mirror of
https://github.com/torvalds/linux.git
synced 2024-12-21 10:31:54 +00:00
7be141d055
Pull x86 fixes from Ingo Molnar: "A couple of EFI fixes, plus misc fixes all around the map" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: efi/arm64: Store Runtime Services revision firmware: Do not use WARN_ON(!spin_is_locked()) x86_32, entry: Clean up sysenter_badsys declaration x86/doc: Fix the 'tlb_single_page_flush_ceiling' sysconfig path x86/mm: Fix sparse 'tlb_single_page_flush_ceiling' warning and make the variable read-mostly x86/mm: Fix RCU splat from new TLB tracepoints
482 lines
11 KiB
C
482 lines
11 KiB
C
/*
|
|
* Extensible Firmware Interface
|
|
*
|
|
* Based on Extensible Firmware Interface Specification version 2.4
|
|
*
|
|
* Copyright (C) 2013, 2014 Linaro Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/export.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
struct efi_memory_map memmap;
|
|
|
|
static efi_runtime_services_t *runtime;
|
|
|
|
static u64 efi_system_table;
|
|
|
|
static int uefi_debug __initdata;
|
|
static int __init uefi_debug_setup(char *str)
|
|
{
|
|
uefi_debug = 1;
|
|
|
|
return 0;
|
|
}
|
|
early_param("uefi_debug", uefi_debug_setup);
|
|
|
|
static int __init is_normal_ram(efi_memory_desc_t *md)
|
|
{
|
|
if (md->attribute & EFI_MEMORY_WB)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void __init efi_setup_idmap(void)
|
|
{
|
|
struct memblock_region *r;
|
|
efi_memory_desc_t *md;
|
|
u64 paddr, npages, size;
|
|
|
|
for_each_memblock(memory, r)
|
|
create_id_mapping(r->base, r->size, 0);
|
|
|
|
/* map runtime io spaces */
|
|
for_each_efi_memory_desc(&memmap, md) {
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME) || is_normal_ram(md))
|
|
continue;
|
|
paddr = md->phys_addr;
|
|
npages = md->num_pages;
|
|
memrange_efi_to_native(&paddr, &npages);
|
|
size = npages << PAGE_SHIFT;
|
|
create_id_mapping(paddr, size, 1);
|
|
}
|
|
}
|
|
|
|
static int __init uefi_init(void)
|
|
{
|
|
efi_char16_t *c16;
|
|
char vendor[100] = "unknown";
|
|
int i, retval;
|
|
|
|
efi.systab = early_memremap(efi_system_table,
|
|
sizeof(efi_system_table_t));
|
|
if (efi.systab == NULL) {
|
|
pr_warn("Unable to map EFI system table.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_bit(EFI_BOOT, &efi.flags);
|
|
set_bit(EFI_64BIT, &efi.flags);
|
|
|
|
/*
|
|
* Verify the EFI Table
|
|
*/
|
|
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
|
|
pr_err("System table signature incorrect\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((efi.systab->hdr.revision >> 16) < 2)
|
|
pr_warn("Warning: EFI system table version %d.%02d, expected 2.00 or greater\n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff);
|
|
|
|
/* Show what we know for posterity */
|
|
c16 = early_memremap(efi.systab->fw_vendor,
|
|
sizeof(vendor));
|
|
if (c16) {
|
|
for (i = 0; i < (int) sizeof(vendor) - 1 && *c16; ++i)
|
|
vendor[i] = c16[i];
|
|
vendor[i] = '\0';
|
|
}
|
|
|
|
pr_info("EFI v%u.%.02u by %s\n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff, vendor);
|
|
|
|
retval = efi_config_init(NULL);
|
|
if (retval == 0)
|
|
set_bit(EFI_CONFIG_TABLES, &efi.flags);
|
|
|
|
early_memunmap(c16, sizeof(vendor));
|
|
early_memunmap(efi.systab, sizeof(efi_system_table_t));
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __initdata char memory_type_name[][32] = {
|
|
{"Reserved"},
|
|
{"Loader Code"},
|
|
{"Loader Data"},
|
|
{"Boot Code"},
|
|
{"Boot Data"},
|
|
{"Runtime Code"},
|
|
{"Runtime Data"},
|
|
{"Conventional Memory"},
|
|
{"Unusable Memory"},
|
|
{"ACPI Reclaim Memory"},
|
|
{"ACPI Memory NVS"},
|
|
{"Memory Mapped I/O"},
|
|
{"MMIO Port Space"},
|
|
{"PAL Code"},
|
|
};
|
|
|
|
/*
|
|
* Return true for RAM regions we want to permanently reserve.
|
|
*/
|
|
static __init int is_reserve_region(efi_memory_desc_t *md)
|
|
{
|
|
if (!is_normal_ram(md))
|
|
return 0;
|
|
|
|
if (md->attribute & EFI_MEMORY_RUNTIME)
|
|
return 1;
|
|
|
|
if (md->type == EFI_ACPI_RECLAIM_MEMORY ||
|
|
md->type == EFI_RESERVED_TYPE)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init void reserve_regions(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
u64 paddr, npages, size;
|
|
|
|
if (uefi_debug)
|
|
pr_info("Processing EFI memory map:\n");
|
|
|
|
for_each_efi_memory_desc(&memmap, md) {
|
|
paddr = md->phys_addr;
|
|
npages = md->num_pages;
|
|
|
|
if (uefi_debug)
|
|
pr_info(" 0x%012llx-0x%012llx [%s]",
|
|
paddr, paddr + (npages << EFI_PAGE_SHIFT) - 1,
|
|
memory_type_name[md->type]);
|
|
|
|
memrange_efi_to_native(&paddr, &npages);
|
|
size = npages << PAGE_SHIFT;
|
|
|
|
if (is_normal_ram(md))
|
|
early_init_dt_add_memory_arch(paddr, size);
|
|
|
|
if (is_reserve_region(md) ||
|
|
md->type == EFI_BOOT_SERVICES_CODE ||
|
|
md->type == EFI_BOOT_SERVICES_DATA) {
|
|
memblock_reserve(paddr, size);
|
|
if (uefi_debug)
|
|
pr_cont("*");
|
|
}
|
|
|
|
if (uefi_debug)
|
|
pr_cont("\n");
|
|
}
|
|
|
|
set_bit(EFI_MEMMAP, &efi.flags);
|
|
}
|
|
|
|
|
|
static u64 __init free_one_region(u64 start, u64 end)
|
|
{
|
|
u64 size = end - start;
|
|
|
|
if (uefi_debug)
|
|
pr_info(" EFI freeing: 0x%012llx-0x%012llx\n", start, end - 1);
|
|
|
|
free_bootmem_late(start, size);
|
|
return size;
|
|
}
|
|
|
|
static u64 __init free_region(u64 start, u64 end)
|
|
{
|
|
u64 map_start, map_end, total = 0;
|
|
|
|
if (end <= start)
|
|
return total;
|
|
|
|
map_start = (u64)memmap.phys_map;
|
|
map_end = PAGE_ALIGN(map_start + (memmap.map_end - memmap.map));
|
|
map_start &= PAGE_MASK;
|
|
|
|
if (start < map_end && end > map_start) {
|
|
/* region overlaps UEFI memmap */
|
|
if (start < map_start)
|
|
total += free_one_region(start, map_start);
|
|
|
|
if (map_end < end)
|
|
total += free_one_region(map_end, end);
|
|
} else
|
|
total += free_one_region(start, end);
|
|
|
|
return total;
|
|
}
|
|
|
|
static void __init free_boot_services(void)
|
|
{
|
|
u64 total_freed = 0;
|
|
u64 keep_end, free_start, free_end;
|
|
efi_memory_desc_t *md;
|
|
|
|
/*
|
|
* If kernel uses larger pages than UEFI, we have to be careful
|
|
* not to inadvertantly free memory we want to keep if there is
|
|
* overlap at the kernel page size alignment. We do not want to
|
|
* free is_reserve_region() memory nor the UEFI memmap itself.
|
|
*
|
|
* The memory map is sorted, so we keep track of the end of
|
|
* any previous region we want to keep, remember any region
|
|
* we want to free and defer freeing it until we encounter
|
|
* the next region we want to keep. This way, before freeing
|
|
* it, we can clip it as needed to avoid freeing memory we
|
|
* want to keep for UEFI.
|
|
*/
|
|
|
|
keep_end = 0;
|
|
free_start = 0;
|
|
|
|
for_each_efi_memory_desc(&memmap, md) {
|
|
u64 paddr, npages, size;
|
|
|
|
if (is_reserve_region(md)) {
|
|
/*
|
|
* We don't want to free any memory from this region.
|
|
*/
|
|
if (free_start) {
|
|
/* adjust free_end then free region */
|
|
if (free_end > md->phys_addr)
|
|
free_end -= PAGE_SIZE;
|
|
total_freed += free_region(free_start, free_end);
|
|
free_start = 0;
|
|
}
|
|
keep_end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
|
|
continue;
|
|
}
|
|
|
|
if (md->type != EFI_BOOT_SERVICES_CODE &&
|
|
md->type != EFI_BOOT_SERVICES_DATA) {
|
|
/* no need to free this region */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We want to free memory from this region.
|
|
*/
|
|
paddr = md->phys_addr;
|
|
npages = md->num_pages;
|
|
memrange_efi_to_native(&paddr, &npages);
|
|
size = npages << PAGE_SHIFT;
|
|
|
|
if (free_start) {
|
|
if (paddr <= free_end)
|
|
free_end = paddr + size;
|
|
else {
|
|
total_freed += free_region(free_start, free_end);
|
|
free_start = paddr;
|
|
free_end = paddr + size;
|
|
}
|
|
} else {
|
|
free_start = paddr;
|
|
free_end = paddr + size;
|
|
}
|
|
if (free_start < keep_end) {
|
|
free_start += PAGE_SIZE;
|
|
if (free_start >= free_end)
|
|
free_start = 0;
|
|
}
|
|
}
|
|
if (free_start)
|
|
total_freed += free_region(free_start, free_end);
|
|
|
|
if (total_freed)
|
|
pr_info("Freed 0x%llx bytes of EFI boot services memory",
|
|
total_freed);
|
|
}
|
|
|
|
void __init efi_init(void)
|
|
{
|
|
struct efi_fdt_params params;
|
|
|
|
/* Grab UEFI information placed in FDT by stub */
|
|
if (!efi_get_fdt_params(¶ms, uefi_debug))
|
|
return;
|
|
|
|
efi_system_table = params.system_table;
|
|
|
|
memblock_reserve(params.mmap & PAGE_MASK,
|
|
PAGE_ALIGN(params.mmap_size + (params.mmap & ~PAGE_MASK)));
|
|
memmap.phys_map = (void *)params.mmap;
|
|
memmap.map = early_memremap(params.mmap, params.mmap_size);
|
|
memmap.map_end = memmap.map + params.mmap_size;
|
|
memmap.desc_size = params.desc_size;
|
|
memmap.desc_version = params.desc_ver;
|
|
|
|
if (uefi_init() < 0)
|
|
return;
|
|
|
|
reserve_regions();
|
|
}
|
|
|
|
void __init efi_idmap_init(void)
|
|
{
|
|
if (!efi_enabled(EFI_BOOT))
|
|
return;
|
|
|
|
/* boot time idmap_pg_dir is incomplete, so fill in missing parts */
|
|
efi_setup_idmap();
|
|
}
|
|
|
|
static int __init remap_region(efi_memory_desc_t *md, void **new)
|
|
{
|
|
u64 paddr, vaddr, npages, size;
|
|
|
|
paddr = md->phys_addr;
|
|
npages = md->num_pages;
|
|
memrange_efi_to_native(&paddr, &npages);
|
|
size = npages << PAGE_SHIFT;
|
|
|
|
if (is_normal_ram(md))
|
|
vaddr = (__force u64)ioremap_cache(paddr, size);
|
|
else
|
|
vaddr = (__force u64)ioremap(paddr, size);
|
|
|
|
if (!vaddr) {
|
|
pr_err("Unable to remap 0x%llx pages @ %p\n",
|
|
npages, (void *)paddr);
|
|
return 0;
|
|
}
|
|
|
|
/* adjust for any rounding when EFI and system pagesize differs */
|
|
md->virt_addr = vaddr + (md->phys_addr - paddr);
|
|
|
|
if (uefi_debug)
|
|
pr_info(" EFI remap 0x%012llx => %p\n",
|
|
md->phys_addr, (void *)md->virt_addr);
|
|
|
|
memcpy(*new, md, memmap.desc_size);
|
|
*new += memmap.desc_size;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Switch UEFI from an identity map to a kernel virtual map
|
|
*/
|
|
static int __init arm64_enter_virtual_mode(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
phys_addr_t virtmap_phys;
|
|
void *virtmap, *virt_md;
|
|
efi_status_t status;
|
|
u64 mapsize;
|
|
int count = 0;
|
|
unsigned long flags;
|
|
|
|
if (!efi_enabled(EFI_BOOT)) {
|
|
pr_info("EFI services will not be available.\n");
|
|
return -1;
|
|
}
|
|
|
|
pr_info("Remapping and enabling EFI services.\n");
|
|
|
|
/* replace early memmap mapping with permanent mapping */
|
|
mapsize = memmap.map_end - memmap.map;
|
|
early_memunmap(memmap.map, mapsize);
|
|
memmap.map = (__force void *)ioremap_cache((phys_addr_t)memmap.phys_map,
|
|
mapsize);
|
|
memmap.map_end = memmap.map + mapsize;
|
|
|
|
efi.memmap = &memmap;
|
|
|
|
/* Map the runtime regions */
|
|
virtmap = kmalloc(mapsize, GFP_KERNEL);
|
|
if (!virtmap) {
|
|
pr_err("Failed to allocate EFI virtual memmap\n");
|
|
return -1;
|
|
}
|
|
virtmap_phys = virt_to_phys(virtmap);
|
|
virt_md = virtmap;
|
|
|
|
for_each_efi_memory_desc(&memmap, md) {
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME))
|
|
continue;
|
|
if (!remap_region(md, &virt_md))
|
|
goto err_unmap;
|
|
++count;
|
|
}
|
|
|
|
efi.systab = (__force void *)efi_lookup_mapped_addr(efi_system_table);
|
|
if (!efi.systab) {
|
|
/*
|
|
* If we have no virtual mapping for the System Table at this
|
|
* point, the memory map doesn't cover the physical offset where
|
|
* it resides. This means the System Table will be inaccessible
|
|
* to Runtime Services themselves once the virtual mapping is
|
|
* installed.
|
|
*/
|
|
pr_err("Failed to remap EFI System Table -- buggy firmware?\n");
|
|
goto err_unmap;
|
|
}
|
|
set_bit(EFI_SYSTEM_TABLES, &efi.flags);
|
|
|
|
local_irq_save(flags);
|
|
cpu_switch_mm(idmap_pg_dir, &init_mm);
|
|
|
|
/* Call SetVirtualAddressMap with the physical address of the map */
|
|
runtime = efi.systab->runtime;
|
|
efi.set_virtual_address_map = runtime->set_virtual_address_map;
|
|
|
|
status = efi.set_virtual_address_map(count * memmap.desc_size,
|
|
memmap.desc_size,
|
|
memmap.desc_version,
|
|
(efi_memory_desc_t *)virtmap_phys);
|
|
cpu_set_reserved_ttbr0();
|
|
flush_tlb_all();
|
|
local_irq_restore(flags);
|
|
|
|
kfree(virtmap);
|
|
|
|
free_boot_services();
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
pr_err("Failed to set EFI virtual address map! [%lx]\n",
|
|
status);
|
|
return -1;
|
|
}
|
|
|
|
/* Set up runtime services function pointers */
|
|
runtime = efi.systab->runtime;
|
|
efi_native_runtime_setup();
|
|
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
|
|
efi.runtime_version = efi.systab->hdr.revision;
|
|
|
|
return 0;
|
|
|
|
err_unmap:
|
|
/* unmap all mappings that succeeded: there are 'count' of those */
|
|
for (virt_md = virtmap; count--; virt_md += memmap.desc_size) {
|
|
md = virt_md;
|
|
iounmap((__force void __iomem *)md->virt_addr);
|
|
}
|
|
kfree(virtmap);
|
|
return -1;
|
|
}
|
|
early_initcall(arm64_enter_virtual_mode);
|