linux/lib/test_printf.c
Ilya Dryomov 7bd57fbc4a vsprintf: don't obfuscate NULL and error pointers
I don't see what security concern is addressed by obfuscating NULL
and IS_ERR() error pointers, printed with %p/%pK.  Given the number
of sites where %p is used (over 10000) and the fact that NULL pointers
aren't uncommon, it probably wouldn't take long for an attacker to
find the hash that corresponds to 0.  Although harder, the same goes
for most common error values, such as -1, -2, -11, -14, etc.

The NULL part actually fixes a regression: NULL pointers weren't
obfuscated until commit 3e5903eb9c ("vsprintf: Prevent crash when
dereferencing invalid pointers") which went into 5.2.  I'm tacking
the IS_ERR() part on here because error pointers won't leak kernel
addresses and printing them as pointers shouldn't be any different
from e.g. %d with PTR_ERR_OR_ZERO().  Obfuscating them just makes
debugging based on existing pr_debug and friends excruciating.

Note that the "always print 0's for %pK when kptr_restrict == 2"
behaviour which goes way back is left as is.

Example output with the patch applied:

                             ptr         error-ptr              NULL
 %p:            0000000001f8cc5b  fffffffffffffff2  0000000000000000
 %pK, kptr = 0: 0000000001f8cc5b  fffffffffffffff2  0000000000000000
 %px:           ffff888048c04020  fffffffffffffff2  0000000000000000
 %pK, kptr = 1: ffff888048c04020  fffffffffffffff2  0000000000000000
 %pK, kptr = 2: 0000000000000000  0000000000000000  0000000000000000

Fixes: 3e5903eb9c ("vsprintf: Prevent crash when dereferencing invalid pointers")
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-19 11:35:38 -07:00

708 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Test cases for printf facility.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/bitmap.h>
#include <linux/dcache.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/property.h>
#include "../tools/testing/selftests/kselftest_module.h"
#define BUF_SIZE 256
#define PAD_SIZE 16
#define FILL_CHAR '$'
static unsigned total_tests __initdata;
static unsigned failed_tests __initdata;
static char *test_buffer __initdata;
static char *alloced_buffer __initdata;
static int __printf(4, 0) __init
do_test(int bufsize, const char *expect, int elen,
const char *fmt, va_list ap)
{
va_list aq;
int ret, written;
total_tests++;
memset(alloced_buffer, FILL_CHAR, BUF_SIZE + 2*PAD_SIZE);
va_copy(aq, ap);
ret = vsnprintf(test_buffer, bufsize, fmt, aq);
va_end(aq);
if (ret != elen) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) returned %d, expected %d\n",
bufsize, fmt, ret, elen);
return 1;
}
if (memchr_inv(alloced_buffer, FILL_CHAR, PAD_SIZE)) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote before buffer\n", bufsize, fmt);
return 1;
}
if (!bufsize) {
if (memchr_inv(test_buffer, FILL_CHAR, BUF_SIZE + PAD_SIZE)) {
pr_warn("vsnprintf(buf, 0, \"%s\", ...) wrote to buffer\n",
fmt);
return 1;
}
return 0;
}
written = min(bufsize-1, elen);
if (test_buffer[written]) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) did not nul-terminate buffer\n",
bufsize, fmt);
return 1;
}
if (memchr_inv(test_buffer + written + 1, FILL_CHAR, BUF_SIZE + PAD_SIZE - (written + 1))) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote beyond the nul-terminator\n",
bufsize, fmt);
return 1;
}
if (memcmp(test_buffer, expect, written)) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote '%s', expected '%.*s'\n",
bufsize, fmt, test_buffer, written, expect);
return 1;
}
return 0;
}
static void __printf(3, 4) __init
__test(const char *expect, int elen, const char *fmt, ...)
{
va_list ap;
int rand;
char *p;
if (elen >= BUF_SIZE) {
pr_err("error in test suite: expected output length %d too long. Format was '%s'.\n",
elen, fmt);
failed_tests++;
return;
}
va_start(ap, fmt);
/*
* Every fmt+args is subjected to four tests: Three where we
* tell vsnprintf varying buffer sizes (plenty, not quite
* enough and 0), and then we also test that kvasprintf would
* be able to print it as expected.
*/
failed_tests += do_test(BUF_SIZE, expect, elen, fmt, ap);
rand = 1 + prandom_u32_max(elen+1);
/* Since elen < BUF_SIZE, we have 1 <= rand <= BUF_SIZE. */
failed_tests += do_test(rand, expect, elen, fmt, ap);
failed_tests += do_test(0, expect, elen, fmt, ap);
p = kvasprintf(GFP_KERNEL, fmt, ap);
if (p) {
total_tests++;
if (memcmp(p, expect, elen+1)) {
pr_warn("kvasprintf(..., \"%s\", ...) returned '%s', expected '%s'\n",
fmt, p, expect);
failed_tests++;
}
kfree(p);
}
va_end(ap);
}
#define test(expect, fmt, ...) \
__test(expect, strlen(expect), fmt, ##__VA_ARGS__)
static void __init
test_basic(void)
{
/* Work around annoying "warning: zero-length gnu_printf format string". */
char nul = '\0';
test("", &nul);
test("100%", "100%%");
test("xxx%yyy", "xxx%cyyy", '%');
__test("xxx\0yyy", 7, "xxx%cyyy", '\0');
}
static void __init
test_number(void)
{
test("0x1234abcd ", "%#-12x", 0x1234abcd);
test(" 0x1234abcd", "%#12x", 0x1234abcd);
test("0|001| 12|+123| 1234|-123|-1234", "%d|%03d|%3d|%+d|% d|%+d|% d", 0, 1, 12, 123, 1234, -123, -1234);
test("0|1|1|128|255", "%hhu|%hhu|%hhu|%hhu|%hhu", 0, 1, 257, 128, -1);
test("0|1|1|-128|-1", "%hhd|%hhd|%hhd|%hhd|%hhd", 0, 1, 257, 128, -1);
test("2015122420151225", "%ho%ho%#ho", 1037, 5282, -11627);
/*
* POSIX/C99: »The result of converting zero with an explicit
* precision of zero shall be no characters.« Hence the output
* from the below test should really be "00|0||| ". However,
* the kernel's printf also produces a single 0 in that
* case. This test case simply documents the current
* behaviour.
*/
test("00|0|0|0|0", "%.2d|%.1d|%.0d|%.*d|%1.0d", 0, 0, 0, 0, 0, 0);
#ifndef __CHAR_UNSIGNED__
{
/*
* Passing a 'char' to a %02x specifier doesn't do
* what was presumably the intention when char is
* signed and the value is negative. One must either &
* with 0xff or cast to u8.
*/
char val = -16;
test("0xfffffff0|0xf0|0xf0", "%#02x|%#02x|%#02x", val, val & 0xff, (u8)val);
}
#endif
}
static void __init
test_string(void)
{
test("", "%s%.0s", "", "123");
test("ABCD|abc|123", "%s|%.3s|%.*s", "ABCD", "abcdef", 3, "123456");
test("1 | 2|3 | 4|5 ", "%-3s|%3s|%-*s|%*s|%*s", "1", "2", 3, "3", 3, "4", -3, "5");
test("1234 ", "%-10.4s", "123456");
test(" 1234", "%10.4s", "123456");
/*
* POSIX and C99 say that a negative precision (which is only
* possible to pass via a * argument) should be treated as if
* the precision wasn't present, and that if the precision is
* omitted (as in %.s), the precision should be taken to be
* 0. However, the kernel's printf behave exactly opposite,
* treating a negative precision as 0 and treating an omitted
* precision specifier as if no precision was given.
*
* These test cases document the current behaviour; should
* anyone ever feel the need to follow the standards more
* closely, this can be revisited.
*/
test(" ", "%4.*s", -5, "123456");
test("123456", "%.s", "123456");
test("a||", "%.s|%.0s|%.*s", "a", "b", 0, "c");
test("a | | ", "%-3.s|%-3.0s|%-3.*s", "a", "b", 0, "c");
}
#define PLAIN_BUF_SIZE 64 /* leave some space so we don't oops */
#if BITS_PER_LONG == 64
#define PTR_WIDTH 16
#define PTR ((void *)0xffff0123456789abUL)
#define PTR_STR "ffff0123456789ab"
#define PTR_VAL_NO_CRNG "(____ptrval____)"
#define ZEROS "00000000" /* hex 32 zero bits */
#define ONES "ffffffff" /* hex 32 one bits */
static int __init
plain_format(void)
{
char buf[PLAIN_BUF_SIZE];
int nchars;
nchars = snprintf(buf, PLAIN_BUF_SIZE, "%p", PTR);
if (nchars != PTR_WIDTH)
return -1;
if (strncmp(buf, PTR_VAL_NO_CRNG, PTR_WIDTH) == 0) {
pr_warn("crng possibly not yet initialized. plain 'p' buffer contains \"%s\"",
PTR_VAL_NO_CRNG);
return 0;
}
if (strncmp(buf, ZEROS, strlen(ZEROS)) != 0)
return -1;
return 0;
}
#else
#define PTR_WIDTH 8
#define PTR ((void *)0x456789ab)
#define PTR_STR "456789ab"
#define PTR_VAL_NO_CRNG "(ptrval)"
#define ZEROS ""
#define ONES ""
static int __init
plain_format(void)
{
/* Format is implicitly tested for 32 bit machines by plain_hash() */
return 0;
}
#endif /* BITS_PER_LONG == 64 */
static int __init
plain_hash_to_buffer(const void *p, char *buf, size_t len)
{
int nchars;
nchars = snprintf(buf, len, "%p", p);
if (nchars != PTR_WIDTH)
return -1;
if (strncmp(buf, PTR_VAL_NO_CRNG, PTR_WIDTH) == 0) {
pr_warn("crng possibly not yet initialized. plain 'p' buffer contains \"%s\"",
PTR_VAL_NO_CRNG);
return 0;
}
return 0;
}
static int __init
plain_hash(void)
{
char buf[PLAIN_BUF_SIZE];
int ret;
ret = plain_hash_to_buffer(PTR, buf, PLAIN_BUF_SIZE);
if (ret)
return ret;
if (strncmp(buf, PTR_STR, PTR_WIDTH) == 0)
return -1;
return 0;
}
/*
* We can't use test() to test %p because we don't know what output to expect
* after an address is hashed.
*/
static void __init
plain(void)
{
int err;
err = plain_hash();
if (err) {
pr_warn("plain 'p' does not appear to be hashed\n");
failed_tests++;
return;
}
err = plain_format();
if (err) {
pr_warn("hashing plain 'p' has unexpected format\n");
failed_tests++;
}
}
static void __init
test_hashed(const char *fmt, const void *p)
{
char buf[PLAIN_BUF_SIZE];
int ret;
/*
* No need to increase failed test counter since this is assumed
* to be called after plain().
*/
ret = plain_hash_to_buffer(p, buf, PLAIN_BUF_SIZE);
if (ret)
return;
test(buf, fmt, p);
}
/*
* NULL pointers aren't hashed.
*/
static void __init
null_pointer(void)
{
test(ZEROS "00000000", "%p", NULL);
test(ZEROS "00000000", "%px", NULL);
test("(null)", "%pE", NULL);
}
/*
* Error pointers aren't hashed.
*/
static void __init
error_pointer(void)
{
test(ONES "fffffff5", "%p", ERR_PTR(-11));
test(ONES "fffffff5", "%px", ERR_PTR(-11));
test("(efault)", "%pE", ERR_PTR(-11));
}
#define PTR_INVALID ((void *)0x000000ab)
static void __init
invalid_pointer(void)
{
test_hashed("%p", PTR_INVALID);
test(ZEROS "000000ab", "%px", PTR_INVALID);
test("(efault)", "%pE", PTR_INVALID);
}
static void __init
symbol_ptr(void)
{
}
static void __init
kernel_ptr(void)
{
/* We can't test this without access to kptr_restrict. */
}
static void __init
struct_resource(void)
{
}
static void __init
addr(void)
{
}
static void __init
escaped_str(void)
{
}
static void __init
hex_string(void)
{
const char buf[3] = {0xc0, 0xff, 0xee};
test("c0 ff ee|c0:ff:ee|c0-ff-ee|c0ffee",
"%3ph|%3phC|%3phD|%3phN", buf, buf, buf, buf);
test("c0 ff ee|c0:ff:ee|c0-ff-ee|c0ffee",
"%*ph|%*phC|%*phD|%*phN", 3, buf, 3, buf, 3, buf, 3, buf);
}
static void __init
mac(void)
{
const u8 addr[6] = {0x2d, 0x48, 0xd6, 0xfc, 0x7a, 0x05};
test("2d:48:d6:fc:7a:05", "%pM", addr);
test("05:7a:fc:d6:48:2d", "%pMR", addr);
test("2d-48-d6-fc-7a-05", "%pMF", addr);
test("2d48d6fc7a05", "%pm", addr);
test("057afcd6482d", "%pmR", addr);
}
static void __init
ip4(void)
{
struct sockaddr_in sa;
sa.sin_family = AF_INET;
sa.sin_port = cpu_to_be16(12345);
sa.sin_addr.s_addr = cpu_to_be32(0x7f000001);
test("127.000.000.001|127.0.0.1", "%pi4|%pI4", &sa.sin_addr, &sa.sin_addr);
test("127.000.000.001|127.0.0.1", "%piS|%pIS", &sa, &sa);
sa.sin_addr.s_addr = cpu_to_be32(0x01020304);
test("001.002.003.004:12345|1.2.3.4:12345", "%piSp|%pISp", &sa, &sa);
}
static void __init
ip6(void)
{
}
static void __init
ip(void)
{
ip4();
ip6();
}
static void __init
uuid(void)
{
const char uuid[16] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf};
test("00010203-0405-0607-0809-0a0b0c0d0e0f", "%pUb", uuid);
test("00010203-0405-0607-0809-0A0B0C0D0E0F", "%pUB", uuid);
test("03020100-0504-0706-0809-0a0b0c0d0e0f", "%pUl", uuid);
test("03020100-0504-0706-0809-0A0B0C0D0E0F", "%pUL", uuid);
}
static struct dentry test_dentry[4] __initdata = {
{ .d_parent = &test_dentry[0],
.d_name = QSTR_INIT(test_dentry[0].d_iname, 3),
.d_iname = "foo" },
{ .d_parent = &test_dentry[0],
.d_name = QSTR_INIT(test_dentry[1].d_iname, 5),
.d_iname = "bravo" },
{ .d_parent = &test_dentry[1],
.d_name = QSTR_INIT(test_dentry[2].d_iname, 4),
.d_iname = "alfa" },
{ .d_parent = &test_dentry[2],
.d_name = QSTR_INIT(test_dentry[3].d_iname, 5),
.d_iname = "romeo" },
};
static void __init
dentry(void)
{
test("foo", "%pd", &test_dentry[0]);
test("foo", "%pd2", &test_dentry[0]);
test("(null)", "%pd", NULL);
test("(efault)", "%pd", PTR_INVALID);
test("(null)", "%pD", NULL);
test("(efault)", "%pD", PTR_INVALID);
test("romeo", "%pd", &test_dentry[3]);
test("alfa/romeo", "%pd2", &test_dentry[3]);
test("bravo/alfa/romeo", "%pd3", &test_dentry[3]);
test("/bravo/alfa/romeo", "%pd4", &test_dentry[3]);
test("/bravo/alfa", "%pd4", &test_dentry[2]);
test("bravo/alfa |bravo/alfa ", "%-12pd2|%*pd2", &test_dentry[2], -12, &test_dentry[2]);
test(" bravo/alfa| bravo/alfa", "%12pd2|%*pd2", &test_dentry[2], 12, &test_dentry[2]);
}
static void __init
struct_va_format(void)
{
}
static void __init
struct_rtc_time(void)
{
/* 1543210543 */
const struct rtc_time tm = {
.tm_sec = 43,
.tm_min = 35,
.tm_hour = 5,
.tm_mday = 26,
.tm_mon = 10,
.tm_year = 118,
};
test("(%ptR?)", "%pt", &tm);
test("2018-11-26T05:35:43", "%ptR", &tm);
test("0118-10-26T05:35:43", "%ptRr", &tm);
test("05:35:43|2018-11-26", "%ptRt|%ptRd", &tm, &tm);
test("05:35:43|0118-10-26", "%ptRtr|%ptRdr", &tm, &tm);
test("05:35:43|2018-11-26", "%ptRttr|%ptRdtr", &tm, &tm);
test("05:35:43 tr|2018-11-26 tr", "%ptRt tr|%ptRd tr", &tm, &tm);
}
static void __init
struct_clk(void)
{
}
static void __init
large_bitmap(void)
{
const int nbits = 1 << 16;
unsigned long *bits = bitmap_zalloc(nbits, GFP_KERNEL);
if (!bits)
return;
bitmap_set(bits, 1, 20);
bitmap_set(bits, 60000, 15);
test("1-20,60000-60014", "%*pbl", nbits, bits);
bitmap_free(bits);
}
static void __init
bitmap(void)
{
DECLARE_BITMAP(bits, 20);
const int primes[] = {2,3,5,7,11,13,17,19};
int i;
bitmap_zero(bits, 20);
test("00000|00000", "%20pb|%*pb", bits, 20, bits);
test("|", "%20pbl|%*pbl", bits, 20, bits);
for (i = 0; i < ARRAY_SIZE(primes); ++i)
set_bit(primes[i], bits);
test("a28ac|a28ac", "%20pb|%*pb", bits, 20, bits);
test("2-3,5,7,11,13,17,19|2-3,5,7,11,13,17,19", "%20pbl|%*pbl", bits, 20, bits);
bitmap_fill(bits, 20);
test("fffff|fffff", "%20pb|%*pb", bits, 20, bits);
test("0-19|0-19", "%20pbl|%*pbl", bits, 20, bits);
large_bitmap();
}
static void __init
netdev_features(void)
{
}
static void __init
flags(void)
{
unsigned long flags;
gfp_t gfp;
char *cmp_buffer;
flags = 0;
test("", "%pGp", &flags);
/* Page flags should filter the zone id */
flags = 1UL << NR_PAGEFLAGS;
test("", "%pGp", &flags);
flags |= 1UL << PG_uptodate | 1UL << PG_dirty | 1UL << PG_lru
| 1UL << PG_active | 1UL << PG_swapbacked;
test("uptodate|dirty|lru|active|swapbacked", "%pGp", &flags);
flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC
| VM_DENYWRITE;
test("read|exec|mayread|maywrite|mayexec|denywrite", "%pGv", &flags);
gfp = GFP_TRANSHUGE;
test("GFP_TRANSHUGE", "%pGg", &gfp);
gfp = GFP_ATOMIC|__GFP_DMA;
test("GFP_ATOMIC|GFP_DMA", "%pGg", &gfp);
gfp = __GFP_ATOMIC;
test("__GFP_ATOMIC", "%pGg", &gfp);
cmp_buffer = kmalloc(BUF_SIZE, GFP_KERNEL);
if (!cmp_buffer)
return;
/* Any flags not translated by the table should remain numeric */
gfp = ~__GFP_BITS_MASK;
snprintf(cmp_buffer, BUF_SIZE, "%#lx", (unsigned long) gfp);
test(cmp_buffer, "%pGg", &gfp);
snprintf(cmp_buffer, BUF_SIZE, "__GFP_ATOMIC|%#lx",
(unsigned long) gfp);
gfp |= __GFP_ATOMIC;
test(cmp_buffer, "%pGg", &gfp);
kfree(cmp_buffer);
}
static void __init fwnode_pointer(void)
{
const struct software_node softnodes[] = {
{ .name = "first", },
{ .name = "second", .parent = &softnodes[0], },
{ .name = "third", .parent = &softnodes[1], },
{ NULL /* Guardian */ }
};
const char * const full_name = "first/second/third";
const char * const full_name_second = "first/second";
const char * const second_name = "second";
const char * const third_name = "third";
int rval;
rval = software_node_register_nodes(softnodes);
if (rval) {
pr_warn("cannot register softnodes; rval %d\n", rval);
return;
}
test(full_name_second, "%pfw", software_node_fwnode(&softnodes[1]));
test(full_name, "%pfw", software_node_fwnode(&softnodes[2]));
test(full_name, "%pfwf", software_node_fwnode(&softnodes[2]));
test(second_name, "%pfwP", software_node_fwnode(&softnodes[1]));
test(third_name, "%pfwP", software_node_fwnode(&softnodes[2]));
software_node_unregister_nodes(softnodes);
}
static void __init
errptr(void)
{
test("-1234", "%pe", ERR_PTR(-1234));
/* Check that %pe with a non-ERR_PTR gets treated as ordinary %p. */
BUILD_BUG_ON(IS_ERR(PTR));
test_hashed("%pe", PTR);
#ifdef CONFIG_SYMBOLIC_ERRNAME
test("(-ENOTSOCK)", "(%pe)", ERR_PTR(-ENOTSOCK));
test("(-EAGAIN)", "(%pe)", ERR_PTR(-EAGAIN));
BUILD_BUG_ON(EAGAIN != EWOULDBLOCK);
test("(-EAGAIN)", "(%pe)", ERR_PTR(-EWOULDBLOCK));
test("[-EIO ]", "[%-8pe]", ERR_PTR(-EIO));
test("[ -EIO]", "[%8pe]", ERR_PTR(-EIO));
test("-EPROBE_DEFER", "%pe", ERR_PTR(-EPROBE_DEFER));
#endif
}
static void __init
test_pointer(void)
{
plain();
null_pointer();
error_pointer();
invalid_pointer();
symbol_ptr();
kernel_ptr();
struct_resource();
addr();
escaped_str();
hex_string();
mac();
ip();
uuid();
dentry();
struct_va_format();
struct_rtc_time();
struct_clk();
bitmap();
netdev_features();
flags();
errptr();
fwnode_pointer();
}
static void __init selftest(void)
{
alloced_buffer = kmalloc(BUF_SIZE + 2*PAD_SIZE, GFP_KERNEL);
if (!alloced_buffer)
return;
test_buffer = alloced_buffer + PAD_SIZE;
test_basic();
test_number();
test_string();
test_pointer();
kfree(alloced_buffer);
}
KSTM_MODULE_LOADERS(test_printf);
MODULE_AUTHOR("Rasmus Villemoes <linux@rasmusvillemoes.dk>");
MODULE_LICENSE("GPL");