mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 05:02:12 +00:00
7d47034551
CPU_FTR_NODSISRALIGN has not been used since
commit 31bfdb036f
("powerpc: Use instruction emulation
infrastructure to handle alignment faults")
Remove it.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/05d98136b24bbf11525445414bb18cffe2724f48.1602587470.git.christophe.leroy@csgroup.eu
941 lines
25 KiB
C
941 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Procedures for creating, accessing and interpreting the device tree.
|
|
*
|
|
* Paul Mackerras August 1996.
|
|
* Copyright (C) 1996-2005 Paul Mackerras.
|
|
*
|
|
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
|
|
* {engebret|bergner}@us.ibm.com
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/page.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kdump.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/paca.h>
|
|
#include <asm/powernv.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/kexec.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/fadump.h>
|
|
#include <asm/epapr_hcalls.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/dt_cpu_ftrs.h>
|
|
#include <asm/drmem.h>
|
|
#include <asm/ultravisor.h>
|
|
|
|
#include <mm/mmu_decl.h>
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(fmt...) printk(KERN_ERR fmt)
|
|
#else
|
|
#define DBG(fmt...)
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC64
|
|
int __initdata iommu_is_off;
|
|
int __initdata iommu_force_on;
|
|
unsigned long tce_alloc_start, tce_alloc_end;
|
|
u64 ppc64_rma_size;
|
|
#endif
|
|
static phys_addr_t first_memblock_size;
|
|
static int __initdata boot_cpu_count;
|
|
|
|
static int __init early_parse_mem(char *p)
|
|
{
|
|
if (!p)
|
|
return 1;
|
|
|
|
memory_limit = PAGE_ALIGN(memparse(p, &p));
|
|
DBG("memory limit = 0x%llx\n", memory_limit);
|
|
|
|
return 0;
|
|
}
|
|
early_param("mem", early_parse_mem);
|
|
|
|
/*
|
|
* overlaps_initrd - check for overlap with page aligned extension of
|
|
* initrd.
|
|
*/
|
|
static inline int overlaps_initrd(unsigned long start, unsigned long size)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (!initrd_start)
|
|
return 0;
|
|
|
|
return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
|
|
start <= ALIGN(initrd_end, PAGE_SIZE);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* move_device_tree - move tree to an unused area, if needed.
|
|
*
|
|
* The device tree may be allocated beyond our memory limit, or inside the
|
|
* crash kernel region for kdump, or within the page aligned range of initrd.
|
|
* If so, move it out of the way.
|
|
*/
|
|
static void __init move_device_tree(void)
|
|
{
|
|
unsigned long start, size;
|
|
void *p;
|
|
|
|
DBG("-> move_device_tree\n");
|
|
|
|
start = __pa(initial_boot_params);
|
|
size = fdt_totalsize(initial_boot_params);
|
|
|
|
if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
|
|
!memblock_is_memory(start + size - 1) ||
|
|
overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
|
|
p = memblock_alloc_raw(size, PAGE_SIZE);
|
|
if (!p)
|
|
panic("Failed to allocate %lu bytes to move device tree\n",
|
|
size);
|
|
memcpy(p, initial_boot_params, size);
|
|
initial_boot_params = p;
|
|
DBG("Moved device tree to 0x%px\n", p);
|
|
}
|
|
|
|
DBG("<- move_device_tree\n");
|
|
}
|
|
|
|
/*
|
|
* ibm,pa-features is a per-cpu property that contains a string of
|
|
* attribute descriptors, each of which has a 2 byte header plus up
|
|
* to 254 bytes worth of processor attribute bits. First header
|
|
* byte specifies the number of bytes following the header.
|
|
* Second header byte is an "attribute-specifier" type, of which
|
|
* zero is the only currently-defined value.
|
|
* Implementation: Pass in the byte and bit offset for the feature
|
|
* that we are interested in. The function will return -1 if the
|
|
* pa-features property is missing, or a 1/0 to indicate if the feature
|
|
* is supported/not supported. Note that the bit numbers are
|
|
* big-endian to match the definition in PAPR.
|
|
*/
|
|
static struct ibm_pa_feature {
|
|
unsigned long cpu_features; /* CPU_FTR_xxx bit */
|
|
unsigned long mmu_features; /* MMU_FTR_xxx bit */
|
|
unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
|
|
unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
|
|
unsigned char pabyte; /* byte number in ibm,pa-features */
|
|
unsigned char pabit; /* bit number (big-endian) */
|
|
unsigned char invert; /* if 1, pa bit set => clear feature */
|
|
} ibm_pa_features[] __initdata = {
|
|
{ .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
|
|
{ .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
|
|
{ .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL },
|
|
{ .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE },
|
|
{ .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE },
|
|
#ifdef CONFIG_PPC_RADIX_MMU
|
|
{ .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE },
|
|
#endif
|
|
{ .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE,
|
|
.cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
|
|
/*
|
|
* If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
|
|
* we don't want to turn on TM here, so we use the *_COMP versions
|
|
* which are 0 if the kernel doesn't support TM.
|
|
*/
|
|
{ .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
|
|
.cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
|
|
|
|
{ .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 },
|
|
};
|
|
|
|
static void __init scan_features(unsigned long node, const unsigned char *ftrs,
|
|
unsigned long tablelen,
|
|
struct ibm_pa_feature *fp,
|
|
unsigned long ft_size)
|
|
{
|
|
unsigned long i, len, bit;
|
|
|
|
/* find descriptor with type == 0 */
|
|
for (;;) {
|
|
if (tablelen < 3)
|
|
return;
|
|
len = 2 + ftrs[0];
|
|
if (tablelen < len)
|
|
return; /* descriptor 0 not found */
|
|
if (ftrs[1] == 0)
|
|
break;
|
|
tablelen -= len;
|
|
ftrs += len;
|
|
}
|
|
|
|
/* loop over bits we know about */
|
|
for (i = 0; i < ft_size; ++i, ++fp) {
|
|
if (fp->pabyte >= ftrs[0])
|
|
continue;
|
|
bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
|
|
if (bit ^ fp->invert) {
|
|
cur_cpu_spec->cpu_features |= fp->cpu_features;
|
|
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
|
|
cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
|
|
cur_cpu_spec->mmu_features |= fp->mmu_features;
|
|
} else {
|
|
cur_cpu_spec->cpu_features &= ~fp->cpu_features;
|
|
cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
|
|
cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
|
|
cur_cpu_spec->mmu_features &= ~fp->mmu_features;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __init check_cpu_pa_features(unsigned long node)
|
|
{
|
|
const unsigned char *pa_ftrs;
|
|
int tablelen;
|
|
|
|
pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
|
|
if (pa_ftrs == NULL)
|
|
return;
|
|
|
|
scan_features(node, pa_ftrs, tablelen,
|
|
ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
static void __init init_mmu_slb_size(unsigned long node)
|
|
{
|
|
const __be32 *slb_size_ptr;
|
|
|
|
slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
|
|
of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
|
|
|
|
if (slb_size_ptr)
|
|
mmu_slb_size = be32_to_cpup(slb_size_ptr);
|
|
}
|
|
#else
|
|
#define init_mmu_slb_size(node) do { } while(0)
|
|
#endif
|
|
|
|
static struct feature_property {
|
|
const char *name;
|
|
u32 min_value;
|
|
unsigned long cpu_feature;
|
|
unsigned long cpu_user_ftr;
|
|
} feature_properties[] __initdata = {
|
|
#ifdef CONFIG_ALTIVEC
|
|
{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
|
|
{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
|
|
#endif /* CONFIG_ALTIVEC */
|
|
#ifdef CONFIG_VSX
|
|
/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
|
|
{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
|
|
#endif /* CONFIG_VSX */
|
|
#ifdef CONFIG_PPC64
|
|
{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
|
|
{"ibm,purr", 1, CPU_FTR_PURR, 0},
|
|
{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
|
|
#endif /* CONFIG_PPC64 */
|
|
};
|
|
|
|
#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
|
|
static inline void identical_pvr_fixup(unsigned long node)
|
|
{
|
|
unsigned int pvr;
|
|
const char *model = of_get_flat_dt_prop(node, "model", NULL);
|
|
|
|
/*
|
|
* Since 440GR(x)/440EP(x) processors have the same pvr,
|
|
* we check the node path and set bit 28 in the cur_cpu_spec
|
|
* pvr for EP(x) processor version. This bit is always 0 in
|
|
* the "real" pvr. Then we call identify_cpu again with
|
|
* the new logical pvr to enable FPU support.
|
|
*/
|
|
if (model && strstr(model, "440EP")) {
|
|
pvr = cur_cpu_spec->pvr_value | 0x8;
|
|
identify_cpu(0, pvr);
|
|
DBG("Using logical pvr %x for %s\n", pvr, model);
|
|
}
|
|
}
|
|
#else
|
|
#define identical_pvr_fixup(node) do { } while(0)
|
|
#endif
|
|
|
|
static void __init check_cpu_feature_properties(unsigned long node)
|
|
{
|
|
int i;
|
|
struct feature_property *fp = feature_properties;
|
|
const __be32 *prop;
|
|
|
|
for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
|
|
prop = of_get_flat_dt_prop(node, fp->name, NULL);
|
|
if (prop && be32_to_cpup(prop) >= fp->min_value) {
|
|
cur_cpu_spec->cpu_features |= fp->cpu_feature;
|
|
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init early_init_dt_scan_cpus(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data)
|
|
{
|
|
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
const __be32 *prop;
|
|
const __be32 *intserv;
|
|
int i, nthreads;
|
|
int len;
|
|
int found = -1;
|
|
int found_thread = 0;
|
|
|
|
/* We are scanning "cpu" nodes only */
|
|
if (type == NULL || strcmp(type, "cpu") != 0)
|
|
return 0;
|
|
|
|
/* Get physical cpuid */
|
|
intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
|
|
if (!intserv)
|
|
intserv = of_get_flat_dt_prop(node, "reg", &len);
|
|
|
|
nthreads = len / sizeof(int);
|
|
|
|
/*
|
|
* Now see if any of these threads match our boot cpu.
|
|
* NOTE: This must match the parsing done in smp_setup_cpu_maps.
|
|
*/
|
|
for (i = 0; i < nthreads; i++) {
|
|
if (be32_to_cpu(intserv[i]) ==
|
|
fdt_boot_cpuid_phys(initial_boot_params)) {
|
|
found = boot_cpu_count;
|
|
found_thread = i;
|
|
}
|
|
#ifdef CONFIG_SMP
|
|
/* logical cpu id is always 0 on UP kernels */
|
|
boot_cpu_count++;
|
|
#endif
|
|
}
|
|
|
|
/* Not the boot CPU */
|
|
if (found < 0)
|
|
return 0;
|
|
|
|
DBG("boot cpu: logical %d physical %d\n", found,
|
|
be32_to_cpu(intserv[found_thread]));
|
|
boot_cpuid = found;
|
|
|
|
/*
|
|
* PAPR defines "logical" PVR values for cpus that
|
|
* meet various levels of the architecture:
|
|
* 0x0f000001 Architecture version 2.04
|
|
* 0x0f000002 Architecture version 2.05
|
|
* If the cpu-version property in the cpu node contains
|
|
* such a value, we call identify_cpu again with the
|
|
* logical PVR value in order to use the cpu feature
|
|
* bits appropriate for the architecture level.
|
|
*
|
|
* A POWER6 partition in "POWER6 architected" mode
|
|
* uses the 0x0f000002 PVR value; in POWER5+ mode
|
|
* it uses 0x0f000001.
|
|
*
|
|
* If we're using device tree CPU feature discovery then we don't
|
|
* support the cpu-version property, and it's the responsibility of the
|
|
* firmware/hypervisor to provide the correct feature set for the
|
|
* architecture level via the ibm,powerpc-cpu-features binding.
|
|
*/
|
|
if (!dt_cpu_ftrs_in_use()) {
|
|
prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
|
|
if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
|
|
identify_cpu(0, be32_to_cpup(prop));
|
|
|
|
check_cpu_feature_properties(node);
|
|
check_cpu_pa_features(node);
|
|
}
|
|
|
|
identical_pvr_fixup(node);
|
|
init_mmu_slb_size(node);
|
|
|
|
#ifdef CONFIG_PPC64
|
|
if (nthreads == 1)
|
|
cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
|
|
else if (!dt_cpu_ftrs_in_use())
|
|
cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
|
|
allocate_paca(boot_cpuid);
|
|
#endif
|
|
set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
|
|
const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
|
|
|
|
/* Use common scan routine to determine if this is the chosen node */
|
|
if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/* check if iommu is forced on or off */
|
|
if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
|
|
iommu_is_off = 1;
|
|
if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
|
|
iommu_force_on = 1;
|
|
#endif
|
|
|
|
/* mem=x on the command line is the preferred mechanism */
|
|
lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
|
|
if (lprop)
|
|
memory_limit = *lprop;
|
|
|
|
#ifdef CONFIG_PPC64
|
|
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
|
|
if (lprop)
|
|
tce_alloc_start = *lprop;
|
|
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
|
|
if (lprop)
|
|
tce_alloc_end = *lprop;
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
|
|
if (lprop)
|
|
crashk_res.start = *lprop;
|
|
|
|
lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
|
|
if (lprop)
|
|
crashk_res.end = crashk_res.start + *lprop - 1;
|
|
#endif
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Compare the range against max mem limit and update
|
|
* size if it cross the limit.
|
|
*/
|
|
|
|
#ifdef CONFIG_SPARSEMEM
|
|
static bool validate_mem_limit(u64 base, u64 *size)
|
|
{
|
|
u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
|
|
|
|
if (base >= max_mem)
|
|
return false;
|
|
if ((base + *size) > max_mem)
|
|
*size = max_mem - base;
|
|
return true;
|
|
}
|
|
#else
|
|
static bool validate_mem_limit(u64 base, u64 *size)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
/*
|
|
* Interpret the ibm dynamic reconfiguration memory LMBs.
|
|
* This contains a list of memory blocks along with NUMA affinity
|
|
* information.
|
|
*/
|
|
static int __init early_init_drmem_lmb(struct drmem_lmb *lmb,
|
|
const __be32 **usm,
|
|
void *data)
|
|
{
|
|
u64 base, size;
|
|
int is_kexec_kdump = 0, rngs;
|
|
|
|
base = lmb->base_addr;
|
|
size = drmem_lmb_size();
|
|
rngs = 1;
|
|
|
|
/*
|
|
* Skip this block if the reserved bit is set in flags
|
|
* or if the block is not assigned to this partition.
|
|
*/
|
|
if ((lmb->flags & DRCONF_MEM_RESERVED) ||
|
|
!(lmb->flags & DRCONF_MEM_ASSIGNED))
|
|
return 0;
|
|
|
|
if (*usm)
|
|
is_kexec_kdump = 1;
|
|
|
|
if (is_kexec_kdump) {
|
|
/*
|
|
* For each memblock in ibm,dynamic-memory, a
|
|
* corresponding entry in linux,drconf-usable-memory
|
|
* property contains a counter 'p' followed by 'p'
|
|
* (base, size) duple. Now read the counter from
|
|
* linux,drconf-usable-memory property
|
|
*/
|
|
rngs = dt_mem_next_cell(dt_root_size_cells, usm);
|
|
if (!rngs) /* there are no (base, size) duple */
|
|
return 0;
|
|
}
|
|
|
|
do {
|
|
if (is_kexec_kdump) {
|
|
base = dt_mem_next_cell(dt_root_addr_cells, usm);
|
|
size = dt_mem_next_cell(dt_root_size_cells, usm);
|
|
}
|
|
|
|
if (iommu_is_off) {
|
|
if (base >= 0x80000000ul)
|
|
continue;
|
|
if ((base + size) > 0x80000000ul)
|
|
size = 0x80000000ul - base;
|
|
}
|
|
|
|
if (!validate_mem_limit(base, &size))
|
|
continue;
|
|
|
|
DBG("Adding: %llx -> %llx\n", base, size);
|
|
memblock_add(base, size);
|
|
|
|
if (lmb->flags & DRCONF_MEM_HOTREMOVABLE)
|
|
memblock_mark_hotplug(base, size);
|
|
} while (--rngs);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PPC_PSERIES */
|
|
|
|
static int __init early_init_dt_scan_memory_ppc(unsigned long node,
|
|
const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
if (depth == 1 &&
|
|
strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
|
|
walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
return early_init_dt_scan_memory(node, uname, depth, data);
|
|
}
|
|
|
|
/*
|
|
* For a relocatable kernel, we need to get the memstart_addr first,
|
|
* then use it to calculate the virtual kernel start address. This has
|
|
* to happen at a very early stage (before machine_init). In this case,
|
|
* we just want to get the memstart_address and would not like to mess the
|
|
* memblock at this stage. So introduce a variable to skip the memblock_add()
|
|
* for this reason.
|
|
*/
|
|
#ifdef CONFIG_RELOCATABLE
|
|
static int add_mem_to_memblock = 1;
|
|
#else
|
|
#define add_mem_to_memblock 1
|
|
#endif
|
|
|
|
void __init early_init_dt_add_memory_arch(u64 base, u64 size)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
if (iommu_is_off) {
|
|
if (base >= 0x80000000ul)
|
|
return;
|
|
if ((base + size) > 0x80000000ul)
|
|
size = 0x80000000ul - base;
|
|
}
|
|
#endif
|
|
/* Keep track of the beginning of memory -and- the size of
|
|
* the very first block in the device-tree as it represents
|
|
* the RMA on ppc64 server
|
|
*/
|
|
if (base < memstart_addr) {
|
|
memstart_addr = base;
|
|
first_memblock_size = size;
|
|
}
|
|
|
|
/* Add the chunk to the MEMBLOCK list */
|
|
if (add_mem_to_memblock) {
|
|
if (validate_mem_limit(base, &size))
|
|
memblock_add(base, size);
|
|
}
|
|
}
|
|
|
|
static void __init early_reserve_mem_dt(void)
|
|
{
|
|
unsigned long i, dt_root;
|
|
int len;
|
|
const __be32 *prop;
|
|
|
|
early_init_fdt_reserve_self();
|
|
early_init_fdt_scan_reserved_mem();
|
|
|
|
dt_root = of_get_flat_dt_root();
|
|
|
|
prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
|
|
|
|
if (!prop)
|
|
return;
|
|
|
|
DBG("Found new-style reserved-ranges\n");
|
|
|
|
/* Each reserved range is an (address,size) pair, 2 cells each,
|
|
* totalling 4 cells per range. */
|
|
for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
|
|
u64 base, size;
|
|
|
|
base = of_read_number(prop + (i * 4) + 0, 2);
|
|
size = of_read_number(prop + (i * 4) + 2, 2);
|
|
|
|
if (size) {
|
|
DBG("reserving: %llx -> %llx\n", base, size);
|
|
memblock_reserve(base, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __init early_reserve_mem(void)
|
|
{
|
|
__be64 *reserve_map;
|
|
|
|
reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
|
|
fdt_off_mem_rsvmap(initial_boot_params));
|
|
|
|
/* Look for the new "reserved-regions" property in the DT */
|
|
early_reserve_mem_dt();
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/* Then reserve the initrd, if any */
|
|
if (initrd_start && (initrd_end > initrd_start)) {
|
|
memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
|
|
ALIGN(initrd_end, PAGE_SIZE) -
|
|
ALIGN_DOWN(initrd_start, PAGE_SIZE));
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
|
|
#ifdef CONFIG_PPC32
|
|
/*
|
|
* Handle the case where we might be booting from an old kexec
|
|
* image that setup the mem_rsvmap as pairs of 32-bit values
|
|
*/
|
|
if (be64_to_cpup(reserve_map) > 0xffffffffull) {
|
|
u32 base_32, size_32;
|
|
__be32 *reserve_map_32 = (__be32 *)reserve_map;
|
|
|
|
DBG("Found old 32-bit reserve map\n");
|
|
|
|
while (1) {
|
|
base_32 = be32_to_cpup(reserve_map_32++);
|
|
size_32 = be32_to_cpup(reserve_map_32++);
|
|
if (size_32 == 0)
|
|
break;
|
|
DBG("reserving: %x -> %x\n", base_32, size_32);
|
|
memblock_reserve(base_32, size_32);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
static bool tm_disabled __initdata;
|
|
|
|
static int __init parse_ppc_tm(char *str)
|
|
{
|
|
bool res;
|
|
|
|
if (kstrtobool(str, &res))
|
|
return -EINVAL;
|
|
|
|
tm_disabled = !res;
|
|
|
|
return 0;
|
|
}
|
|
early_param("ppc_tm", parse_ppc_tm);
|
|
|
|
static void __init tm_init(void)
|
|
{
|
|
if (tm_disabled) {
|
|
pr_info("Disabling hardware transactional memory (HTM)\n");
|
|
cur_cpu_spec->cpu_user_features2 &=
|
|
~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
|
|
cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
|
|
return;
|
|
}
|
|
|
|
pnv_tm_init();
|
|
}
|
|
#else
|
|
static void tm_init(void) { }
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
#ifdef CONFIG_PPC64
|
|
static void __init save_fscr_to_task(void)
|
|
{
|
|
/*
|
|
* Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we
|
|
* have configured via the device tree features or via __init_FSCR().
|
|
* That value will then be propagated to pid 1 (init) and all future
|
|
* processes.
|
|
*/
|
|
if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
|
|
init_task.thread.fscr = mfspr(SPRN_FSCR);
|
|
}
|
|
#else
|
|
static inline void save_fscr_to_task(void) {};
|
|
#endif
|
|
|
|
|
|
void __init early_init_devtree(void *params)
|
|
{
|
|
phys_addr_t limit;
|
|
|
|
DBG(" -> early_init_devtree(%px)\n", params);
|
|
|
|
/* Too early to BUG_ON(), do it by hand */
|
|
if (!early_init_dt_verify(params))
|
|
panic("BUG: Failed verifying flat device tree, bad version?");
|
|
|
|
#ifdef CONFIG_PPC_RTAS
|
|
/* Some machines might need RTAS info for debugging, grab it now. */
|
|
of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_POWERNV
|
|
/* Some machines might need OPAL info for debugging, grab it now. */
|
|
of_scan_flat_dt(early_init_dt_scan_opal, NULL);
|
|
|
|
/* Scan tree for ultravisor feature */
|
|
of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL);
|
|
#endif
|
|
|
|
#if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
|
|
/* scan tree to see if dump is active during last boot */
|
|
of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
|
|
#endif
|
|
|
|
/* Retrieve various informations from the /chosen node of the
|
|
* device-tree, including the platform type, initrd location and
|
|
* size, TCE reserve, and more ...
|
|
*/
|
|
of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
|
|
|
|
/* Scan memory nodes and rebuild MEMBLOCKs */
|
|
of_scan_flat_dt(early_init_dt_scan_root, NULL);
|
|
of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
|
|
|
|
parse_early_param();
|
|
|
|
/* make sure we've parsed cmdline for mem= before this */
|
|
if (memory_limit)
|
|
first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
|
|
setup_initial_memory_limit(memstart_addr, first_memblock_size);
|
|
/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
|
|
memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
|
|
/* If relocatable, reserve first 32k for interrupt vectors etc. */
|
|
if (PHYSICAL_START > MEMORY_START)
|
|
memblock_reserve(MEMORY_START, 0x8000);
|
|
reserve_kdump_trampoline();
|
|
#if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
|
|
/*
|
|
* If we fail to reserve memory for firmware-assisted dump then
|
|
* fallback to kexec based kdump.
|
|
*/
|
|
if (fadump_reserve_mem() == 0)
|
|
#endif
|
|
reserve_crashkernel();
|
|
early_reserve_mem();
|
|
|
|
/* Ensure that total memory size is page-aligned. */
|
|
limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
|
|
memblock_enforce_memory_limit(limit);
|
|
|
|
#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES)
|
|
if (!early_radix_enabled())
|
|
memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS));
|
|
#endif
|
|
|
|
memblock_allow_resize();
|
|
memblock_dump_all();
|
|
|
|
DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
|
|
|
|
/* We may need to relocate the flat tree, do it now.
|
|
* FIXME .. and the initrd too? */
|
|
move_device_tree();
|
|
|
|
allocate_paca_ptrs();
|
|
|
|
DBG("Scanning CPUs ...\n");
|
|
|
|
dt_cpu_ftrs_scan();
|
|
|
|
/* Retrieve CPU related informations from the flat tree
|
|
* (altivec support, boot CPU ID, ...)
|
|
*/
|
|
of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
|
|
if (boot_cpuid < 0) {
|
|
printk("Failed to identify boot CPU !\n");
|
|
BUG();
|
|
}
|
|
|
|
save_fscr_to_task();
|
|
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
|
|
/* We'll later wait for secondaries to check in; there are
|
|
* NCPUS-1 non-boot CPUs :-)
|
|
*/
|
|
spinning_secondaries = boot_cpu_count - 1;
|
|
#endif
|
|
|
|
mmu_early_init_devtree();
|
|
|
|
#ifdef CONFIG_PPC_POWERNV
|
|
/* Scan and build the list of machine check recoverable ranges */
|
|
of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
|
|
#endif
|
|
epapr_paravirt_early_init();
|
|
|
|
/* Now try to figure out if we are running on LPAR and so on */
|
|
pseries_probe_fw_features();
|
|
|
|
/*
|
|
* Initialize pkey features and default AMR/IAMR values
|
|
*/
|
|
pkey_early_init_devtree();
|
|
|
|
#ifdef CONFIG_PPC_PS3
|
|
/* Identify PS3 firmware */
|
|
if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
|
|
powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
|
|
#endif
|
|
|
|
tm_init();
|
|
|
|
DBG(" <- early_init_devtree()\n");
|
|
}
|
|
|
|
#ifdef CONFIG_RELOCATABLE
|
|
/*
|
|
* This function run before early_init_devtree, so we have to init
|
|
* initial_boot_params.
|
|
*/
|
|
void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
|
|
{
|
|
/* Setup flat device-tree pointer */
|
|
initial_boot_params = params;
|
|
|
|
/*
|
|
* Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
|
|
* mess the memblock.
|
|
*/
|
|
add_mem_to_memblock = 0;
|
|
of_scan_flat_dt(early_init_dt_scan_root, NULL);
|
|
of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
|
|
add_mem_to_memblock = 1;
|
|
|
|
if (size)
|
|
*size = first_memblock_size;
|
|
}
|
|
#endif
|
|
|
|
/*******
|
|
*
|
|
* New implementation of the OF "find" APIs, return a refcounted
|
|
* object, call of_node_put() when done. The device tree and list
|
|
* are protected by a rw_lock.
|
|
*
|
|
* Note that property management will need some locking as well,
|
|
* this isn't dealt with yet.
|
|
*
|
|
*******/
|
|
|
|
/**
|
|
* of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
|
|
* @np: device node of the device
|
|
*
|
|
* This looks for a property "ibm,chip-id" in the node or any
|
|
* of its parents and returns its content, or -1 if it cannot
|
|
* be found.
|
|
*/
|
|
int of_get_ibm_chip_id(struct device_node *np)
|
|
{
|
|
of_node_get(np);
|
|
while (np) {
|
|
u32 chip_id;
|
|
|
|
/*
|
|
* Skiboot may produce memory nodes that contain more than one
|
|
* cell in chip-id, we only read the first one here.
|
|
*/
|
|
if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
|
|
of_node_put(np);
|
|
return chip_id;
|
|
}
|
|
|
|
np = of_get_next_parent(np);
|
|
}
|
|
return -1;
|
|
}
|
|
EXPORT_SYMBOL(of_get_ibm_chip_id);
|
|
|
|
/**
|
|
* cpu_to_chip_id - Return the cpus chip-id
|
|
* @cpu: The logical cpu number.
|
|
*
|
|
* Return the value of the ibm,chip-id property corresponding to the given
|
|
* logical cpu number. If the chip-id can not be found, returns -1.
|
|
*/
|
|
int cpu_to_chip_id(int cpu)
|
|
{
|
|
struct device_node *np;
|
|
|
|
np = of_get_cpu_node(cpu, NULL);
|
|
if (!np)
|
|
return -1;
|
|
|
|
of_node_put(np);
|
|
return of_get_ibm_chip_id(np);
|
|
}
|
|
EXPORT_SYMBOL(cpu_to_chip_id);
|
|
|
|
bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Early firmware scanning must use this rather than
|
|
* get_hard_smp_processor_id because we don't have pacas allocated
|
|
* until memory topology is discovered.
|
|
*/
|
|
if (cpu_to_phys_id != NULL)
|
|
return (int)phys_id == cpu_to_phys_id[cpu];
|
|
#endif
|
|
|
|
return (int)phys_id == get_hard_smp_processor_id(cpu);
|
|
}
|