mirror of
https://github.com/torvalds/linux.git
synced 2024-12-02 00:51:44 +00:00
7c05e7f3e7
The motivation of inlining bpf_kptr_xchg() comes from the performance profiling of bpf memory allocator benchmark. The benchmark uses bpf_kptr_xchg() to stash the allocated objects and to pop the stashed objects for free. After inling bpf_kptr_xchg(), the performance for object free on 8-CPUs VM increases about 2%~10%. The inline also has downside: both the kasan and kcsan checks on the pointer will be unavailable. bpf_kptr_xchg() can be inlined by converting the calling of bpf_kptr_xchg() into an atomic_xchg() instruction. But the conversion depends on two conditions: 1) JIT backend supports atomic_xchg() on pointer-sized word 2) For the specific arch, the implementation of xchg is the same as atomic_xchg() on pointer-sized words. It seems most 64-bit JIT backends satisfies these two conditions. But as a precaution, defining a weak function bpf_jit_supports_ptr_xchg() to state whether such conversion is safe and only supporting inline for 64-bit host. For x86-64, it supports BPF_XCHG atomic operation and both xchg() and atomic_xchg() use arch_xchg() to implement the exchange, so enabling the inline of bpf_kptr_xchg() on x86-64 first. Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20240105104819.3916743-2-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
3250 lines
87 KiB
C
3250 lines
87 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* BPF JIT compiler
|
|
*
|
|
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
|
|
* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
|
|
*/
|
|
#include <linux/netdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/sort.h>
|
|
#include <asm/extable.h>
|
|
#include <asm/ftrace.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/nospec-branch.h>
|
|
#include <asm/text-patching.h>
|
|
#include <asm/unwind.h>
|
|
#include <asm/cfi.h>
|
|
|
|
static bool all_callee_regs_used[4] = {true, true, true, true};
|
|
|
|
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
|
|
{
|
|
if (len == 1)
|
|
*ptr = bytes;
|
|
else if (len == 2)
|
|
*(u16 *)ptr = bytes;
|
|
else {
|
|
*(u32 *)ptr = bytes;
|
|
barrier();
|
|
}
|
|
return ptr + len;
|
|
}
|
|
|
|
#define EMIT(bytes, len) \
|
|
do { prog = emit_code(prog, bytes, len); } while (0)
|
|
|
|
#define EMIT1(b1) EMIT(b1, 1)
|
|
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
|
|
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
|
|
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
|
|
|
|
#define EMIT1_off32(b1, off) \
|
|
do { EMIT1(b1); EMIT(off, 4); } while (0)
|
|
#define EMIT2_off32(b1, b2, off) \
|
|
do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
|
|
#define EMIT3_off32(b1, b2, b3, off) \
|
|
do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
|
|
#define EMIT4_off32(b1, b2, b3, b4, off) \
|
|
do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
|
|
|
|
#ifdef CONFIG_X86_KERNEL_IBT
|
|
#define EMIT_ENDBR() EMIT(gen_endbr(), 4)
|
|
#define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4)
|
|
#else
|
|
#define EMIT_ENDBR()
|
|
#define EMIT_ENDBR_POISON()
|
|
#endif
|
|
|
|
static bool is_imm8(int value)
|
|
{
|
|
return value <= 127 && value >= -128;
|
|
}
|
|
|
|
static bool is_simm32(s64 value)
|
|
{
|
|
return value == (s64)(s32)value;
|
|
}
|
|
|
|
static bool is_uimm32(u64 value)
|
|
{
|
|
return value == (u64)(u32)value;
|
|
}
|
|
|
|
/* mov dst, src */
|
|
#define EMIT_mov(DST, SRC) \
|
|
do { \
|
|
if (DST != SRC) \
|
|
EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
|
|
} while (0)
|
|
|
|
static int bpf_size_to_x86_bytes(int bpf_size)
|
|
{
|
|
if (bpf_size == BPF_W)
|
|
return 4;
|
|
else if (bpf_size == BPF_H)
|
|
return 2;
|
|
else if (bpf_size == BPF_B)
|
|
return 1;
|
|
else if (bpf_size == BPF_DW)
|
|
return 4; /* imm32 */
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* List of x86 cond jumps opcodes (. + s8)
|
|
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
|
|
*/
|
|
#define X86_JB 0x72
|
|
#define X86_JAE 0x73
|
|
#define X86_JE 0x74
|
|
#define X86_JNE 0x75
|
|
#define X86_JBE 0x76
|
|
#define X86_JA 0x77
|
|
#define X86_JL 0x7C
|
|
#define X86_JGE 0x7D
|
|
#define X86_JLE 0x7E
|
|
#define X86_JG 0x7F
|
|
|
|
/* Pick a register outside of BPF range for JIT internal work */
|
|
#define AUX_REG (MAX_BPF_JIT_REG + 1)
|
|
#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
|
|
|
|
/*
|
|
* The following table maps BPF registers to x86-64 registers.
|
|
*
|
|
* x86-64 register R12 is unused, since if used as base address
|
|
* register in load/store instructions, it always needs an
|
|
* extra byte of encoding and is callee saved.
|
|
*
|
|
* x86-64 register R9 is not used by BPF programs, but can be used by BPF
|
|
* trampoline. x86-64 register R10 is used for blinding (if enabled).
|
|
*/
|
|
static const int reg2hex[] = {
|
|
[BPF_REG_0] = 0, /* RAX */
|
|
[BPF_REG_1] = 7, /* RDI */
|
|
[BPF_REG_2] = 6, /* RSI */
|
|
[BPF_REG_3] = 2, /* RDX */
|
|
[BPF_REG_4] = 1, /* RCX */
|
|
[BPF_REG_5] = 0, /* R8 */
|
|
[BPF_REG_6] = 3, /* RBX callee saved */
|
|
[BPF_REG_7] = 5, /* R13 callee saved */
|
|
[BPF_REG_8] = 6, /* R14 callee saved */
|
|
[BPF_REG_9] = 7, /* R15 callee saved */
|
|
[BPF_REG_FP] = 5, /* RBP readonly */
|
|
[BPF_REG_AX] = 2, /* R10 temp register */
|
|
[AUX_REG] = 3, /* R11 temp register */
|
|
[X86_REG_R9] = 1, /* R9 register, 6th function argument */
|
|
};
|
|
|
|
static const int reg2pt_regs[] = {
|
|
[BPF_REG_0] = offsetof(struct pt_regs, ax),
|
|
[BPF_REG_1] = offsetof(struct pt_regs, di),
|
|
[BPF_REG_2] = offsetof(struct pt_regs, si),
|
|
[BPF_REG_3] = offsetof(struct pt_regs, dx),
|
|
[BPF_REG_4] = offsetof(struct pt_regs, cx),
|
|
[BPF_REG_5] = offsetof(struct pt_regs, r8),
|
|
[BPF_REG_6] = offsetof(struct pt_regs, bx),
|
|
[BPF_REG_7] = offsetof(struct pt_regs, r13),
|
|
[BPF_REG_8] = offsetof(struct pt_regs, r14),
|
|
[BPF_REG_9] = offsetof(struct pt_regs, r15),
|
|
};
|
|
|
|
/*
|
|
* is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
|
|
* which need extra byte of encoding.
|
|
* rax,rcx,...,rbp have simpler encoding
|
|
*/
|
|
static bool is_ereg(u32 reg)
|
|
{
|
|
return (1 << reg) & (BIT(BPF_REG_5) |
|
|
BIT(AUX_REG) |
|
|
BIT(BPF_REG_7) |
|
|
BIT(BPF_REG_8) |
|
|
BIT(BPF_REG_9) |
|
|
BIT(X86_REG_R9) |
|
|
BIT(BPF_REG_AX));
|
|
}
|
|
|
|
/*
|
|
* is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
|
|
* lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
|
|
* of encoding. al,cl,dl,bl have simpler encoding.
|
|
*/
|
|
static bool is_ereg_8l(u32 reg)
|
|
{
|
|
return is_ereg(reg) ||
|
|
(1 << reg) & (BIT(BPF_REG_1) |
|
|
BIT(BPF_REG_2) |
|
|
BIT(BPF_REG_FP));
|
|
}
|
|
|
|
static bool is_axreg(u32 reg)
|
|
{
|
|
return reg == BPF_REG_0;
|
|
}
|
|
|
|
/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
|
|
static u8 add_1mod(u8 byte, u32 reg)
|
|
{
|
|
if (is_ereg(reg))
|
|
byte |= 1;
|
|
return byte;
|
|
}
|
|
|
|
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
|
|
{
|
|
if (is_ereg(r1))
|
|
byte |= 1;
|
|
if (is_ereg(r2))
|
|
byte |= 4;
|
|
return byte;
|
|
}
|
|
|
|
/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
|
|
static u8 add_1reg(u8 byte, u32 dst_reg)
|
|
{
|
|
return byte + reg2hex[dst_reg];
|
|
}
|
|
|
|
/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
|
|
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
|
|
{
|
|
return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
|
|
}
|
|
|
|
/* Some 1-byte opcodes for binary ALU operations */
|
|
static u8 simple_alu_opcodes[] = {
|
|
[BPF_ADD] = 0x01,
|
|
[BPF_SUB] = 0x29,
|
|
[BPF_AND] = 0x21,
|
|
[BPF_OR] = 0x09,
|
|
[BPF_XOR] = 0x31,
|
|
[BPF_LSH] = 0xE0,
|
|
[BPF_RSH] = 0xE8,
|
|
[BPF_ARSH] = 0xF8,
|
|
};
|
|
|
|
static void jit_fill_hole(void *area, unsigned int size)
|
|
{
|
|
/* Fill whole space with INT3 instructions */
|
|
memset(area, 0xcc, size);
|
|
}
|
|
|
|
int bpf_arch_text_invalidate(void *dst, size_t len)
|
|
{
|
|
return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
|
|
}
|
|
|
|
struct jit_context {
|
|
int cleanup_addr; /* Epilogue code offset */
|
|
|
|
/*
|
|
* Program specific offsets of labels in the code; these rely on the
|
|
* JIT doing at least 2 passes, recording the position on the first
|
|
* pass, only to generate the correct offset on the second pass.
|
|
*/
|
|
int tail_call_direct_label;
|
|
int tail_call_indirect_label;
|
|
};
|
|
|
|
/* Maximum number of bytes emitted while JITing one eBPF insn */
|
|
#define BPF_MAX_INSN_SIZE 128
|
|
#define BPF_INSN_SAFETY 64
|
|
|
|
/* Number of bytes emit_patch() needs to generate instructions */
|
|
#define X86_PATCH_SIZE 5
|
|
/* Number of bytes that will be skipped on tailcall */
|
|
#define X86_TAIL_CALL_OFFSET (11 + ENDBR_INSN_SIZE)
|
|
|
|
static void push_r12(u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
EMIT2(0x41, 0x54); /* push r12 */
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (callee_regs_used[0])
|
|
EMIT1(0x53); /* push rbx */
|
|
if (callee_regs_used[1])
|
|
EMIT2(0x41, 0x55); /* push r13 */
|
|
if (callee_regs_used[2])
|
|
EMIT2(0x41, 0x56); /* push r14 */
|
|
if (callee_regs_used[3])
|
|
EMIT2(0x41, 0x57); /* push r15 */
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void pop_r12(u8 **pprog)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
EMIT2(0x41, 0x5C); /* pop r12 */
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (callee_regs_used[3])
|
|
EMIT2(0x41, 0x5F); /* pop r15 */
|
|
if (callee_regs_used[2])
|
|
EMIT2(0x41, 0x5E); /* pop r14 */
|
|
if (callee_regs_used[1])
|
|
EMIT2(0x41, 0x5D); /* pop r13 */
|
|
if (callee_regs_used[0])
|
|
EMIT1(0x5B); /* pop rbx */
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_nops(u8 **pprog, int len)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int i, noplen;
|
|
|
|
while (len > 0) {
|
|
noplen = len;
|
|
|
|
if (noplen > ASM_NOP_MAX)
|
|
noplen = ASM_NOP_MAX;
|
|
|
|
for (i = 0; i < noplen; i++)
|
|
EMIT1(x86_nops[noplen][i]);
|
|
len -= noplen;
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
|
|
* in arch/x86/kernel/alternative.c
|
|
*/
|
|
|
|
static void emit_fineibt(u8 **pprog, u32 hash)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
EMIT_ENDBR();
|
|
EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */
|
|
EMIT2(0x74, 0x07); /* jz.d8 +7 */
|
|
EMIT2(0x0f, 0x0b); /* ud2 */
|
|
EMIT1(0x90); /* nop */
|
|
EMIT_ENDBR_POISON();
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_kcfi(u8 **pprog, u32 hash)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
EMIT1_off32(0xb8, hash); /* movl $hash, %eax */
|
|
#ifdef CONFIG_CALL_PADDING
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
EMIT1(0x90);
|
|
#endif
|
|
EMIT_ENDBR();
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_cfi(u8 **pprog, u32 hash)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
switch (cfi_mode) {
|
|
case CFI_FINEIBT:
|
|
emit_fineibt(&prog, hash);
|
|
break;
|
|
|
|
case CFI_KCFI:
|
|
emit_kcfi(&prog, hash);
|
|
break;
|
|
|
|
default:
|
|
EMIT_ENDBR();
|
|
break;
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* Emit x86-64 prologue code for BPF program.
|
|
* bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
|
|
* while jumping to another program
|
|
*/
|
|
static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
|
|
bool tail_call_reachable, bool is_subprog,
|
|
bool is_exception_cb)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
|
|
/* BPF trampoline can be made to work without these nops,
|
|
* but let's waste 5 bytes for now and optimize later
|
|
*/
|
|
emit_nops(&prog, X86_PATCH_SIZE);
|
|
if (!ebpf_from_cbpf) {
|
|
if (tail_call_reachable && !is_subprog)
|
|
/* When it's the entry of the whole tailcall context,
|
|
* zeroing rax means initialising tail_call_cnt.
|
|
*/
|
|
EMIT2(0x31, 0xC0); /* xor eax, eax */
|
|
else
|
|
/* Keep the same instruction layout. */
|
|
EMIT2(0x66, 0x90); /* nop2 */
|
|
}
|
|
/* Exception callback receives FP as third parameter */
|
|
if (is_exception_cb) {
|
|
EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
|
|
EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
|
|
/* The main frame must have exception_boundary as true, so we
|
|
* first restore those callee-saved regs from stack, before
|
|
* reusing the stack frame.
|
|
*/
|
|
pop_callee_regs(&prog, all_callee_regs_used);
|
|
pop_r12(&prog);
|
|
/* Reset the stack frame. */
|
|
EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
|
|
} else {
|
|
EMIT1(0x55); /* push rbp */
|
|
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
|
|
}
|
|
|
|
/* X86_TAIL_CALL_OFFSET is here */
|
|
EMIT_ENDBR();
|
|
|
|
/* sub rsp, rounded_stack_depth */
|
|
if (stack_depth)
|
|
EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
|
|
if (tail_call_reachable)
|
|
EMIT1(0x50); /* push rax */
|
|
*pprog = prog;
|
|
}
|
|
|
|
static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
|
|
{
|
|
u8 *prog = *pprog;
|
|
s64 offset;
|
|
|
|
offset = func - (ip + X86_PATCH_SIZE);
|
|
if (!is_simm32(offset)) {
|
|
pr_err("Target call %p is out of range\n", func);
|
|
return -ERANGE;
|
|
}
|
|
EMIT1_off32(opcode, offset);
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static int emit_call(u8 **pprog, void *func, void *ip)
|
|
{
|
|
return emit_patch(pprog, func, ip, 0xE8);
|
|
}
|
|
|
|
static int emit_rsb_call(u8 **pprog, void *func, void *ip)
|
|
{
|
|
OPTIMIZER_HIDE_VAR(func);
|
|
x86_call_depth_emit_accounting(pprog, func);
|
|
return emit_patch(pprog, func, ip, 0xE8);
|
|
}
|
|
|
|
static int emit_jump(u8 **pprog, void *func, void *ip)
|
|
{
|
|
return emit_patch(pprog, func, ip, 0xE9);
|
|
}
|
|
|
|
static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
|
|
void *old_addr, void *new_addr)
|
|
{
|
|
const u8 *nop_insn = x86_nops[5];
|
|
u8 old_insn[X86_PATCH_SIZE];
|
|
u8 new_insn[X86_PATCH_SIZE];
|
|
u8 *prog;
|
|
int ret;
|
|
|
|
memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
|
|
if (old_addr) {
|
|
prog = old_insn;
|
|
ret = t == BPF_MOD_CALL ?
|
|
emit_call(&prog, old_addr, ip) :
|
|
emit_jump(&prog, old_addr, ip);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
|
|
if (new_addr) {
|
|
prog = new_insn;
|
|
ret = t == BPF_MOD_CALL ?
|
|
emit_call(&prog, new_addr, ip) :
|
|
emit_jump(&prog, new_addr, ip);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = -EBUSY;
|
|
mutex_lock(&text_mutex);
|
|
if (memcmp(ip, old_insn, X86_PATCH_SIZE))
|
|
goto out;
|
|
ret = 1;
|
|
if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
|
|
text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
|
|
ret = 0;
|
|
}
|
|
out:
|
|
mutex_unlock(&text_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
|
|
void *old_addr, void *new_addr)
|
|
{
|
|
if (!is_kernel_text((long)ip) &&
|
|
!is_bpf_text_address((long)ip))
|
|
/* BPF poking in modules is not supported */
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* See emit_prologue(), for IBT builds the trampoline hook is preceded
|
|
* with an ENDBR instruction.
|
|
*/
|
|
if (is_endbr(*(u32 *)ip))
|
|
ip += ENDBR_INSN_SIZE;
|
|
|
|
return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
|
|
}
|
|
|
|
#define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
|
|
|
|
static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
|
|
EMIT_LFENCE();
|
|
EMIT2(0xFF, 0xE0 + reg);
|
|
} else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
|
|
OPTIMIZER_HIDE_VAR(reg);
|
|
if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
|
|
emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
|
|
else
|
|
emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
|
|
} else {
|
|
EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
|
|
if (IS_ENABLED(CONFIG_RETPOLINE) || IS_ENABLED(CONFIG_SLS))
|
|
EMIT1(0xCC); /* int3 */
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_return(u8 **pprog, u8 *ip)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
|
|
emit_jump(&prog, x86_return_thunk, ip);
|
|
} else {
|
|
EMIT1(0xC3); /* ret */
|
|
if (IS_ENABLED(CONFIG_SLS))
|
|
EMIT1(0xCC); /* int3 */
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* Generate the following code:
|
|
*
|
|
* ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
|
|
* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
* if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
* prog = array->ptrs[index];
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
* goto *(prog->bpf_func + prologue_size);
|
|
* out:
|
|
*/
|
|
static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
|
|
u8 **pprog, bool *callee_regs_used,
|
|
u32 stack_depth, u8 *ip,
|
|
struct jit_context *ctx)
|
|
{
|
|
int tcc_off = -4 - round_up(stack_depth, 8);
|
|
u8 *prog = *pprog, *start = *pprog;
|
|
int offset;
|
|
|
|
/*
|
|
* rdi - pointer to ctx
|
|
* rsi - pointer to bpf_array
|
|
* rdx - index in bpf_array
|
|
*/
|
|
|
|
/*
|
|
* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
*/
|
|
EMIT2(0x89, 0xD2); /* mov edx, edx */
|
|
EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
|
|
offsetof(struct bpf_array, map.max_entries));
|
|
|
|
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
|
|
EMIT2(X86_JBE, offset); /* jbe out */
|
|
|
|
/*
|
|
* if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
*/
|
|
EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
|
|
EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
|
|
|
|
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
|
|
EMIT2(X86_JAE, offset); /* jae out */
|
|
EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
|
|
EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
|
|
|
|
/* prog = array->ptrs[index]; */
|
|
EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
|
|
offsetof(struct bpf_array, ptrs));
|
|
|
|
/*
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
*/
|
|
EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
|
|
|
|
offset = ctx->tail_call_indirect_label - (prog + 2 - start);
|
|
EMIT2(X86_JE, offset); /* je out */
|
|
|
|
if (bpf_prog->aux->exception_boundary) {
|
|
pop_callee_regs(&prog, all_callee_regs_used);
|
|
pop_r12(&prog);
|
|
} else {
|
|
pop_callee_regs(&prog, callee_regs_used);
|
|
}
|
|
|
|
EMIT1(0x58); /* pop rax */
|
|
if (stack_depth)
|
|
EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
|
|
round_up(stack_depth, 8));
|
|
|
|
/* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
|
|
EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
|
|
offsetof(struct bpf_prog, bpf_func));
|
|
EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
|
|
X86_TAIL_CALL_OFFSET);
|
|
/*
|
|
* Now we're ready to jump into next BPF program
|
|
* rdi == ctx (1st arg)
|
|
* rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
|
|
*/
|
|
emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
|
|
|
|
/* out: */
|
|
ctx->tail_call_indirect_label = prog - start;
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
|
|
struct bpf_jit_poke_descriptor *poke,
|
|
u8 **pprog, u8 *ip,
|
|
bool *callee_regs_used, u32 stack_depth,
|
|
struct jit_context *ctx)
|
|
{
|
|
int tcc_off = -4 - round_up(stack_depth, 8);
|
|
u8 *prog = *pprog, *start = *pprog;
|
|
int offset;
|
|
|
|
/*
|
|
* if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
*/
|
|
EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */
|
|
EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
|
|
|
|
offset = ctx->tail_call_direct_label - (prog + 2 - start);
|
|
EMIT2(X86_JAE, offset); /* jae out */
|
|
EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
|
|
EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */
|
|
|
|
poke->tailcall_bypass = ip + (prog - start);
|
|
poke->adj_off = X86_TAIL_CALL_OFFSET;
|
|
poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
|
|
poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
|
|
|
|
emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
|
|
poke->tailcall_bypass);
|
|
|
|
if (bpf_prog->aux->exception_boundary) {
|
|
pop_callee_regs(&prog, all_callee_regs_used);
|
|
pop_r12(&prog);
|
|
} else {
|
|
pop_callee_regs(&prog, callee_regs_used);
|
|
}
|
|
|
|
EMIT1(0x58); /* pop rax */
|
|
if (stack_depth)
|
|
EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
|
|
|
|
emit_nops(&prog, X86_PATCH_SIZE);
|
|
|
|
/* out: */
|
|
ctx->tail_call_direct_label = prog - start;
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
|
|
{
|
|
struct bpf_jit_poke_descriptor *poke;
|
|
struct bpf_array *array;
|
|
struct bpf_prog *target;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < prog->aux->size_poke_tab; i++) {
|
|
poke = &prog->aux->poke_tab[i];
|
|
if (poke->aux && poke->aux != prog->aux)
|
|
continue;
|
|
|
|
WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
|
|
|
|
if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
|
|
continue;
|
|
|
|
array = container_of(poke->tail_call.map, struct bpf_array, map);
|
|
mutex_lock(&array->aux->poke_mutex);
|
|
target = array->ptrs[poke->tail_call.key];
|
|
if (target) {
|
|
ret = __bpf_arch_text_poke(poke->tailcall_target,
|
|
BPF_MOD_JUMP, NULL,
|
|
(u8 *)target->bpf_func +
|
|
poke->adj_off);
|
|
BUG_ON(ret < 0);
|
|
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
|
|
BPF_MOD_JUMP,
|
|
(u8 *)poke->tailcall_target +
|
|
X86_PATCH_SIZE, NULL);
|
|
BUG_ON(ret < 0);
|
|
}
|
|
WRITE_ONCE(poke->tailcall_target_stable, true);
|
|
mutex_unlock(&array->aux->poke_mutex);
|
|
}
|
|
}
|
|
|
|
static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
|
|
u32 dst_reg, const u32 imm32)
|
|
{
|
|
u8 *prog = *pprog;
|
|
u8 b1, b2, b3;
|
|
|
|
/*
|
|
* Optimization: if imm32 is positive, use 'mov %eax, imm32'
|
|
* (which zero-extends imm32) to save 2 bytes.
|
|
*/
|
|
if (sign_propagate && (s32)imm32 < 0) {
|
|
/* 'mov %rax, imm32' sign extends imm32 */
|
|
b1 = add_1mod(0x48, dst_reg);
|
|
b2 = 0xC7;
|
|
b3 = 0xC0;
|
|
EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Optimization: if imm32 is zero, use 'xor %eax, %eax'
|
|
* to save 3 bytes.
|
|
*/
|
|
if (imm32 == 0) {
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(add_2mod(0x40, dst_reg, dst_reg));
|
|
b2 = 0x31; /* xor */
|
|
b3 = 0xC0;
|
|
EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
|
|
goto done;
|
|
}
|
|
|
|
/* mov %eax, imm32 */
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(add_1mod(0x40, dst_reg));
|
|
EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
|
|
done:
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
|
|
const u32 imm32_hi, const u32 imm32_lo)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
|
|
/*
|
|
* For emitting plain u32, where sign bit must not be
|
|
* propagated LLVM tends to load imm64 over mov32
|
|
* directly, so save couple of bytes by just doing
|
|
* 'mov %eax, imm32' instead.
|
|
*/
|
|
emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
|
|
} else {
|
|
/* movabsq rax, imm64 */
|
|
EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
|
|
EMIT(imm32_lo, 4);
|
|
EMIT(imm32_hi, 4);
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (is64) {
|
|
/* mov dst, src */
|
|
EMIT_mov(dst_reg, src_reg);
|
|
} else {
|
|
/* mov32 dst, src */
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT1(add_2mod(0x40, dst_reg, src_reg));
|
|
EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
|
|
u32 src_reg)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (is64) {
|
|
/* movs[b,w,l]q dst, src */
|
|
if (num_bits == 8)
|
|
EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
|
|
add_2reg(0xC0, src_reg, dst_reg));
|
|
else if (num_bits == 16)
|
|
EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
|
|
add_2reg(0xC0, src_reg, dst_reg));
|
|
else if (num_bits == 32)
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
|
|
add_2reg(0xC0, src_reg, dst_reg));
|
|
} else {
|
|
/* movs[b,w]l dst, src */
|
|
if (num_bits == 8) {
|
|
EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
|
|
add_2reg(0xC0, src_reg, dst_reg));
|
|
} else if (num_bits == 16) {
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT1(add_2mod(0x40, src_reg, dst_reg));
|
|
EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
|
|
add_2reg(0xC0, src_reg, dst_reg));
|
|
}
|
|
}
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
|
|
static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (is_imm8(off)) {
|
|
/* 1-byte signed displacement.
|
|
*
|
|
* If off == 0 we could skip this and save one extra byte, but
|
|
* special case of x86 R13 which always needs an offset is not
|
|
* worth the hassle
|
|
*/
|
|
EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
|
|
} else {
|
|
/* 4-byte signed displacement */
|
|
EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
|
|
}
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* Emit a REX byte if it will be necessary to address these registers
|
|
*/
|
|
static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (is64)
|
|
EMIT1(add_2mod(0x48, dst_reg, src_reg));
|
|
else if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT1(add_2mod(0x40, dst_reg, src_reg));
|
|
*pprog = prog;
|
|
}
|
|
|
|
/*
|
|
* Similar version of maybe_emit_mod() for a single register
|
|
*/
|
|
static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
if (is64)
|
|
EMIT1(add_1mod(0x48, reg));
|
|
else if (is_ereg(reg))
|
|
EMIT1(add_1mod(0x40, reg));
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* LDX: dst_reg = *(u8*)(src_reg + off) */
|
|
static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
switch (size) {
|
|
case BPF_B:
|
|
/* Emit 'movzx rax, byte ptr [rax + off]' */
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
|
|
break;
|
|
case BPF_H:
|
|
/* Emit 'movzx rax, word ptr [rax + off]' */
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
|
|
break;
|
|
case BPF_W:
|
|
/* Emit 'mov eax, dword ptr [rax+0x14]' */
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
|
|
else
|
|
EMIT1(0x8B);
|
|
break;
|
|
case BPF_DW:
|
|
/* Emit 'mov rax, qword ptr [rax+0x14]' */
|
|
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
|
|
break;
|
|
}
|
|
emit_insn_suffix(&prog, src_reg, dst_reg, off);
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* LDSX: dst_reg = *(s8*)(src_reg + off) */
|
|
static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
switch (size) {
|
|
case BPF_B:
|
|
/* Emit 'movsx rax, byte ptr [rax + off]' */
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
|
|
break;
|
|
case BPF_H:
|
|
/* Emit 'movsx rax, word ptr [rax + off]' */
|
|
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
|
|
break;
|
|
case BPF_W:
|
|
/* Emit 'movsx rax, dword ptr [rax+0x14]' */
|
|
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
|
|
break;
|
|
}
|
|
emit_insn_suffix(&prog, src_reg, dst_reg, off);
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* STX: *(u8*)(dst_reg + off) = src_reg */
|
|
static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
switch (size) {
|
|
case BPF_B:
|
|
/* Emit 'mov byte ptr [rax + off], al' */
|
|
if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
|
|
/* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
|
|
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
|
|
else
|
|
EMIT1(0x88);
|
|
break;
|
|
case BPF_H:
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
|
|
else
|
|
EMIT2(0x66, 0x89);
|
|
break;
|
|
case BPF_W:
|
|
if (is_ereg(dst_reg) || is_ereg(src_reg))
|
|
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
|
|
else
|
|
EMIT1(0x89);
|
|
break;
|
|
case BPF_DW:
|
|
EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
|
|
break;
|
|
}
|
|
emit_insn_suffix(&prog, dst_reg, src_reg, off);
|
|
*pprog = prog;
|
|
}
|
|
|
|
static int emit_atomic(u8 **pprog, u8 atomic_op,
|
|
u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
|
|
{
|
|
u8 *prog = *pprog;
|
|
|
|
EMIT1(0xF0); /* lock prefix */
|
|
|
|
maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
|
|
|
|
/* emit opcode */
|
|
switch (atomic_op) {
|
|
case BPF_ADD:
|
|
case BPF_AND:
|
|
case BPF_OR:
|
|
case BPF_XOR:
|
|
/* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
|
|
EMIT1(simple_alu_opcodes[atomic_op]);
|
|
break;
|
|
case BPF_ADD | BPF_FETCH:
|
|
/* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
|
|
EMIT2(0x0F, 0xC1);
|
|
break;
|
|
case BPF_XCHG:
|
|
/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
|
|
EMIT1(0x87);
|
|
break;
|
|
case BPF_CMPXCHG:
|
|
/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
|
|
EMIT2(0x0F, 0xB1);
|
|
break;
|
|
default:
|
|
pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
|
|
return -EFAULT;
|
|
}
|
|
|
|
emit_insn_suffix(&prog, dst_reg, src_reg, off);
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
|
|
{
|
|
u32 reg = x->fixup >> 8;
|
|
|
|
/* jump over faulting load and clear dest register */
|
|
*(unsigned long *)((void *)regs + reg) = 0;
|
|
regs->ip += x->fixup & 0xff;
|
|
return true;
|
|
}
|
|
|
|
static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
|
|
bool *regs_used, bool *tail_call_seen)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i <= insn_cnt; i++, insn++) {
|
|
if (insn->code == (BPF_JMP | BPF_TAIL_CALL))
|
|
*tail_call_seen = true;
|
|
if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
|
|
regs_used[0] = true;
|
|
if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
|
|
regs_used[1] = true;
|
|
if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
|
|
regs_used[2] = true;
|
|
if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
|
|
regs_used[3] = true;
|
|
}
|
|
}
|
|
|
|
/* emit the 3-byte VEX prefix
|
|
*
|
|
* r: same as rex.r, extra bit for ModRM reg field
|
|
* x: same as rex.x, extra bit for SIB index field
|
|
* b: same as rex.b, extra bit for ModRM r/m, or SIB base
|
|
* m: opcode map select, encoding escape bytes e.g. 0x0f38
|
|
* w: same as rex.w (32 bit or 64 bit) or opcode specific
|
|
* src_reg2: additional source reg (encoded as BPF reg)
|
|
* l: vector length (128 bit or 256 bit) or reserved
|
|
* pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
|
|
*/
|
|
static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
|
|
bool w, u8 src_reg2, bool l, u8 pp)
|
|
{
|
|
u8 *prog = *pprog;
|
|
const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
|
|
u8 b1, b2;
|
|
u8 vvvv = reg2hex[src_reg2];
|
|
|
|
/* reg2hex gives only the lower 3 bit of vvvv */
|
|
if (is_ereg(src_reg2))
|
|
vvvv |= 1 << 3;
|
|
|
|
/*
|
|
* 2nd byte of 3-byte VEX prefix
|
|
* ~ means bit inverted encoding
|
|
*
|
|
* 7 0
|
|
* +---+---+---+---+---+---+---+---+
|
|
* |~R |~X |~B | m |
|
|
* +---+---+---+---+---+---+---+---+
|
|
*/
|
|
b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
|
|
/*
|
|
* 3rd byte of 3-byte VEX prefix
|
|
*
|
|
* 7 0
|
|
* +---+---+---+---+---+---+---+---+
|
|
* | W | ~vvvv | L | pp |
|
|
* +---+---+---+---+---+---+---+---+
|
|
*/
|
|
b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
|
|
|
|
EMIT3(b0, b1, b2);
|
|
*pprog = prog;
|
|
}
|
|
|
|
/* emit BMI2 shift instruction */
|
|
static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
|
|
{
|
|
u8 *prog = *pprog;
|
|
bool r = is_ereg(dst_reg);
|
|
u8 m = 2; /* escape code 0f38 */
|
|
|
|
emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
|
|
EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
|
|
*pprog = prog;
|
|
}
|
|
|
|
#define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
|
|
|
|
/* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
|
|
#define RESTORE_TAIL_CALL_CNT(stack) \
|
|
EMIT3_off32(0x48, 0x8B, 0x85, -round_up(stack, 8) - 8)
|
|
|
|
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
|
|
int oldproglen, struct jit_context *ctx, bool jmp_padding)
|
|
{
|
|
bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
|
|
struct bpf_insn *insn = bpf_prog->insnsi;
|
|
bool callee_regs_used[4] = {};
|
|
int insn_cnt = bpf_prog->len;
|
|
bool tail_call_seen = false;
|
|
bool seen_exit = false;
|
|
u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
|
|
int i, excnt = 0;
|
|
int ilen, proglen = 0;
|
|
u8 *prog = temp;
|
|
int err;
|
|
|
|
detect_reg_usage(insn, insn_cnt, callee_regs_used,
|
|
&tail_call_seen);
|
|
|
|
/* tail call's presence in current prog implies it is reachable */
|
|
tail_call_reachable |= tail_call_seen;
|
|
|
|
emit_prologue(&prog, bpf_prog->aux->stack_depth,
|
|
bpf_prog_was_classic(bpf_prog), tail_call_reachable,
|
|
bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
|
|
/* Exception callback will clobber callee regs for its own use, and
|
|
* restore the original callee regs from main prog's stack frame.
|
|
*/
|
|
if (bpf_prog->aux->exception_boundary) {
|
|
/* We also need to save r12, which is not mapped to any BPF
|
|
* register, as we throw after entry into the kernel, which may
|
|
* overwrite r12.
|
|
*/
|
|
push_r12(&prog);
|
|
push_callee_regs(&prog, all_callee_regs_used);
|
|
} else {
|
|
push_callee_regs(&prog, callee_regs_used);
|
|
}
|
|
|
|
ilen = prog - temp;
|
|
if (rw_image)
|
|
memcpy(rw_image + proglen, temp, ilen);
|
|
proglen += ilen;
|
|
addrs[0] = proglen;
|
|
prog = temp;
|
|
|
|
for (i = 1; i <= insn_cnt; i++, insn++) {
|
|
const s32 imm32 = insn->imm;
|
|
u32 dst_reg = insn->dst_reg;
|
|
u32 src_reg = insn->src_reg;
|
|
u8 b2 = 0, b3 = 0;
|
|
u8 *start_of_ldx;
|
|
s64 jmp_offset;
|
|
s16 insn_off;
|
|
u8 jmp_cond;
|
|
u8 *func;
|
|
int nops;
|
|
|
|
switch (insn->code) {
|
|
/* ALU */
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
maybe_emit_mod(&prog, dst_reg, src_reg,
|
|
BPF_CLASS(insn->code) == BPF_ALU64);
|
|
b2 = simple_alu_opcodes[BPF_OP(insn->code)];
|
|
EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
|
|
break;
|
|
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
if (insn->off == 0)
|
|
emit_mov_reg(&prog,
|
|
BPF_CLASS(insn->code) == BPF_ALU64,
|
|
dst_reg, src_reg);
|
|
else
|
|
emit_movsx_reg(&prog, insn->off,
|
|
BPF_CLASS(insn->code) == BPF_ALU64,
|
|
dst_reg, src_reg);
|
|
break;
|
|
|
|
/* neg dst */
|
|
case BPF_ALU | BPF_NEG:
|
|
case BPF_ALU64 | BPF_NEG:
|
|
maybe_emit_1mod(&prog, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_ALU64);
|
|
EMIT2(0xF7, add_1reg(0xD8, dst_reg));
|
|
break;
|
|
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
maybe_emit_1mod(&prog, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_ALU64);
|
|
|
|
/*
|
|
* b3 holds 'normal' opcode, b2 short form only valid
|
|
* in case dst is eax/rax.
|
|
*/
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_ADD:
|
|
b3 = 0xC0;
|
|
b2 = 0x05;
|
|
break;
|
|
case BPF_SUB:
|
|
b3 = 0xE8;
|
|
b2 = 0x2D;
|
|
break;
|
|
case BPF_AND:
|
|
b3 = 0xE0;
|
|
b2 = 0x25;
|
|
break;
|
|
case BPF_OR:
|
|
b3 = 0xC8;
|
|
b2 = 0x0D;
|
|
break;
|
|
case BPF_XOR:
|
|
b3 = 0xF0;
|
|
b2 = 0x35;
|
|
break;
|
|
}
|
|
|
|
if (is_imm8(imm32))
|
|
EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
|
|
else if (is_axreg(dst_reg))
|
|
EMIT1_off32(b2, imm32);
|
|
else
|
|
EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
|
|
break;
|
|
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
|
|
dst_reg, imm32);
|
|
break;
|
|
|
|
case BPF_LD | BPF_IMM | BPF_DW:
|
|
emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
|
|
insn++;
|
|
i++;
|
|
break;
|
|
|
|
/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
case BPF_ALU64 | BPF_MOD | BPF_X:
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
case BPF_ALU64 | BPF_DIV | BPF_K: {
|
|
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
|
|
|
|
if (dst_reg != BPF_REG_0)
|
|
EMIT1(0x50); /* push rax */
|
|
if (dst_reg != BPF_REG_3)
|
|
EMIT1(0x52); /* push rdx */
|
|
|
|
if (BPF_SRC(insn->code) == BPF_X) {
|
|
if (src_reg == BPF_REG_0 ||
|
|
src_reg == BPF_REG_3) {
|
|
/* mov r11, src_reg */
|
|
EMIT_mov(AUX_REG, src_reg);
|
|
src_reg = AUX_REG;
|
|
}
|
|
} else {
|
|
/* mov r11, imm32 */
|
|
EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
|
|
src_reg = AUX_REG;
|
|
}
|
|
|
|
if (dst_reg != BPF_REG_0)
|
|
/* mov rax, dst_reg */
|
|
emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
|
|
|
|
if (insn->off == 0) {
|
|
/*
|
|
* xor edx, edx
|
|
* equivalent to 'xor rdx, rdx', but one byte less
|
|
*/
|
|
EMIT2(0x31, 0xd2);
|
|
|
|
/* div src_reg */
|
|
maybe_emit_1mod(&prog, src_reg, is64);
|
|
EMIT2(0xF7, add_1reg(0xF0, src_reg));
|
|
} else {
|
|
if (BPF_CLASS(insn->code) == BPF_ALU)
|
|
EMIT1(0x99); /* cdq */
|
|
else
|
|
EMIT2(0x48, 0x99); /* cqo */
|
|
|
|
/* idiv src_reg */
|
|
maybe_emit_1mod(&prog, src_reg, is64);
|
|
EMIT2(0xF7, add_1reg(0xF8, src_reg));
|
|
}
|
|
|
|
if (BPF_OP(insn->code) == BPF_MOD &&
|
|
dst_reg != BPF_REG_3)
|
|
/* mov dst_reg, rdx */
|
|
emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
|
|
else if (BPF_OP(insn->code) == BPF_DIV &&
|
|
dst_reg != BPF_REG_0)
|
|
/* mov dst_reg, rax */
|
|
emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
|
|
|
|
if (dst_reg != BPF_REG_3)
|
|
EMIT1(0x5A); /* pop rdx */
|
|
if (dst_reg != BPF_REG_0)
|
|
EMIT1(0x58); /* pop rax */
|
|
break;
|
|
}
|
|
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
maybe_emit_mod(&prog, dst_reg, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_ALU64);
|
|
|
|
if (is_imm8(imm32))
|
|
/* imul dst_reg, dst_reg, imm8 */
|
|
EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
|
|
imm32);
|
|
else
|
|
/* imul dst_reg, dst_reg, imm32 */
|
|
EMIT2_off32(0x69,
|
|
add_2reg(0xC0, dst_reg, dst_reg),
|
|
imm32);
|
|
break;
|
|
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
maybe_emit_mod(&prog, src_reg, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_ALU64);
|
|
|
|
/* imul dst_reg, src_reg */
|
|
EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
|
|
break;
|
|
|
|
/* Shifts */
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
maybe_emit_1mod(&prog, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_ALU64);
|
|
|
|
b3 = simple_alu_opcodes[BPF_OP(insn->code)];
|
|
if (imm32 == 1)
|
|
EMIT2(0xD1, add_1reg(b3, dst_reg));
|
|
else
|
|
EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
|
|
break;
|
|
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
/* BMI2 shifts aren't better when shift count is already in rcx */
|
|
if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
|
|
/* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
|
|
bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
|
|
u8 op;
|
|
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_LSH:
|
|
op = 1; /* prefix 0x66 */
|
|
break;
|
|
case BPF_RSH:
|
|
op = 3; /* prefix 0xf2 */
|
|
break;
|
|
case BPF_ARSH:
|
|
op = 2; /* prefix 0xf3 */
|
|
break;
|
|
}
|
|
|
|
emit_shiftx(&prog, dst_reg, src_reg, w, op);
|
|
|
|
break;
|
|
}
|
|
|
|
if (src_reg != BPF_REG_4) { /* common case */
|
|
/* Check for bad case when dst_reg == rcx */
|
|
if (dst_reg == BPF_REG_4) {
|
|
/* mov r11, dst_reg */
|
|
EMIT_mov(AUX_REG, dst_reg);
|
|
dst_reg = AUX_REG;
|
|
} else {
|
|
EMIT1(0x51); /* push rcx */
|
|
}
|
|
/* mov rcx, src_reg */
|
|
EMIT_mov(BPF_REG_4, src_reg);
|
|
}
|
|
|
|
/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
|
|
maybe_emit_1mod(&prog, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_ALU64);
|
|
|
|
b3 = simple_alu_opcodes[BPF_OP(insn->code)];
|
|
EMIT2(0xD3, add_1reg(b3, dst_reg));
|
|
|
|
if (src_reg != BPF_REG_4) {
|
|
if (insn->dst_reg == BPF_REG_4)
|
|
/* mov dst_reg, r11 */
|
|
EMIT_mov(insn->dst_reg, AUX_REG);
|
|
else
|
|
EMIT1(0x59); /* pop rcx */
|
|
}
|
|
|
|
break;
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
|
|
switch (imm32) {
|
|
case 16:
|
|
/* Emit 'ror %ax, 8' to swap lower 2 bytes */
|
|
EMIT1(0x66);
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(0x41);
|
|
EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
|
|
|
|
/* Emit 'movzwl eax, ax' */
|
|
if (is_ereg(dst_reg))
|
|
EMIT3(0x45, 0x0F, 0xB7);
|
|
else
|
|
EMIT2(0x0F, 0xB7);
|
|
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
|
|
break;
|
|
case 32:
|
|
/* Emit 'bswap eax' to swap lower 4 bytes */
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0x0F);
|
|
else
|
|
EMIT1(0x0F);
|
|
EMIT1(add_1reg(0xC8, dst_reg));
|
|
break;
|
|
case 64:
|
|
/* Emit 'bswap rax' to swap 8 bytes */
|
|
EMIT3(add_1mod(0x48, dst_reg), 0x0F,
|
|
add_1reg(0xC8, dst_reg));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
switch (imm32) {
|
|
case 16:
|
|
/*
|
|
* Emit 'movzwl eax, ax' to zero extend 16-bit
|
|
* into 64 bit
|
|
*/
|
|
if (is_ereg(dst_reg))
|
|
EMIT3(0x45, 0x0F, 0xB7);
|
|
else
|
|
EMIT2(0x0F, 0xB7);
|
|
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
|
|
break;
|
|
case 32:
|
|
/* Emit 'mov eax, eax' to clear upper 32-bits */
|
|
if (is_ereg(dst_reg))
|
|
EMIT1(0x45);
|
|
EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
|
|
break;
|
|
case 64:
|
|
/* nop */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/* speculation barrier */
|
|
case BPF_ST | BPF_NOSPEC:
|
|
EMIT_LFENCE();
|
|
break;
|
|
|
|
/* ST: *(u8*)(dst_reg + off) = imm */
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0xC6);
|
|
else
|
|
EMIT1(0xC6);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
if (is_ereg(dst_reg))
|
|
EMIT3(0x66, 0x41, 0xC7);
|
|
else
|
|
EMIT2(0x66, 0xC7);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
if (is_ereg(dst_reg))
|
|
EMIT2(0x41, 0xC7);
|
|
else
|
|
EMIT1(0xC7);
|
|
goto st;
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
|
EMIT2(add_1mod(0x48, dst_reg), 0xC7);
|
|
|
|
st: if (is_imm8(insn->off))
|
|
EMIT2(add_1reg(0x40, dst_reg), insn->off);
|
|
else
|
|
EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
|
|
|
|
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
|
|
break;
|
|
|
|
/* STX: *(u8*)(dst_reg + off) = src_reg */
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
|
emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
|
|
break;
|
|
|
|
/* LDX: dst_reg = *(u8*)(src_reg + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
|
|
/* LDXS: dst_reg = *(s8*)(src_reg + off) */
|
|
case BPF_LDX | BPF_MEMSX | BPF_B:
|
|
case BPF_LDX | BPF_MEMSX | BPF_H:
|
|
case BPF_LDX | BPF_MEMSX | BPF_W:
|
|
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
|
|
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
|
|
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
|
|
insn_off = insn->off;
|
|
|
|
if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
|
|
BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
|
|
/* Conservatively check that src_reg + insn->off is a kernel address:
|
|
* src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
|
|
* src_reg is used as scratch for src_reg += insn->off and restored
|
|
* after emit_ldx if necessary
|
|
*/
|
|
|
|
u64 limit = TASK_SIZE_MAX + PAGE_SIZE;
|
|
u8 *end_of_jmp;
|
|
|
|
/* At end of these emitted checks, insn->off will have been added
|
|
* to src_reg, so no need to do relative load with insn->off offset
|
|
*/
|
|
insn_off = 0;
|
|
|
|
/* movabsq r11, limit */
|
|
EMIT2(add_1mod(0x48, AUX_REG), add_1reg(0xB8, AUX_REG));
|
|
EMIT((u32)limit, 4);
|
|
EMIT(limit >> 32, 4);
|
|
|
|
if (insn->off) {
|
|
/* add src_reg, insn->off */
|
|
maybe_emit_1mod(&prog, src_reg, true);
|
|
EMIT2_off32(0x81, add_1reg(0xC0, src_reg), insn->off);
|
|
}
|
|
|
|
/* cmp src_reg, r11 */
|
|
maybe_emit_mod(&prog, src_reg, AUX_REG, true);
|
|
EMIT2(0x39, add_2reg(0xC0, src_reg, AUX_REG));
|
|
|
|
/* if unsigned '>=', goto load */
|
|
EMIT2(X86_JAE, 0);
|
|
end_of_jmp = prog;
|
|
|
|
/* xor dst_reg, dst_reg */
|
|
emit_mov_imm32(&prog, false, dst_reg, 0);
|
|
/* jmp byte_after_ldx */
|
|
EMIT2(0xEB, 0);
|
|
|
|
/* populate jmp_offset for JAE above to jump to start_of_ldx */
|
|
start_of_ldx = prog;
|
|
end_of_jmp[-1] = start_of_ldx - end_of_jmp;
|
|
}
|
|
if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
|
|
BPF_MODE(insn->code) == BPF_MEMSX)
|
|
emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
|
|
else
|
|
emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
|
|
if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
|
|
BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
|
|
struct exception_table_entry *ex;
|
|
u8 *_insn = image + proglen + (start_of_ldx - temp);
|
|
s64 delta;
|
|
|
|
/* populate jmp_offset for JMP above */
|
|
start_of_ldx[-1] = prog - start_of_ldx;
|
|
|
|
if (insn->off && src_reg != dst_reg) {
|
|
/* sub src_reg, insn->off
|
|
* Restore src_reg after "add src_reg, insn->off" in prev
|
|
* if statement. But if src_reg == dst_reg, emit_ldx
|
|
* above already clobbered src_reg, so no need to restore.
|
|
* If add src_reg, insn->off was unnecessary, no need to
|
|
* restore either.
|
|
*/
|
|
maybe_emit_1mod(&prog, src_reg, true);
|
|
EMIT2_off32(0x81, add_1reg(0xE8, src_reg), insn->off);
|
|
}
|
|
|
|
if (!bpf_prog->aux->extable)
|
|
break;
|
|
|
|
if (excnt >= bpf_prog->aux->num_exentries) {
|
|
pr_err("ex gen bug\n");
|
|
return -EFAULT;
|
|
}
|
|
ex = &bpf_prog->aux->extable[excnt++];
|
|
|
|
delta = _insn - (u8 *)&ex->insn;
|
|
if (!is_simm32(delta)) {
|
|
pr_err("extable->insn doesn't fit into 32-bit\n");
|
|
return -EFAULT;
|
|
}
|
|
/* switch ex to rw buffer for writes */
|
|
ex = (void *)rw_image + ((void *)ex - (void *)image);
|
|
|
|
ex->insn = delta;
|
|
|
|
ex->data = EX_TYPE_BPF;
|
|
|
|
if (dst_reg > BPF_REG_9) {
|
|
pr_err("verifier error\n");
|
|
return -EFAULT;
|
|
}
|
|
/*
|
|
* Compute size of x86 insn and its target dest x86 register.
|
|
* ex_handler_bpf() will use lower 8 bits to adjust
|
|
* pt_regs->ip to jump over this x86 instruction
|
|
* and upper bits to figure out which pt_regs to zero out.
|
|
* End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
|
|
* of 4 bytes will be ignored and rbx will be zero inited.
|
|
*/
|
|
ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
|
|
}
|
|
break;
|
|
|
|
case BPF_STX | BPF_ATOMIC | BPF_W:
|
|
case BPF_STX | BPF_ATOMIC | BPF_DW:
|
|
if (insn->imm == (BPF_AND | BPF_FETCH) ||
|
|
insn->imm == (BPF_OR | BPF_FETCH) ||
|
|
insn->imm == (BPF_XOR | BPF_FETCH)) {
|
|
bool is64 = BPF_SIZE(insn->code) == BPF_DW;
|
|
u32 real_src_reg = src_reg;
|
|
u32 real_dst_reg = dst_reg;
|
|
u8 *branch_target;
|
|
|
|
/*
|
|
* Can't be implemented with a single x86 insn.
|
|
* Need to do a CMPXCHG loop.
|
|
*/
|
|
|
|
/* Will need RAX as a CMPXCHG operand so save R0 */
|
|
emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
|
|
if (src_reg == BPF_REG_0)
|
|
real_src_reg = BPF_REG_AX;
|
|
if (dst_reg == BPF_REG_0)
|
|
real_dst_reg = BPF_REG_AX;
|
|
|
|
branch_target = prog;
|
|
/* Load old value */
|
|
emit_ldx(&prog, BPF_SIZE(insn->code),
|
|
BPF_REG_0, real_dst_reg, insn->off);
|
|
/*
|
|
* Perform the (commutative) operation locally,
|
|
* put the result in the AUX_REG.
|
|
*/
|
|
emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
|
|
maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
|
|
EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
|
|
add_2reg(0xC0, AUX_REG, real_src_reg));
|
|
/* Attempt to swap in new value */
|
|
err = emit_atomic(&prog, BPF_CMPXCHG,
|
|
real_dst_reg, AUX_REG,
|
|
insn->off,
|
|
BPF_SIZE(insn->code));
|
|
if (WARN_ON(err))
|
|
return err;
|
|
/*
|
|
* ZF tells us whether we won the race. If it's
|
|
* cleared we need to try again.
|
|
*/
|
|
EMIT2(X86_JNE, -(prog - branch_target) - 2);
|
|
/* Return the pre-modification value */
|
|
emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
|
|
/* Restore R0 after clobbering RAX */
|
|
emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
|
|
break;
|
|
}
|
|
|
|
err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
|
|
insn->off, BPF_SIZE(insn->code));
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
/* call */
|
|
case BPF_JMP | BPF_CALL: {
|
|
int offs;
|
|
|
|
func = (u8 *) __bpf_call_base + imm32;
|
|
if (tail_call_reachable) {
|
|
RESTORE_TAIL_CALL_CNT(bpf_prog->aux->stack_depth);
|
|
if (!imm32)
|
|
return -EINVAL;
|
|
offs = 7 + x86_call_depth_emit_accounting(&prog, func);
|
|
} else {
|
|
if (!imm32)
|
|
return -EINVAL;
|
|
offs = x86_call_depth_emit_accounting(&prog, func);
|
|
}
|
|
if (emit_call(&prog, func, image + addrs[i - 1] + offs))
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
if (imm32)
|
|
emit_bpf_tail_call_direct(bpf_prog,
|
|
&bpf_prog->aux->poke_tab[imm32 - 1],
|
|
&prog, image + addrs[i - 1],
|
|
callee_regs_used,
|
|
bpf_prog->aux->stack_depth,
|
|
ctx);
|
|
else
|
|
emit_bpf_tail_call_indirect(bpf_prog,
|
|
&prog,
|
|
callee_regs_used,
|
|
bpf_prog->aux->stack_depth,
|
|
image + addrs[i - 1],
|
|
ctx);
|
|
break;
|
|
|
|
/* cond jump */
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_X:
|
|
case BPF_JMP32 | BPF_JNE | BPF_X:
|
|
case BPF_JMP32 | BPF_JGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_X:
|
|
/* cmp dst_reg, src_reg */
|
|
maybe_emit_mod(&prog, dst_reg, src_reg,
|
|
BPF_CLASS(insn->code) == BPF_JMP);
|
|
EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP32 | BPF_JSET | BPF_X:
|
|
/* test dst_reg, src_reg */
|
|
maybe_emit_mod(&prog, dst_reg, src_reg,
|
|
BPF_CLASS(insn->code) == BPF_JMP);
|
|
EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP32 | BPF_JSET | BPF_K:
|
|
/* test dst_reg, imm32 */
|
|
maybe_emit_1mod(&prog, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_JMP);
|
|
EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
|
|
goto emit_cond_jmp;
|
|
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_K:
|
|
case BPF_JMP32 | BPF_JNE | BPF_K:
|
|
case BPF_JMP32 | BPF_JGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_K:
|
|
/* test dst_reg, dst_reg to save one extra byte */
|
|
if (imm32 == 0) {
|
|
maybe_emit_mod(&prog, dst_reg, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_JMP);
|
|
EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
|
|
goto emit_cond_jmp;
|
|
}
|
|
|
|
/* cmp dst_reg, imm8/32 */
|
|
maybe_emit_1mod(&prog, dst_reg,
|
|
BPF_CLASS(insn->code) == BPF_JMP);
|
|
|
|
if (is_imm8(imm32))
|
|
EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
|
|
else
|
|
EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
|
|
|
|
emit_cond_jmp: /* Convert BPF opcode to x86 */
|
|
switch (BPF_OP(insn->code)) {
|
|
case BPF_JEQ:
|
|
jmp_cond = X86_JE;
|
|
break;
|
|
case BPF_JSET:
|
|
case BPF_JNE:
|
|
jmp_cond = X86_JNE;
|
|
break;
|
|
case BPF_JGT:
|
|
/* GT is unsigned '>', JA in x86 */
|
|
jmp_cond = X86_JA;
|
|
break;
|
|
case BPF_JLT:
|
|
/* LT is unsigned '<', JB in x86 */
|
|
jmp_cond = X86_JB;
|
|
break;
|
|
case BPF_JGE:
|
|
/* GE is unsigned '>=', JAE in x86 */
|
|
jmp_cond = X86_JAE;
|
|
break;
|
|
case BPF_JLE:
|
|
/* LE is unsigned '<=', JBE in x86 */
|
|
jmp_cond = X86_JBE;
|
|
break;
|
|
case BPF_JSGT:
|
|
/* Signed '>', GT in x86 */
|
|
jmp_cond = X86_JG;
|
|
break;
|
|
case BPF_JSLT:
|
|
/* Signed '<', LT in x86 */
|
|
jmp_cond = X86_JL;
|
|
break;
|
|
case BPF_JSGE:
|
|
/* Signed '>=', GE in x86 */
|
|
jmp_cond = X86_JGE;
|
|
break;
|
|
case BPF_JSLE:
|
|
/* Signed '<=', LE in x86 */
|
|
jmp_cond = X86_JLE;
|
|
break;
|
|
default: /* to silence GCC warning */
|
|
return -EFAULT;
|
|
}
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
if (is_imm8(jmp_offset)) {
|
|
if (jmp_padding) {
|
|
/* To keep the jmp_offset valid, the extra bytes are
|
|
* padded before the jump insn, so we subtract the
|
|
* 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
|
|
*
|
|
* If the previous pass already emits an imm8
|
|
* jmp_cond, then this BPF insn won't shrink, so
|
|
* "nops" is 0.
|
|
*
|
|
* On the other hand, if the previous pass emits an
|
|
* imm32 jmp_cond, the extra 4 bytes(*) is padded to
|
|
* keep the image from shrinking further.
|
|
*
|
|
* (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
|
|
* is 2 bytes, so the size difference is 4 bytes.
|
|
*/
|
|
nops = INSN_SZ_DIFF - 2;
|
|
if (nops != 0 && nops != 4) {
|
|
pr_err("unexpected jmp_cond padding: %d bytes\n",
|
|
nops);
|
|
return -EFAULT;
|
|
}
|
|
emit_nops(&prog, nops);
|
|
}
|
|
EMIT2(jmp_cond, jmp_offset);
|
|
} else if (is_simm32(jmp_offset)) {
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
|
|
} else {
|
|
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
|
|
break;
|
|
|
|
case BPF_JMP | BPF_JA:
|
|
case BPF_JMP32 | BPF_JA:
|
|
if (BPF_CLASS(insn->code) == BPF_JMP) {
|
|
if (insn->off == -1)
|
|
/* -1 jmp instructions will always jump
|
|
* backwards two bytes. Explicitly handling
|
|
* this case avoids wasting too many passes
|
|
* when there are long sequences of replaced
|
|
* dead code.
|
|
*/
|
|
jmp_offset = -2;
|
|
else
|
|
jmp_offset = addrs[i + insn->off] - addrs[i];
|
|
} else {
|
|
if (insn->imm == -1)
|
|
jmp_offset = -2;
|
|
else
|
|
jmp_offset = addrs[i + insn->imm] - addrs[i];
|
|
}
|
|
|
|
if (!jmp_offset) {
|
|
/*
|
|
* If jmp_padding is enabled, the extra nops will
|
|
* be inserted. Otherwise, optimize out nop jumps.
|
|
*/
|
|
if (jmp_padding) {
|
|
/* There are 3 possible conditions.
|
|
* (1) This BPF_JA is already optimized out in
|
|
* the previous run, so there is no need
|
|
* to pad any extra byte (0 byte).
|
|
* (2) The previous pass emits an imm8 jmp,
|
|
* so we pad 2 bytes to match the previous
|
|
* insn size.
|
|
* (3) Similarly, the previous pass emits an
|
|
* imm32 jmp, and 5 bytes is padded.
|
|
*/
|
|
nops = INSN_SZ_DIFF;
|
|
if (nops != 0 && nops != 2 && nops != 5) {
|
|
pr_err("unexpected nop jump padding: %d bytes\n",
|
|
nops);
|
|
return -EFAULT;
|
|
}
|
|
emit_nops(&prog, nops);
|
|
}
|
|
break;
|
|
}
|
|
emit_jmp:
|
|
if (is_imm8(jmp_offset)) {
|
|
if (jmp_padding) {
|
|
/* To avoid breaking jmp_offset, the extra bytes
|
|
* are padded before the actual jmp insn, so
|
|
* 2 bytes is subtracted from INSN_SZ_DIFF.
|
|
*
|
|
* If the previous pass already emits an imm8
|
|
* jmp, there is nothing to pad (0 byte).
|
|
*
|
|
* If it emits an imm32 jmp (5 bytes) previously
|
|
* and now an imm8 jmp (2 bytes), then we pad
|
|
* (5 - 2 = 3) bytes to stop the image from
|
|
* shrinking further.
|
|
*/
|
|
nops = INSN_SZ_DIFF - 2;
|
|
if (nops != 0 && nops != 3) {
|
|
pr_err("unexpected jump padding: %d bytes\n",
|
|
nops);
|
|
return -EFAULT;
|
|
}
|
|
emit_nops(&prog, INSN_SZ_DIFF - 2);
|
|
}
|
|
EMIT2(0xEB, jmp_offset);
|
|
} else if (is_simm32(jmp_offset)) {
|
|
EMIT1_off32(0xE9, jmp_offset);
|
|
} else {
|
|
pr_err("jmp gen bug %llx\n", jmp_offset);
|
|
return -EFAULT;
|
|
}
|
|
break;
|
|
|
|
case BPF_JMP | BPF_EXIT:
|
|
if (seen_exit) {
|
|
jmp_offset = ctx->cleanup_addr - addrs[i];
|
|
goto emit_jmp;
|
|
}
|
|
seen_exit = true;
|
|
/* Update cleanup_addr */
|
|
ctx->cleanup_addr = proglen;
|
|
if (bpf_prog->aux->exception_boundary) {
|
|
pop_callee_regs(&prog, all_callee_regs_used);
|
|
pop_r12(&prog);
|
|
} else {
|
|
pop_callee_regs(&prog, callee_regs_used);
|
|
}
|
|
EMIT1(0xC9); /* leave */
|
|
emit_return(&prog, image + addrs[i - 1] + (prog - temp));
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* By design x86-64 JIT should support all BPF instructions.
|
|
* This error will be seen if new instruction was added
|
|
* to the interpreter, but not to the JIT, or if there is
|
|
* junk in bpf_prog.
|
|
*/
|
|
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ilen = prog - temp;
|
|
if (ilen > BPF_MAX_INSN_SIZE) {
|
|
pr_err("bpf_jit: fatal insn size error\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (image) {
|
|
/*
|
|
* When populating the image, assert that:
|
|
*
|
|
* i) We do not write beyond the allocated space, and
|
|
* ii) addrs[i] did not change from the prior run, in order
|
|
* to validate assumptions made for computing branch
|
|
* displacements.
|
|
*/
|
|
if (unlikely(proglen + ilen > oldproglen ||
|
|
proglen + ilen != addrs[i])) {
|
|
pr_err("bpf_jit: fatal error\n");
|
|
return -EFAULT;
|
|
}
|
|
memcpy(rw_image + proglen, temp, ilen);
|
|
}
|
|
proglen += ilen;
|
|
addrs[i] = proglen;
|
|
prog = temp;
|
|
}
|
|
|
|
if (image && excnt != bpf_prog->aux->num_exentries) {
|
|
pr_err("extable is not populated\n");
|
|
return -EFAULT;
|
|
}
|
|
return proglen;
|
|
}
|
|
|
|
static void clean_stack_garbage(const struct btf_func_model *m,
|
|
u8 **pprog, int nr_stack_slots,
|
|
int stack_size)
|
|
{
|
|
int arg_size, off;
|
|
u8 *prog;
|
|
|
|
/* Generally speaking, the compiler will pass the arguments
|
|
* on-stack with "push" instruction, which will take 8-byte
|
|
* on the stack. In this case, there won't be garbage values
|
|
* while we copy the arguments from origin stack frame to current
|
|
* in BPF_DW.
|
|
*
|
|
* However, sometimes the compiler will only allocate 4-byte on
|
|
* the stack for the arguments. For now, this case will only
|
|
* happen if there is only one argument on-stack and its size
|
|
* not more than 4 byte. In this case, there will be garbage
|
|
* values on the upper 4-byte where we store the argument on
|
|
* current stack frame.
|
|
*
|
|
* arguments on origin stack:
|
|
*
|
|
* stack_arg_1(4-byte) xxx(4-byte)
|
|
*
|
|
* what we copy:
|
|
*
|
|
* stack_arg_1(8-byte): stack_arg_1(origin) xxx
|
|
*
|
|
* and the xxx is the garbage values which we should clean here.
|
|
*/
|
|
if (nr_stack_slots != 1)
|
|
return;
|
|
|
|
/* the size of the last argument */
|
|
arg_size = m->arg_size[m->nr_args - 1];
|
|
if (arg_size <= 4) {
|
|
off = -(stack_size - 4);
|
|
prog = *pprog;
|
|
/* mov DWORD PTR [rbp + off], 0 */
|
|
if (!is_imm8(off))
|
|
EMIT2_off32(0xC7, 0x85, off);
|
|
else
|
|
EMIT3(0xC7, 0x45, off);
|
|
EMIT(0, 4);
|
|
*pprog = prog;
|
|
}
|
|
}
|
|
|
|
/* get the count of the regs that are used to pass arguments */
|
|
static int get_nr_used_regs(const struct btf_func_model *m)
|
|
{
|
|
int i, arg_regs, nr_used_regs = 0;
|
|
|
|
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
|
|
arg_regs = (m->arg_size[i] + 7) / 8;
|
|
if (nr_used_regs + arg_regs <= 6)
|
|
nr_used_regs += arg_regs;
|
|
|
|
if (nr_used_regs >= 6)
|
|
break;
|
|
}
|
|
|
|
return nr_used_regs;
|
|
}
|
|
|
|
static void save_args(const struct btf_func_model *m, u8 **prog,
|
|
int stack_size, bool for_call_origin)
|
|
{
|
|
int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
|
|
int i, j;
|
|
|
|
/* Store function arguments to stack.
|
|
* For a function that accepts two pointers the sequence will be:
|
|
* mov QWORD PTR [rbp-0x10],rdi
|
|
* mov QWORD PTR [rbp-0x8],rsi
|
|
*/
|
|
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
|
|
arg_regs = (m->arg_size[i] + 7) / 8;
|
|
|
|
/* According to the research of Yonghong, struct members
|
|
* should be all in register or all on the stack.
|
|
* Meanwhile, the compiler will pass the argument on regs
|
|
* if the remaining regs can hold the argument.
|
|
*
|
|
* Disorder of the args can happen. For example:
|
|
*
|
|
* struct foo_struct {
|
|
* long a;
|
|
* int b;
|
|
* };
|
|
* int foo(char, char, char, char, char, struct foo_struct,
|
|
* char);
|
|
*
|
|
* the arg1-5,arg7 will be passed by regs, and arg6 will
|
|
* by stack.
|
|
*/
|
|
if (nr_regs + arg_regs > 6) {
|
|
/* copy function arguments from origin stack frame
|
|
* into current stack frame.
|
|
*
|
|
* The starting address of the arguments on-stack
|
|
* is:
|
|
* rbp + 8(push rbp) +
|
|
* 8(return addr of origin call) +
|
|
* 8(return addr of the caller)
|
|
* which means: rbp + 24
|
|
*/
|
|
for (j = 0; j < arg_regs; j++) {
|
|
emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
|
|
nr_stack_slots * 8 + 0x18);
|
|
emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
|
|
-stack_size);
|
|
|
|
if (!nr_stack_slots)
|
|
first_off = stack_size;
|
|
stack_size -= 8;
|
|
nr_stack_slots++;
|
|
}
|
|
} else {
|
|
/* Only copy the arguments on-stack to current
|
|
* 'stack_size' and ignore the regs, used to
|
|
* prepare the arguments on-stack for origin call.
|
|
*/
|
|
if (for_call_origin) {
|
|
nr_regs += arg_regs;
|
|
continue;
|
|
}
|
|
|
|
/* copy the arguments from regs into stack */
|
|
for (j = 0; j < arg_regs; j++) {
|
|
emit_stx(prog, BPF_DW, BPF_REG_FP,
|
|
nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
|
|
-stack_size);
|
|
stack_size -= 8;
|
|
nr_regs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
clean_stack_garbage(m, prog, nr_stack_slots, first_off);
|
|
}
|
|
|
|
static void restore_regs(const struct btf_func_model *m, u8 **prog,
|
|
int stack_size)
|
|
{
|
|
int i, j, arg_regs, nr_regs = 0;
|
|
|
|
/* Restore function arguments from stack.
|
|
* For a function that accepts two pointers the sequence will be:
|
|
* EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
|
|
* EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
|
|
*
|
|
* The logic here is similar to what we do in save_args()
|
|
*/
|
|
for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
|
|
arg_regs = (m->arg_size[i] + 7) / 8;
|
|
if (nr_regs + arg_regs <= 6) {
|
|
for (j = 0; j < arg_regs; j++) {
|
|
emit_ldx(prog, BPF_DW,
|
|
nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
|
|
BPF_REG_FP,
|
|
-stack_size);
|
|
stack_size -= 8;
|
|
nr_regs++;
|
|
}
|
|
} else {
|
|
stack_size -= 8 * arg_regs;
|
|
}
|
|
|
|
if (nr_regs >= 6)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
|
|
struct bpf_tramp_link *l, int stack_size,
|
|
int run_ctx_off, bool save_ret,
|
|
void *image, void *rw_image)
|
|
{
|
|
u8 *prog = *pprog;
|
|
u8 *jmp_insn;
|
|
int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
|
|
struct bpf_prog *p = l->link.prog;
|
|
u64 cookie = l->cookie;
|
|
|
|
/* mov rdi, cookie */
|
|
emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
|
|
|
|
/* Prepare struct bpf_tramp_run_ctx.
|
|
*
|
|
* bpf_tramp_run_ctx is already preserved by
|
|
* arch_prepare_bpf_trampoline().
|
|
*
|
|
* mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
|
|
*/
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
|
|
|
|
/* arg1: mov rdi, progs[i] */
|
|
emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
|
|
/* arg2: lea rsi, [rbp - ctx_cookie_off] */
|
|
if (!is_imm8(-run_ctx_off))
|
|
EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
|
|
else
|
|
EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
|
|
|
|
if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
|
|
return -EINVAL;
|
|
/* remember prog start time returned by __bpf_prog_enter */
|
|
emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
|
|
|
|
/* if (__bpf_prog_enter*(prog) == 0)
|
|
* goto skip_exec_of_prog;
|
|
*/
|
|
EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
|
|
/* emit 2 nops that will be replaced with JE insn */
|
|
jmp_insn = prog;
|
|
emit_nops(&prog, 2);
|
|
|
|
/* arg1: lea rdi, [rbp - stack_size] */
|
|
if (!is_imm8(-stack_size))
|
|
EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
|
|
else
|
|
EMIT4(0x48, 0x8D, 0x7D, -stack_size);
|
|
/* arg2: progs[i]->insnsi for interpreter */
|
|
if (!p->jited)
|
|
emit_mov_imm64(&prog, BPF_REG_2,
|
|
(long) p->insnsi >> 32,
|
|
(u32) (long) p->insnsi);
|
|
/* call JITed bpf program or interpreter */
|
|
if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
|
|
* of the previous call which is then passed on the stack to
|
|
* the next BPF program.
|
|
*
|
|
* BPF_TRAMP_FENTRY trampoline may need to return the return
|
|
* value of BPF_PROG_TYPE_STRUCT_OPS prog.
|
|
*/
|
|
if (save_ret)
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
|
|
|
|
/* replace 2 nops with JE insn, since jmp target is known */
|
|
jmp_insn[0] = X86_JE;
|
|
jmp_insn[1] = prog - jmp_insn - 2;
|
|
|
|
/* arg1: mov rdi, progs[i] */
|
|
emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
|
|
/* arg2: mov rsi, rbx <- start time in nsec */
|
|
emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
|
|
/* arg3: lea rdx, [rbp - run_ctx_off] */
|
|
if (!is_imm8(-run_ctx_off))
|
|
EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
|
|
else
|
|
EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
|
|
if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
|
|
return -EINVAL;
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static void emit_align(u8 **pprog, u32 align)
|
|
{
|
|
u8 *target, *prog = *pprog;
|
|
|
|
target = PTR_ALIGN(prog, align);
|
|
if (target != prog)
|
|
emit_nops(&prog, target - prog);
|
|
|
|
*pprog = prog;
|
|
}
|
|
|
|
static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
|
|
{
|
|
u8 *prog = *pprog;
|
|
s64 offset;
|
|
|
|
offset = func - (ip + 2 + 4);
|
|
if (!is_simm32(offset)) {
|
|
pr_err("Target %p is out of range\n", func);
|
|
return -EINVAL;
|
|
}
|
|
EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
|
|
struct bpf_tramp_links *tl, int stack_size,
|
|
int run_ctx_off, bool save_ret,
|
|
void *image, void *rw_image)
|
|
{
|
|
int i;
|
|
u8 *prog = *pprog;
|
|
|
|
for (i = 0; i < tl->nr_links; i++) {
|
|
if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
|
|
run_ctx_off, save_ret, image, rw_image))
|
|
return -EINVAL;
|
|
}
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
|
|
struct bpf_tramp_links *tl, int stack_size,
|
|
int run_ctx_off, u8 **branches,
|
|
void *image, void *rw_image)
|
|
{
|
|
u8 *prog = *pprog;
|
|
int i;
|
|
|
|
/* The first fmod_ret program will receive a garbage return value.
|
|
* Set this to 0 to avoid confusing the program.
|
|
*/
|
|
emit_mov_imm32(&prog, false, BPF_REG_0, 0);
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
|
|
for (i = 0; i < tl->nr_links; i++) {
|
|
if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
|
|
image, rw_image))
|
|
return -EINVAL;
|
|
|
|
/* mod_ret prog stored return value into [rbp - 8]. Emit:
|
|
* if (*(u64 *)(rbp - 8) != 0)
|
|
* goto do_fexit;
|
|
*/
|
|
/* cmp QWORD PTR [rbp - 0x8], 0x0 */
|
|
EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
|
|
|
|
/* Save the location of the branch and Generate 6 nops
|
|
* (4 bytes for an offset and 2 bytes for the jump) These nops
|
|
* are replaced with a conditional jump once do_fexit (i.e. the
|
|
* start of the fexit invocation) is finalized.
|
|
*/
|
|
branches[i] = prog;
|
|
emit_nops(&prog, 4 + 2);
|
|
}
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
/* Example:
|
|
* __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
|
|
* its 'struct btf_func_model' will be nr_args=2
|
|
* The assembly code when eth_type_trans is executing after trampoline:
|
|
*
|
|
* push rbp
|
|
* mov rbp, rsp
|
|
* sub rsp, 16 // space for skb and dev
|
|
* push rbx // temp regs to pass start time
|
|
* mov qword ptr [rbp - 16], rdi // save skb pointer to stack
|
|
* mov qword ptr [rbp - 8], rsi // save dev pointer to stack
|
|
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
|
|
* mov rbx, rax // remember start time in bpf stats are enabled
|
|
* lea rdi, [rbp - 16] // R1==ctx of bpf prog
|
|
* call addr_of_jited_FENTRY_prog
|
|
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
|
|
* mov rsi, rbx // prog start time
|
|
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
|
|
* mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
|
|
* mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
|
|
* pop rbx
|
|
* leave
|
|
* ret
|
|
*
|
|
* eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
|
|
* replaced with 'call generated_bpf_trampoline'. When it returns
|
|
* eth_type_trans will continue executing with original skb and dev pointers.
|
|
*
|
|
* The assembly code when eth_type_trans is called from trampoline:
|
|
*
|
|
* push rbp
|
|
* mov rbp, rsp
|
|
* sub rsp, 24 // space for skb, dev, return value
|
|
* push rbx // temp regs to pass start time
|
|
* mov qword ptr [rbp - 24], rdi // save skb pointer to stack
|
|
* mov qword ptr [rbp - 16], rsi // save dev pointer to stack
|
|
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
|
|
* mov rbx, rax // remember start time if bpf stats are enabled
|
|
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
|
|
* call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
|
|
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
|
|
* mov rsi, rbx // prog start time
|
|
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
|
|
* mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
|
|
* mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
|
|
* call eth_type_trans+5 // execute body of eth_type_trans
|
|
* mov qword ptr [rbp - 8], rax // save return value
|
|
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
|
|
* mov rbx, rax // remember start time in bpf stats are enabled
|
|
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
|
|
* call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
|
|
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
|
|
* mov rsi, rbx // prog start time
|
|
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
|
|
* mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
|
|
* pop rbx
|
|
* leave
|
|
* add rsp, 8 // skip eth_type_trans's frame
|
|
* ret // return to its caller
|
|
*/
|
|
static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
|
|
void *rw_image_end, void *image,
|
|
const struct btf_func_model *m, u32 flags,
|
|
struct bpf_tramp_links *tlinks,
|
|
void *func_addr)
|
|
{
|
|
int i, ret, nr_regs = m->nr_args, stack_size = 0;
|
|
int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
|
|
struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
|
|
struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
|
|
struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
|
|
void *orig_call = func_addr;
|
|
u8 **branches = NULL;
|
|
u8 *prog;
|
|
bool save_ret;
|
|
|
|
/*
|
|
* F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
|
|
* explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
|
|
* because @func_addr.
|
|
*/
|
|
WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
|
|
(flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
|
|
|
|
/* extra registers for struct arguments */
|
|
for (i = 0; i < m->nr_args; i++) {
|
|
if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
|
|
nr_regs += (m->arg_size[i] + 7) / 8 - 1;
|
|
}
|
|
|
|
/* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
|
|
* are passed through regs, the remains are through stack.
|
|
*/
|
|
if (nr_regs > MAX_BPF_FUNC_ARGS)
|
|
return -ENOTSUPP;
|
|
|
|
/* Generated trampoline stack layout:
|
|
*
|
|
* RBP + 8 [ return address ]
|
|
* RBP + 0 [ RBP ]
|
|
*
|
|
* RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
|
|
* BPF_TRAMP_F_RET_FENTRY_RET flags
|
|
*
|
|
* [ reg_argN ] always
|
|
* [ ... ]
|
|
* RBP - regs_off [ reg_arg1 ] program's ctx pointer
|
|
*
|
|
* RBP - nregs_off [ regs count ] always
|
|
*
|
|
* RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
|
|
*
|
|
* RBP - rbx_off [ rbx value ] always
|
|
*
|
|
* RBP - run_ctx_off [ bpf_tramp_run_ctx ]
|
|
*
|
|
* [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
|
|
* [ ... ]
|
|
* [ stack_arg2 ]
|
|
* RBP - arg_stack_off [ stack_arg1 ]
|
|
* RSP [ tail_call_cnt ] BPF_TRAMP_F_TAIL_CALL_CTX
|
|
*/
|
|
|
|
/* room for return value of orig_call or fentry prog */
|
|
save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
|
|
if (save_ret)
|
|
stack_size += 8;
|
|
|
|
stack_size += nr_regs * 8;
|
|
regs_off = stack_size;
|
|
|
|
/* regs count */
|
|
stack_size += 8;
|
|
nregs_off = stack_size;
|
|
|
|
if (flags & BPF_TRAMP_F_IP_ARG)
|
|
stack_size += 8; /* room for IP address argument */
|
|
|
|
ip_off = stack_size;
|
|
|
|
stack_size += 8;
|
|
rbx_off = stack_size;
|
|
|
|
stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
|
|
run_ctx_off = stack_size;
|
|
|
|
if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
|
|
/* the space that used to pass arguments on-stack */
|
|
stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
|
|
/* make sure the stack pointer is 16-byte aligned if we
|
|
* need pass arguments on stack, which means
|
|
* [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
|
|
* should be 16-byte aligned. Following code depend on
|
|
* that stack_size is already 8-byte aligned.
|
|
*/
|
|
stack_size += (stack_size % 16) ? 0 : 8;
|
|
}
|
|
|
|
arg_stack_off = stack_size;
|
|
|
|
if (flags & BPF_TRAMP_F_SKIP_FRAME) {
|
|
/* skip patched call instruction and point orig_call to actual
|
|
* body of the kernel function.
|
|
*/
|
|
if (is_endbr(*(u32 *)orig_call))
|
|
orig_call += ENDBR_INSN_SIZE;
|
|
orig_call += X86_PATCH_SIZE;
|
|
}
|
|
|
|
prog = rw_image;
|
|
|
|
if (flags & BPF_TRAMP_F_INDIRECT) {
|
|
/*
|
|
* Indirect call for bpf_struct_ops
|
|
*/
|
|
emit_cfi(&prog, cfi_get_func_hash(func_addr));
|
|
} else {
|
|
/*
|
|
* Direct-call fentry stub, as such it needs accounting for the
|
|
* __fentry__ call.
|
|
*/
|
|
x86_call_depth_emit_accounting(&prog, NULL);
|
|
}
|
|
EMIT1(0x55); /* push rbp */
|
|
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
|
|
if (!is_imm8(stack_size)) {
|
|
/* sub rsp, stack_size */
|
|
EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
|
|
} else {
|
|
/* sub rsp, stack_size */
|
|
EMIT4(0x48, 0x83, 0xEC, stack_size);
|
|
}
|
|
if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
|
|
EMIT1(0x50); /* push rax */
|
|
/* mov QWORD PTR [rbp - rbx_off], rbx */
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
|
|
|
|
/* Store number of argument registers of the traced function:
|
|
* mov rax, nr_regs
|
|
* mov QWORD PTR [rbp - nregs_off], rax
|
|
*/
|
|
emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
|
|
|
|
if (flags & BPF_TRAMP_F_IP_ARG) {
|
|
/* Store IP address of the traced function:
|
|
* movabsq rax, func_addr
|
|
* mov QWORD PTR [rbp - ip_off], rax
|
|
*/
|
|
emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
|
|
}
|
|
|
|
save_args(m, &prog, regs_off, false);
|
|
|
|
if (flags & BPF_TRAMP_F_CALL_ORIG) {
|
|
/* arg1: mov rdi, im */
|
|
emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
|
|
if (emit_rsb_call(&prog, __bpf_tramp_enter,
|
|
image + (prog - (u8 *)rw_image))) {
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if (fentry->nr_links) {
|
|
if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
|
|
flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fmod_ret->nr_links) {
|
|
branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
|
|
GFP_KERNEL);
|
|
if (!branches)
|
|
return -ENOMEM;
|
|
|
|
if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
|
|
run_ctx_off, branches, image, rw_image)) {
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if (flags & BPF_TRAMP_F_CALL_ORIG) {
|
|
restore_regs(m, &prog, regs_off);
|
|
save_args(m, &prog, arg_stack_off, true);
|
|
|
|
if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
|
|
/* Before calling the original function, restore the
|
|
* tail_call_cnt from stack to rax.
|
|
*/
|
|
RESTORE_TAIL_CALL_CNT(stack_size);
|
|
}
|
|
|
|
if (flags & BPF_TRAMP_F_ORIG_STACK) {
|
|
emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
|
|
EMIT2(0xff, 0xd3); /* call *rbx */
|
|
} else {
|
|
/* call original function */
|
|
if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
/* remember return value in a stack for bpf prog to access */
|
|
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
|
|
im->ip_after_call = image + (prog - (u8 *)rw_image);
|
|
emit_nops(&prog, X86_PATCH_SIZE);
|
|
}
|
|
|
|
if (fmod_ret->nr_links) {
|
|
/* From Intel 64 and IA-32 Architectures Optimization
|
|
* Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
|
|
* Coding Rule 11: All branch targets should be 16-byte
|
|
* aligned.
|
|
*/
|
|
emit_align(&prog, 16);
|
|
/* Update the branches saved in invoke_bpf_mod_ret with the
|
|
* aligned address of do_fexit.
|
|
*/
|
|
for (i = 0; i < fmod_ret->nr_links; i++) {
|
|
emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
|
|
image + (branches[i] - (u8 *)rw_image), X86_JNE);
|
|
}
|
|
}
|
|
|
|
if (fexit->nr_links) {
|
|
if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
|
|
false, image, rw_image)) {
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if (flags & BPF_TRAMP_F_RESTORE_REGS)
|
|
restore_regs(m, &prog, regs_off);
|
|
|
|
/* This needs to be done regardless. If there were fmod_ret programs,
|
|
* the return value is only updated on the stack and still needs to be
|
|
* restored to R0.
|
|
*/
|
|
if (flags & BPF_TRAMP_F_CALL_ORIG) {
|
|
im->ip_epilogue = image + (prog - (u8 *)rw_image);
|
|
/* arg1: mov rdi, im */
|
|
emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
|
|
if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
} else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
|
|
/* Before running the original function, restore the
|
|
* tail_call_cnt from stack to rax.
|
|
*/
|
|
RESTORE_TAIL_CALL_CNT(stack_size);
|
|
}
|
|
|
|
/* restore return value of orig_call or fentry prog back into RAX */
|
|
if (save_ret)
|
|
emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
|
|
|
|
emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
|
|
EMIT1(0xC9); /* leave */
|
|
if (flags & BPF_TRAMP_F_SKIP_FRAME) {
|
|
/* skip our return address and return to parent */
|
|
EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
|
|
}
|
|
emit_return(&prog, image + (prog - (u8 *)rw_image));
|
|
/* Make sure the trampoline generation logic doesn't overflow */
|
|
if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
|
|
ret = -EFAULT;
|
|
goto cleanup;
|
|
}
|
|
ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
|
|
|
|
cleanup:
|
|
kfree(branches);
|
|
return ret;
|
|
}
|
|
|
|
void *arch_alloc_bpf_trampoline(unsigned int size)
|
|
{
|
|
return bpf_prog_pack_alloc(size, jit_fill_hole);
|
|
}
|
|
|
|
void arch_free_bpf_trampoline(void *image, unsigned int size)
|
|
{
|
|
bpf_prog_pack_free(image, size);
|
|
}
|
|
|
|
void arch_protect_bpf_trampoline(void *image, unsigned int size)
|
|
{
|
|
}
|
|
|
|
void arch_unprotect_bpf_trampoline(void *image, unsigned int size)
|
|
{
|
|
}
|
|
|
|
int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
|
|
const struct btf_func_model *m, u32 flags,
|
|
struct bpf_tramp_links *tlinks,
|
|
void *func_addr)
|
|
{
|
|
void *rw_image, *tmp;
|
|
int ret;
|
|
u32 size = image_end - image;
|
|
|
|
/* rw_image doesn't need to be in module memory range, so we can
|
|
* use kvmalloc.
|
|
*/
|
|
rw_image = kvmalloc(size, GFP_KERNEL);
|
|
if (!rw_image)
|
|
return -ENOMEM;
|
|
|
|
ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
|
|
flags, tlinks, func_addr);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
tmp = bpf_arch_text_copy(image, rw_image, size);
|
|
if (IS_ERR(tmp))
|
|
ret = PTR_ERR(tmp);
|
|
out:
|
|
kvfree(rw_image);
|
|
return ret;
|
|
}
|
|
|
|
int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
|
|
struct bpf_tramp_links *tlinks, void *func_addr)
|
|
{
|
|
struct bpf_tramp_image im;
|
|
void *image;
|
|
int ret;
|
|
|
|
/* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
|
|
* This will NOT cause fragmentation in direct map, as we do not
|
|
* call set_memory_*() on this buffer.
|
|
*
|
|
* We cannot use kvmalloc here, because we need image to be in
|
|
* module memory range.
|
|
*/
|
|
image = bpf_jit_alloc_exec(PAGE_SIZE);
|
|
if (!image)
|
|
return -ENOMEM;
|
|
|
|
ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
|
|
m, flags, tlinks, func_addr);
|
|
bpf_jit_free_exec(image);
|
|
return ret;
|
|
}
|
|
|
|
static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
|
|
{
|
|
u8 *jg_reloc, *prog = *pprog;
|
|
int pivot, err, jg_bytes = 1;
|
|
s64 jg_offset;
|
|
|
|
if (a == b) {
|
|
/* Leaf node of recursion, i.e. not a range of indices
|
|
* anymore.
|
|
*/
|
|
EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
|
|
if (!is_simm32(progs[a]))
|
|
return -1;
|
|
EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
|
|
progs[a]);
|
|
err = emit_cond_near_jump(&prog, /* je func */
|
|
(void *)progs[a], image + (prog - buf),
|
|
X86_JE);
|
|
if (err)
|
|
return err;
|
|
|
|
emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
/* Not a leaf node, so we pivot, and recursively descend into
|
|
* the lower and upper ranges.
|
|
*/
|
|
pivot = (b - a) / 2;
|
|
EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
|
|
if (!is_simm32(progs[a + pivot]))
|
|
return -1;
|
|
EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
|
|
|
|
if (pivot > 2) { /* jg upper_part */
|
|
/* Require near jump. */
|
|
jg_bytes = 4;
|
|
EMIT2_off32(0x0F, X86_JG + 0x10, 0);
|
|
} else {
|
|
EMIT2(X86_JG, 0);
|
|
}
|
|
jg_reloc = prog;
|
|
|
|
err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
|
|
progs, image, buf);
|
|
if (err)
|
|
return err;
|
|
|
|
/* From Intel 64 and IA-32 Architectures Optimization
|
|
* Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
|
|
* Coding Rule 11: All branch targets should be 16-byte
|
|
* aligned.
|
|
*/
|
|
emit_align(&prog, 16);
|
|
jg_offset = prog - jg_reloc;
|
|
emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
|
|
|
|
err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
|
|
b, progs, image, buf);
|
|
if (err)
|
|
return err;
|
|
|
|
*pprog = prog;
|
|
return 0;
|
|
}
|
|
|
|
static int cmp_ips(const void *a, const void *b)
|
|
{
|
|
const s64 *ipa = a;
|
|
const s64 *ipb = b;
|
|
|
|
if (*ipa > *ipb)
|
|
return 1;
|
|
if (*ipa < *ipb)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
|
|
{
|
|
u8 *prog = buf;
|
|
|
|
sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
|
|
return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
|
|
}
|
|
|
|
struct x64_jit_data {
|
|
struct bpf_binary_header *rw_header;
|
|
struct bpf_binary_header *header;
|
|
int *addrs;
|
|
u8 *image;
|
|
int proglen;
|
|
struct jit_context ctx;
|
|
};
|
|
|
|
#define MAX_PASSES 20
|
|
#define PADDING_PASSES (MAX_PASSES - 5)
|
|
|
|
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
|
|
{
|
|
struct bpf_binary_header *rw_header = NULL;
|
|
struct bpf_binary_header *header = NULL;
|
|
struct bpf_prog *tmp, *orig_prog = prog;
|
|
struct x64_jit_data *jit_data;
|
|
int proglen, oldproglen = 0;
|
|
struct jit_context ctx = {};
|
|
bool tmp_blinded = false;
|
|
bool extra_pass = false;
|
|
bool padding = false;
|
|
u8 *rw_image = NULL;
|
|
u8 *image = NULL;
|
|
int *addrs;
|
|
int pass;
|
|
int i;
|
|
|
|
if (!prog->jit_requested)
|
|
return orig_prog;
|
|
|
|
tmp = bpf_jit_blind_constants(prog);
|
|
/*
|
|
* If blinding was requested and we failed during blinding,
|
|
* we must fall back to the interpreter.
|
|
*/
|
|
if (IS_ERR(tmp))
|
|
return orig_prog;
|
|
if (tmp != prog) {
|
|
tmp_blinded = true;
|
|
prog = tmp;
|
|
}
|
|
|
|
jit_data = prog->aux->jit_data;
|
|
if (!jit_data) {
|
|
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
|
|
if (!jit_data) {
|
|
prog = orig_prog;
|
|
goto out;
|
|
}
|
|
prog->aux->jit_data = jit_data;
|
|
}
|
|
addrs = jit_data->addrs;
|
|
if (addrs) {
|
|
ctx = jit_data->ctx;
|
|
oldproglen = jit_data->proglen;
|
|
image = jit_data->image;
|
|
header = jit_data->header;
|
|
rw_header = jit_data->rw_header;
|
|
rw_image = (void *)rw_header + ((void *)image - (void *)header);
|
|
extra_pass = true;
|
|
padding = true;
|
|
goto skip_init_addrs;
|
|
}
|
|
addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
|
|
if (!addrs) {
|
|
prog = orig_prog;
|
|
goto out_addrs;
|
|
}
|
|
|
|
/*
|
|
* Before first pass, make a rough estimation of addrs[]
|
|
* each BPF instruction is translated to less than 64 bytes
|
|
*/
|
|
for (proglen = 0, i = 0; i <= prog->len; i++) {
|
|
proglen += 64;
|
|
addrs[i] = proglen;
|
|
}
|
|
ctx.cleanup_addr = proglen;
|
|
skip_init_addrs:
|
|
|
|
/*
|
|
* JITed image shrinks with every pass and the loop iterates
|
|
* until the image stops shrinking. Very large BPF programs
|
|
* may converge on the last pass. In such case do one more
|
|
* pass to emit the final image.
|
|
*/
|
|
for (pass = 0; pass < MAX_PASSES || image; pass++) {
|
|
if (!padding && pass >= PADDING_PASSES)
|
|
padding = true;
|
|
proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
|
|
if (proglen <= 0) {
|
|
out_image:
|
|
image = NULL;
|
|
if (header) {
|
|
bpf_arch_text_copy(&header->size, &rw_header->size,
|
|
sizeof(rw_header->size));
|
|
bpf_jit_binary_pack_free(header, rw_header);
|
|
}
|
|
/* Fall back to interpreter mode */
|
|
prog = orig_prog;
|
|
if (extra_pass) {
|
|
prog->bpf_func = NULL;
|
|
prog->jited = 0;
|
|
prog->jited_len = 0;
|
|
}
|
|
goto out_addrs;
|
|
}
|
|
if (image) {
|
|
if (proglen != oldproglen) {
|
|
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
|
|
proglen, oldproglen);
|
|
goto out_image;
|
|
}
|
|
break;
|
|
}
|
|
if (proglen == oldproglen) {
|
|
/*
|
|
* The number of entries in extable is the number of BPF_LDX
|
|
* insns that access kernel memory via "pointer to BTF type".
|
|
* The verifier changed their opcode from LDX|MEM|size
|
|
* to LDX|PROBE_MEM|size to make JITing easier.
|
|
*/
|
|
u32 align = __alignof__(struct exception_table_entry);
|
|
u32 extable_size = prog->aux->num_exentries *
|
|
sizeof(struct exception_table_entry);
|
|
|
|
/* allocate module memory for x86 insns and extable */
|
|
header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
|
|
&image, align, &rw_header, &rw_image,
|
|
jit_fill_hole);
|
|
if (!header) {
|
|
prog = orig_prog;
|
|
goto out_addrs;
|
|
}
|
|
prog->aux->extable = (void *) image + roundup(proglen, align);
|
|
}
|
|
oldproglen = proglen;
|
|
cond_resched();
|
|
}
|
|
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
|
|
|
|
if (image) {
|
|
if (!prog->is_func || extra_pass) {
|
|
/*
|
|
* bpf_jit_binary_pack_finalize fails in two scenarios:
|
|
* 1) header is not pointing to proper module memory;
|
|
* 2) the arch doesn't support bpf_arch_text_copy().
|
|
*
|
|
* Both cases are serious bugs and justify WARN_ON.
|
|
*/
|
|
if (WARN_ON(bpf_jit_binary_pack_finalize(prog, header, rw_header))) {
|
|
/* header has been freed */
|
|
header = NULL;
|
|
goto out_image;
|
|
}
|
|
|
|
bpf_tail_call_direct_fixup(prog);
|
|
} else {
|
|
jit_data->addrs = addrs;
|
|
jit_data->ctx = ctx;
|
|
jit_data->proglen = proglen;
|
|
jit_data->image = image;
|
|
jit_data->header = header;
|
|
jit_data->rw_header = rw_header;
|
|
}
|
|
/*
|
|
* ctx.prog_offset is used when CFI preambles put code *before*
|
|
* the function. See emit_cfi(). For FineIBT specifically this code
|
|
* can also be executed and bpf_prog_kallsyms_add() will
|
|
* generate an additional symbol to cover this, hence also
|
|
* decrement proglen.
|
|
*/
|
|
prog->bpf_func = (void *)image + cfi_get_offset();
|
|
prog->jited = 1;
|
|
prog->jited_len = proglen - cfi_get_offset();
|
|
} else {
|
|
prog = orig_prog;
|
|
}
|
|
|
|
if (!image || !prog->is_func || extra_pass) {
|
|
if (image)
|
|
bpf_prog_fill_jited_linfo(prog, addrs + 1);
|
|
out_addrs:
|
|
kvfree(addrs);
|
|
kfree(jit_data);
|
|
prog->aux->jit_data = NULL;
|
|
}
|
|
out:
|
|
if (tmp_blinded)
|
|
bpf_jit_prog_release_other(prog, prog == orig_prog ?
|
|
tmp : orig_prog);
|
|
return prog;
|
|
}
|
|
|
|
bool bpf_jit_supports_kfunc_call(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void *bpf_arch_text_copy(void *dst, void *src, size_t len)
|
|
{
|
|
if (text_poke_copy(dst, src, len) == NULL)
|
|
return ERR_PTR(-EINVAL);
|
|
return dst;
|
|
}
|
|
|
|
/* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
|
|
bool bpf_jit_supports_subprog_tailcalls(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
void bpf_jit_free(struct bpf_prog *prog)
|
|
{
|
|
if (prog->jited) {
|
|
struct x64_jit_data *jit_data = prog->aux->jit_data;
|
|
struct bpf_binary_header *hdr;
|
|
|
|
/*
|
|
* If we fail the final pass of JIT (from jit_subprogs),
|
|
* the program may not be finalized yet. Call finalize here
|
|
* before freeing it.
|
|
*/
|
|
if (jit_data) {
|
|
bpf_jit_binary_pack_finalize(prog, jit_data->header,
|
|
jit_data->rw_header);
|
|
kvfree(jit_data->addrs);
|
|
kfree(jit_data);
|
|
}
|
|
prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
|
|
hdr = bpf_jit_binary_pack_hdr(prog);
|
|
bpf_jit_binary_pack_free(hdr, NULL);
|
|
WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
|
|
}
|
|
|
|
bpf_prog_unlock_free(prog);
|
|
}
|
|
|
|
bool bpf_jit_supports_exceptions(void)
|
|
{
|
|
/* We unwind through both kernel frames (starting from within bpf_throw
|
|
* call) and BPF frames. Therefore we require ORC unwinder to be enabled
|
|
* to walk kernel frames and reach BPF frames in the stack trace.
|
|
*/
|
|
return IS_ENABLED(CONFIG_UNWINDER_ORC);
|
|
}
|
|
|
|
void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
|
|
{
|
|
#if defined(CONFIG_UNWINDER_ORC)
|
|
struct unwind_state state;
|
|
unsigned long addr;
|
|
|
|
for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
|
|
unwind_next_frame(&state)) {
|
|
addr = unwind_get_return_address(&state);
|
|
if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
|
|
break;
|
|
}
|
|
return;
|
|
#endif
|
|
WARN(1, "verification of programs using bpf_throw should have failed\n");
|
|
}
|
|
|
|
void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
|
|
struct bpf_prog *new, struct bpf_prog *old)
|
|
{
|
|
u8 *old_addr, *new_addr, *old_bypass_addr;
|
|
int ret;
|
|
|
|
old_bypass_addr = old ? NULL : poke->bypass_addr;
|
|
old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
|
|
new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
|
|
|
|
/*
|
|
* On program loading or teardown, the program's kallsym entry
|
|
* might not be in place, so we use __bpf_arch_text_poke to skip
|
|
* the kallsyms check.
|
|
*/
|
|
if (new) {
|
|
ret = __bpf_arch_text_poke(poke->tailcall_target,
|
|
BPF_MOD_JUMP,
|
|
old_addr, new_addr);
|
|
BUG_ON(ret < 0);
|
|
if (!old) {
|
|
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
|
|
BPF_MOD_JUMP,
|
|
poke->bypass_addr,
|
|
NULL);
|
|
BUG_ON(ret < 0);
|
|
}
|
|
} else {
|
|
ret = __bpf_arch_text_poke(poke->tailcall_bypass,
|
|
BPF_MOD_JUMP,
|
|
old_bypass_addr,
|
|
poke->bypass_addr);
|
|
BUG_ON(ret < 0);
|
|
/* let other CPUs finish the execution of program
|
|
* so that it will not possible to expose them
|
|
* to invalid nop, stack unwind, nop state
|
|
*/
|
|
if (!ret)
|
|
synchronize_rcu();
|
|
ret = __bpf_arch_text_poke(poke->tailcall_target,
|
|
BPF_MOD_JUMP,
|
|
old_addr, NULL);
|
|
BUG_ON(ret < 0);
|
|
}
|
|
}
|
|
|
|
bool bpf_jit_supports_ptr_xchg(void)
|
|
{
|
|
return true;
|
|
}
|