreg_info *vreg_info)
{
struct regulator *reg;
int ret = 0;
reg = devm_regulator_get_optional(dev, vreg_info->name);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret == -EPROBE_DEFER) {
ath10k_err(ar, "EPROBE_DEFER for regulator: %s\n",
vreg_info->name);
return ret;
}
if (vreg_info->required) {
ath10k_err(ar, "Regulator %s doesn't exist: %d\n",
vreg_info->name, ret);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC,
"Optional regulator %s doesn't exist: %d\n",
vreg_info->name, ret);
goto done;
}
vreg_info->reg = reg;
done:
ath10k_dbg(ar, ATH10K_DBG_SNOC,
"snog vreg %s min_v %u max_v %u load_ua %u settle_delay %lu\n",
vreg_info->name, vreg_info->min_v, vreg_info->max_v,
vreg_info->load_ua, vreg_info->settle_delay);
return 0;
}
static int ath10k_get_clk_info(struct ath10k *ar, struct device *dev,
struct ath10k_wcn3990_clk_info *clk_info)
{
struct clk *handle;
int ret = 0;
handle = devm_clk_get(dev, clk_info->name);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
if (clk_info->required) {
ath10k_err(ar, "snoc clock %s isn't available: %d\n",
clk_info->name, ret);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc ignoring clock %s: %d\n",
clk_info->name,
ret);
return 0;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc clock %s freq %u\n",
clk_info->name, clk_info->freq);
clk_info->handle = handle;
return ret;
}
static int ath10k_wcn3990_vreg_on(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_wcn3990_vreg_info *vreg_info;
int ret = 0;
int i;
for (i = 0; i < ARRAY_SIZE(vreg_cfg); i++) {
vreg_info = &ar_snoc->vreg[i];
if (!vreg_info->reg)
continue;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc regulator %s being enabled\n",
vreg_info->name);
ret = regulator_set_voltage(vreg_info->reg, vreg_info->min_v,
vreg_info->max_v);
if (ret) {
ath10k_err(ar,
"failed to set regulator %s voltage-min: %d voltage-max: %d\n",
vreg_info->name, vreg_info->min_v, vreg_info->max_v);
goto err_reg_config;
}
if (vreg_info->load_ua) {
ret = regulator_set_load(vreg_info->reg,
vreg_info->load_ua);
if (ret < 0) {
ath10k_err(ar,
"failed to set regulator %s load: %d\n",
vreg_info->name,
vreg_info->load_ua);
goto err_reg_config;
}
}
ret = regulator_enable(vreg_info->reg);
if (ret) {
ath10k_err(ar, "failed to enable regulator %s\n",
vreg_info->name);
goto err_reg_config;
}
if (vreg_info->settle_delay)
udelay(vreg_info->settle_delay);
}
return 0;
err_reg_config:
for (; i >= 0; i--) {
vreg_info = &ar_snoc->vreg[i];
if (!vreg_info->reg)
continue;
regulator_disable(vreg_info->reg);
regulator_set_load(vreg_info->reg, 0);
regulator_set_voltage(vreg_info->reg, 0, vreg_info->max_v);
}
return ret;
}
static int ath10k_wcn3990_vreg_off(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_wcn3990_vreg_info *vreg_info;
int ret = 0;
int i;
for (i = ARRAY_SIZE(vreg_cfg) - 1; i >= 0; i--) {
vreg_info = &ar_snoc->vreg[i];
if (!vreg_info->reg)
continue;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc regulator %s being disabled\n",
vreg_info->name);
ret = regulator_disable(vreg_info->reg);
if (ret)
ath10k_err(ar, "failed to disable regulator %s\n",
vreg_info->name);
ret = regulator_set_load(vreg_info->reg, 0);
if (ret < 0)
ath10k_err(ar, "failed to set load %s\n",
vreg_info->name);
ret = regulator_set_voltage(vreg_info->reg, 0,
vreg_info->max_v);
if (ret)
ath10k_err(ar, "failed to set voltage %s\n",
vreg_info->name);
}
return ret;
}
static int ath10k_wcn3990_clk_init(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_wcn3990_clk_info *clk_info;
int ret = 0;
int i;
for (i = 0; i < ARRAY_SIZE(clk_cfg); i++) {
clk_info = &ar_snoc->clk[i];
if (!clk_info->handle)
continue;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc clock %s being enabled\n",
clk_info->name);
if (clk_info->freq) {
ret = clk_set_rate(clk_info->handle, clk_info->freq);
if (ret) {
ath10k_err(ar, "failed to set clock %s freq %u\n",
clk_info->name, clk_info->freq);
goto err_clock_config;
}
}
ret = clk_prepare_enable(clk_info->handle);
if (ret) {
ath10k_err(ar, "failed to enable clock %s\n",
clk_info->name);
goto err_clock_config;
}
}
return 0;
err_clock_config:
for (; i >= 0; i--) {
clk_info = &ar_snoc->clk[i];
if (!clk_info->handle)
continue;
clk_disable_unprepare(clk_info->handle);
}
return ret;
}
static int ath10k_wcn3990_clk_deinit(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_wcn3990_clk_info *clk_info;
int i;
for (i = 0; i < ARRAY_SIZE(clk_cfg); i++) {
clk_info = &ar_snoc->clk[i];
if (!clk_info->handle)
continue;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc clock %s being disabled\n",
clk_info->name);
clk_disable_unprepare(clk_info->handle);
}
return 0;
}
static int ath10k_hw_power_on(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power on\n");
ret = ath10k_wcn3990_vreg_on(ar);
if (ret)
return ret;
ret = ath10k_wcn3990_clk_init(ar);
if (ret)
goto vreg_off;
return ret;
vreg_off:
ath10k_wcn3990_vreg_off(ar);
return ret;
}
static int ath10k_hw_power_off(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power off\n");
ath10k_wcn3990_clk_deinit(ar);
ret = ath10k_wcn3990_vreg_off(ar);
return ret;
}
static const struct of_device_id ath10k_snoc_dt_match[] = {
{ .compatible = "qcom,wcn3990-wifi",
.data = &drv_priv,
},
{ }
};
MODULE_DEVICE_TABLE(of, ath10k_snoc_dt_match);
static int ath10k_snoc_probe(struct platform_device *pdev)
{
const struct ath10k_snoc_drv_priv *drv_data;
const struct of_device_id *of_id;
struct ath10k_snoc *ar_snoc;
struct device *dev;
struct ath10k *ar;
int ret;
u32 i;
struct ath10k_bus_params bus_params;
of_id = of_match_device(ath10k_snoc_dt_match, &pdev->dev);
if (!of_id) {
dev_err(&pdev->dev, "failed to find matching device tree id\n");
return -EINVAL;
}
drv_data = of_id->data;
dev = &pdev->dev;
ret = dma_set_mask_and_coherent(dev, drv_data->dma_mask);
if (ret) {
dev_err(dev, "failed to set dma mask: %d", ret);
return ret;
}
ar = ath10k_core_create(sizeof(*ar_snoc), dev, ATH10K_BUS_SNOC,
drv_data->hw_rev, &ath10k_snoc_hif_ops);
if (!ar) {
dev_err(dev, "failed to allocate core\n");
return -ENOMEM;
}
ar_snoc = ath10k_snoc_priv(ar);
ar_snoc->dev = pdev;
platform_set_drvdata(pdev, ar);
ar_snoc->ar = ar;
ar_snoc->ce.bus_ops = &ath10k_snoc_bus_ops;
ar->ce_priv = &ar_snoc->ce;
ret = ath10k_snoc_resource_init(ar);
if (ret) {
ath10k_warn(ar, "failed to initialize resource: %d\n", ret);
goto err_core_destroy;
}
ret = ath10k_snoc_setup_resource(ar);
if (ret) {
ath10k_warn(ar, "failed to setup resource: %d\n", ret);
goto err_core_destroy;
}
ret = ath10k_snoc_request_irq(ar);
if (ret) {
ath10k_warn(ar, "failed to request irqs: %d\n", ret);
goto err_release_resource;
}
ar_snoc->vreg = vreg_cfg;
for (i = 0; i < ARRAY_SIZE(vreg_cfg); i++) {
ret = ath10k_get_vreg_info(ar, dev, &ar_snoc->vreg[i]);
if (ret)
goto err_free_irq;
}
ar_snoc->clk = clk_cfg;
for (i = 0; i < ARRAY_SIZE(clk_cfg); i++) {
ret = ath10k_get_clk_info(ar, dev, &ar_snoc->clk[i]);
if (ret)
goto err_free_irq;
}
ret = ath10k_hw_power_on(ar);
if (ret) {
ath10k_err(ar, "failed to power on device: %d\n", ret);
goto err_free_irq;
}
bus_params.dev_type = ATH10K_DEV_TYPE_LL;
bus_params.chip_id = drv_data->hw_rev;
ret = ath10k_core_register(ar, &bus_params);
if (ret) {
ath10k_err(ar, "failed to register driver core: %d\n", ret);
goto err_hw_power_off;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc probe\n");
ath10k_warn(ar, "Warning: SNOC support is still work-in-progress, it will not work properly!");
return 0;
err_hw_power_off:
ath10k_hw_power_off(ar);
err_free_irq:
ath10k_snoc_free_irq(ar);
err_release_resource:
ath10k_snoc_release_resource(ar);
err_core_destroy:
ath10k_core_destroy(ar);
return ret;
}
static int ath10k_snoc_remove(struct platform_device *pdev)
{
struct ath10k *ar = platform_get_drvdata(pdev);
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc remove\n");
ath10k_core_unregister(ar);
ath10k_hw_power_off(ar);
ath10k_snoc_free_irq(ar);
ath10k_snoc_release_resource(ar);
ath10k_core_destroy(ar);
return 0;
}
static struct platform_driver ath10k_snoc_driver = {
.probe = ath10k_snoc_probe,
.remove = ath10k_snoc_remove,
.driver = {
.name = "ath10k_snoc",
.of_match_table = ath10k_snoc_dt_match,
},
};
module_platform_driver(ath10k_snoc_driver);
MODULE_AUTHOR("Qualcomm");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Driver support for Atheros WCN3990 SNOC devices");