mirror of
https://github.com/torvalds/linux.git
synced 2024-12-24 20:01:55 +00:00
847854f598
memblock allocator aligns @size to @align to reduce the amount
of fragmentation. Commit:
7bd0b0f0da
("memblock: Reimplement memblock allocation using reverse free area iterator")
Broke it by incorrectly relocating @size aligning to
memblock_find_in_range_node(). As the aligned size is not
propagated back to memblock_alloc_base_nid(), the actually
reserved size isn't aligned.
While this increases memory use for memblock reserved array,
this shouldn't cause any critical failure; however, it seems
that the size aligning was hiding a use-beyond-allocation bug in
sparc64 and losing the aligning causes boot failure.
The underlying problem is currently being debugged but this is a
proper fix in itself, it's already pretty late in -rc cycle for
boot failures and reverting the change for debugging isn't
difficult. Restore the size aligning moving it to
memblock_alloc_base_nid().
Reported-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Rob Herring <rob.herring@calxeda.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20120228205621.GC3252@dhcp-172-17-108-109.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <alpine.SOC.1.00.1202130942030.1488@math.ut.ee>
973 lines
27 KiB
C
973 lines
27 KiB
C
/*
|
|
* Procedures for maintaining information about logical memory blocks.
|
|
*
|
|
* Peter Bergner, IBM Corp. June 2001.
|
|
* Copyright (C) 2001 Peter Bergner.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/memblock.h>
|
|
|
|
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
|
|
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
|
|
|
|
struct memblock memblock __initdata_memblock = {
|
|
.memory.regions = memblock_memory_init_regions,
|
|
.memory.cnt = 1, /* empty dummy entry */
|
|
.memory.max = INIT_MEMBLOCK_REGIONS,
|
|
|
|
.reserved.regions = memblock_reserved_init_regions,
|
|
.reserved.cnt = 1, /* empty dummy entry */
|
|
.reserved.max = INIT_MEMBLOCK_REGIONS,
|
|
|
|
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
|
|
};
|
|
|
|
int memblock_debug __initdata_memblock;
|
|
static int memblock_can_resize __initdata_memblock;
|
|
|
|
/* inline so we don't get a warning when pr_debug is compiled out */
|
|
static inline const char *memblock_type_name(struct memblock_type *type)
|
|
{
|
|
if (type == &memblock.memory)
|
|
return "memory";
|
|
else if (type == &memblock.reserved)
|
|
return "reserved";
|
|
else
|
|
return "unknown";
|
|
}
|
|
|
|
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
|
|
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
|
|
{
|
|
return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
|
|
}
|
|
|
|
/*
|
|
* Address comparison utilities
|
|
*/
|
|
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
|
|
phys_addr_t base2, phys_addr_t size2)
|
|
{
|
|
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
|
|
}
|
|
|
|
static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
phys_addr_t rgnbase = type->regions[i].base;
|
|
phys_addr_t rgnsize = type->regions[i].size;
|
|
if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
|
|
break;
|
|
}
|
|
|
|
return (i < type->cnt) ? i : -1;
|
|
}
|
|
|
|
/**
|
|
* memblock_find_in_range_node - find free area in given range and node
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @nid: nid of the free area to find, %MAX_NUMNODES for any node
|
|
*
|
|
* Find @size free area aligned to @align in the specified range and node.
|
|
*
|
|
* RETURNS:
|
|
* Found address on success, %0 on failure.
|
|
*/
|
|
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
|
|
phys_addr_t end, phys_addr_t size,
|
|
phys_addr_t align, int nid)
|
|
{
|
|
phys_addr_t this_start, this_end, cand;
|
|
u64 i;
|
|
|
|
/* pump up @end */
|
|
if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
|
|
end = memblock.current_limit;
|
|
|
|
/* avoid allocating the first page */
|
|
start = max_t(phys_addr_t, start, PAGE_SIZE);
|
|
end = max(start, end);
|
|
|
|
for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
|
|
this_start = clamp(this_start, start, end);
|
|
this_end = clamp(this_end, start, end);
|
|
|
|
if (this_end < size)
|
|
continue;
|
|
|
|
cand = round_down(this_end - size, align);
|
|
if (cand >= this_start)
|
|
return cand;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_find_in_range - find free area in given range
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
*
|
|
* Find @size free area aligned to @align in the specified range.
|
|
*
|
|
* RETURNS:
|
|
* Found address on success, %0 on failure.
|
|
*/
|
|
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
|
|
phys_addr_t end, phys_addr_t size,
|
|
phys_addr_t align)
|
|
{
|
|
return memblock_find_in_range_node(start, end, size, align,
|
|
MAX_NUMNODES);
|
|
}
|
|
|
|
/*
|
|
* Free memblock.reserved.regions
|
|
*/
|
|
int __init_memblock memblock_free_reserved_regions(void)
|
|
{
|
|
if (memblock.reserved.regions == memblock_reserved_init_regions)
|
|
return 0;
|
|
|
|
return memblock_free(__pa(memblock.reserved.regions),
|
|
sizeof(struct memblock_region) * memblock.reserved.max);
|
|
}
|
|
|
|
/*
|
|
* Reserve memblock.reserved.regions
|
|
*/
|
|
int __init_memblock memblock_reserve_reserved_regions(void)
|
|
{
|
|
if (memblock.reserved.regions == memblock_reserved_init_regions)
|
|
return 0;
|
|
|
|
return memblock_reserve(__pa(memblock.reserved.regions),
|
|
sizeof(struct memblock_region) * memblock.reserved.max);
|
|
}
|
|
|
|
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
|
|
{
|
|
type->total_size -= type->regions[r].size;
|
|
memmove(&type->regions[r], &type->regions[r + 1],
|
|
(type->cnt - (r + 1)) * sizeof(type->regions[r]));
|
|
type->cnt--;
|
|
|
|
/* Special case for empty arrays */
|
|
if (type->cnt == 0) {
|
|
WARN_ON(type->total_size != 0);
|
|
type->cnt = 1;
|
|
type->regions[0].base = 0;
|
|
type->regions[0].size = 0;
|
|
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
|
|
}
|
|
}
|
|
|
|
static int __init_memblock memblock_double_array(struct memblock_type *type)
|
|
{
|
|
struct memblock_region *new_array, *old_array;
|
|
phys_addr_t old_size, new_size, addr;
|
|
int use_slab = slab_is_available();
|
|
|
|
/* We don't allow resizing until we know about the reserved regions
|
|
* of memory that aren't suitable for allocation
|
|
*/
|
|
if (!memblock_can_resize)
|
|
return -1;
|
|
|
|
/* Calculate new doubled size */
|
|
old_size = type->max * sizeof(struct memblock_region);
|
|
new_size = old_size << 1;
|
|
|
|
/* Try to find some space for it.
|
|
*
|
|
* WARNING: We assume that either slab_is_available() and we use it or
|
|
* we use MEMBLOCK for allocations. That means that this is unsafe to use
|
|
* when bootmem is currently active (unless bootmem itself is implemented
|
|
* on top of MEMBLOCK which isn't the case yet)
|
|
*
|
|
* This should however not be an issue for now, as we currently only
|
|
* call into MEMBLOCK while it's still active, or much later when slab is
|
|
* active for memory hotplug operations
|
|
*/
|
|
if (use_slab) {
|
|
new_array = kmalloc(new_size, GFP_KERNEL);
|
|
addr = new_array ? __pa(new_array) : 0;
|
|
} else
|
|
addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
|
|
if (!addr) {
|
|
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
|
|
memblock_type_name(type), type->max, type->max * 2);
|
|
return -1;
|
|
}
|
|
new_array = __va(addr);
|
|
|
|
memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
|
|
memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
|
|
|
|
/* Found space, we now need to move the array over before
|
|
* we add the reserved region since it may be our reserved
|
|
* array itself that is full.
|
|
*/
|
|
memcpy(new_array, type->regions, old_size);
|
|
memset(new_array + type->max, 0, old_size);
|
|
old_array = type->regions;
|
|
type->regions = new_array;
|
|
type->max <<= 1;
|
|
|
|
/* If we use SLAB that's it, we are done */
|
|
if (use_slab)
|
|
return 0;
|
|
|
|
/* Add the new reserved region now. Should not fail ! */
|
|
BUG_ON(memblock_reserve(addr, new_size));
|
|
|
|
/* If the array wasn't our static init one, then free it. We only do
|
|
* that before SLAB is available as later on, we don't know whether
|
|
* to use kfree or free_bootmem_pages(). Shouldn't be a big deal
|
|
* anyways
|
|
*/
|
|
if (old_array != memblock_memory_init_regions &&
|
|
old_array != memblock_reserved_init_regions)
|
|
memblock_free(__pa(old_array), old_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_merge_regions - merge neighboring compatible regions
|
|
* @type: memblock type to scan
|
|
*
|
|
* Scan @type and merge neighboring compatible regions.
|
|
*/
|
|
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
|
|
{
|
|
int i = 0;
|
|
|
|
/* cnt never goes below 1 */
|
|
while (i < type->cnt - 1) {
|
|
struct memblock_region *this = &type->regions[i];
|
|
struct memblock_region *next = &type->regions[i + 1];
|
|
|
|
if (this->base + this->size != next->base ||
|
|
memblock_get_region_node(this) !=
|
|
memblock_get_region_node(next)) {
|
|
BUG_ON(this->base + this->size > next->base);
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
this->size += next->size;
|
|
memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
|
|
type->cnt--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* memblock_insert_region - insert new memblock region
|
|
* @type: memblock type to insert into
|
|
* @idx: index for the insertion point
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
*
|
|
* Insert new memblock region [@base,@base+@size) into @type at @idx.
|
|
* @type must already have extra room to accomodate the new region.
|
|
*/
|
|
static void __init_memblock memblock_insert_region(struct memblock_type *type,
|
|
int idx, phys_addr_t base,
|
|
phys_addr_t size, int nid)
|
|
{
|
|
struct memblock_region *rgn = &type->regions[idx];
|
|
|
|
BUG_ON(type->cnt >= type->max);
|
|
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
|
|
rgn->base = base;
|
|
rgn->size = size;
|
|
memblock_set_region_node(rgn, nid);
|
|
type->cnt++;
|
|
type->total_size += size;
|
|
}
|
|
|
|
/**
|
|
* memblock_add_region - add new memblock region
|
|
* @type: memblock type to add new region into
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: nid of the new region
|
|
*
|
|
* Add new memblock region [@base,@base+@size) into @type. The new region
|
|
* is allowed to overlap with existing ones - overlaps don't affect already
|
|
* existing regions. @type is guaranteed to be minimal (all neighbouring
|
|
* compatible regions are merged) after the addition.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int __init_memblock memblock_add_region(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size, int nid)
|
|
{
|
|
bool insert = false;
|
|
phys_addr_t obase = base;
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
int i, nr_new;
|
|
|
|
/* special case for empty array */
|
|
if (type->regions[0].size == 0) {
|
|
WARN_ON(type->cnt != 1 || type->total_size);
|
|
type->regions[0].base = base;
|
|
type->regions[0].size = size;
|
|
memblock_set_region_node(&type->regions[0], nid);
|
|
type->total_size = size;
|
|
return 0;
|
|
}
|
|
repeat:
|
|
/*
|
|
* The following is executed twice. Once with %false @insert and
|
|
* then with %true. The first counts the number of regions needed
|
|
* to accomodate the new area. The second actually inserts them.
|
|
*/
|
|
base = obase;
|
|
nr_new = 0;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
struct memblock_region *rgn = &type->regions[i];
|
|
phys_addr_t rbase = rgn->base;
|
|
phys_addr_t rend = rbase + rgn->size;
|
|
|
|
if (rbase >= end)
|
|
break;
|
|
if (rend <= base)
|
|
continue;
|
|
/*
|
|
* @rgn overlaps. If it separates the lower part of new
|
|
* area, insert that portion.
|
|
*/
|
|
if (rbase > base) {
|
|
nr_new++;
|
|
if (insert)
|
|
memblock_insert_region(type, i++, base,
|
|
rbase - base, nid);
|
|
}
|
|
/* area below @rend is dealt with, forget about it */
|
|
base = min(rend, end);
|
|
}
|
|
|
|
/* insert the remaining portion */
|
|
if (base < end) {
|
|
nr_new++;
|
|
if (insert)
|
|
memblock_insert_region(type, i, base, end - base, nid);
|
|
}
|
|
|
|
/*
|
|
* If this was the first round, resize array and repeat for actual
|
|
* insertions; otherwise, merge and return.
|
|
*/
|
|
if (!insert) {
|
|
while (type->cnt + nr_new > type->max)
|
|
if (memblock_double_array(type) < 0)
|
|
return -ENOMEM;
|
|
insert = true;
|
|
goto repeat;
|
|
} else {
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
|
|
int nid)
|
|
{
|
|
return memblock_add_region(&memblock.memory, base, size, nid);
|
|
}
|
|
|
|
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
|
|
}
|
|
|
|
/**
|
|
* memblock_isolate_range - isolate given range into disjoint memblocks
|
|
* @type: memblock type to isolate range for
|
|
* @base: base of range to isolate
|
|
* @size: size of range to isolate
|
|
* @start_rgn: out parameter for the start of isolated region
|
|
* @end_rgn: out parameter for the end of isolated region
|
|
*
|
|
* Walk @type and ensure that regions don't cross the boundaries defined by
|
|
* [@base,@base+@size). Crossing regions are split at the boundaries,
|
|
* which may create at most two more regions. The index of the first
|
|
* region inside the range is returned in *@start_rgn and end in *@end_rgn.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size,
|
|
int *start_rgn, int *end_rgn)
|
|
{
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
int i;
|
|
|
|
*start_rgn = *end_rgn = 0;
|
|
|
|
/* we'll create at most two more regions */
|
|
while (type->cnt + 2 > type->max)
|
|
if (memblock_double_array(type) < 0)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
struct memblock_region *rgn = &type->regions[i];
|
|
phys_addr_t rbase = rgn->base;
|
|
phys_addr_t rend = rbase + rgn->size;
|
|
|
|
if (rbase >= end)
|
|
break;
|
|
if (rend <= base)
|
|
continue;
|
|
|
|
if (rbase < base) {
|
|
/*
|
|
* @rgn intersects from below. Split and continue
|
|
* to process the next region - the new top half.
|
|
*/
|
|
rgn->base = base;
|
|
rgn->size -= base - rbase;
|
|
type->total_size -= base - rbase;
|
|
memblock_insert_region(type, i, rbase, base - rbase,
|
|
memblock_get_region_node(rgn));
|
|
} else if (rend > end) {
|
|
/*
|
|
* @rgn intersects from above. Split and redo the
|
|
* current region - the new bottom half.
|
|
*/
|
|
rgn->base = end;
|
|
rgn->size -= end - rbase;
|
|
type->total_size -= end - rbase;
|
|
memblock_insert_region(type, i--, rbase, end - rbase,
|
|
memblock_get_region_node(rgn));
|
|
} else {
|
|
/* @rgn is fully contained, record it */
|
|
if (!*end_rgn)
|
|
*start_rgn = i;
|
|
*end_rgn = i + 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init_memblock __memblock_remove(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = end_rgn - 1; i >= start_rgn; i--)
|
|
memblock_remove_region(type, i);
|
|
return 0;
|
|
}
|
|
|
|
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return __memblock_remove(&memblock.memory, base, size);
|
|
}
|
|
|
|
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
|
|
(unsigned long long)base,
|
|
(unsigned long long)base + size,
|
|
(void *)_RET_IP_);
|
|
|
|
return __memblock_remove(&memblock.reserved, base, size);
|
|
}
|
|
|
|
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
struct memblock_type *_rgn = &memblock.reserved;
|
|
|
|
memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
|
|
(unsigned long long)base,
|
|
(unsigned long long)base + size,
|
|
(void *)_RET_IP_);
|
|
BUG_ON(0 == size);
|
|
|
|
return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
|
|
}
|
|
|
|
/**
|
|
* __next_free_mem_range - next function for for_each_free_mem_range()
|
|
* @idx: pointer to u64 loop variable
|
|
* @nid: nid: node selector, %MAX_NUMNODES for all nodes
|
|
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
|
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
|
* @p_nid: ptr to int for nid of the range, can be %NULL
|
|
*
|
|
* Find the first free area from *@idx which matches @nid, fill the out
|
|
* parameters, and update *@idx for the next iteration. The lower 32bit of
|
|
* *@idx contains index into memory region and the upper 32bit indexes the
|
|
* areas before each reserved region. For example, if reserved regions
|
|
* look like the following,
|
|
*
|
|
* 0:[0-16), 1:[32-48), 2:[128-130)
|
|
*
|
|
* The upper 32bit indexes the following regions.
|
|
*
|
|
* 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
|
|
*
|
|
* As both region arrays are sorted, the function advances the two indices
|
|
* in lockstep and returns each intersection.
|
|
*/
|
|
void __init_memblock __next_free_mem_range(u64 *idx, int nid,
|
|
phys_addr_t *out_start,
|
|
phys_addr_t *out_end, int *out_nid)
|
|
{
|
|
struct memblock_type *mem = &memblock.memory;
|
|
struct memblock_type *rsv = &memblock.reserved;
|
|
int mi = *idx & 0xffffffff;
|
|
int ri = *idx >> 32;
|
|
|
|
for ( ; mi < mem->cnt; mi++) {
|
|
struct memblock_region *m = &mem->regions[mi];
|
|
phys_addr_t m_start = m->base;
|
|
phys_addr_t m_end = m->base + m->size;
|
|
|
|
/* only memory regions are associated with nodes, check it */
|
|
if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
|
|
continue;
|
|
|
|
/* scan areas before each reservation for intersection */
|
|
for ( ; ri < rsv->cnt + 1; ri++) {
|
|
struct memblock_region *r = &rsv->regions[ri];
|
|
phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
|
|
phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
|
|
|
|
/* if ri advanced past mi, break out to advance mi */
|
|
if (r_start >= m_end)
|
|
break;
|
|
/* if the two regions intersect, we're done */
|
|
if (m_start < r_end) {
|
|
if (out_start)
|
|
*out_start = max(m_start, r_start);
|
|
if (out_end)
|
|
*out_end = min(m_end, r_end);
|
|
if (out_nid)
|
|
*out_nid = memblock_get_region_node(m);
|
|
/*
|
|
* The region which ends first is advanced
|
|
* for the next iteration.
|
|
*/
|
|
if (m_end <= r_end)
|
|
mi++;
|
|
else
|
|
ri++;
|
|
*idx = (u32)mi | (u64)ri << 32;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* signal end of iteration */
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
/**
|
|
* __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
|
|
* @idx: pointer to u64 loop variable
|
|
* @nid: nid: node selector, %MAX_NUMNODES for all nodes
|
|
* @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
|
* @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
|
* @p_nid: ptr to int for nid of the range, can be %NULL
|
|
*
|
|
* Reverse of __next_free_mem_range().
|
|
*/
|
|
void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
|
|
phys_addr_t *out_start,
|
|
phys_addr_t *out_end, int *out_nid)
|
|
{
|
|
struct memblock_type *mem = &memblock.memory;
|
|
struct memblock_type *rsv = &memblock.reserved;
|
|
int mi = *idx & 0xffffffff;
|
|
int ri = *idx >> 32;
|
|
|
|
if (*idx == (u64)ULLONG_MAX) {
|
|
mi = mem->cnt - 1;
|
|
ri = rsv->cnt;
|
|
}
|
|
|
|
for ( ; mi >= 0; mi--) {
|
|
struct memblock_region *m = &mem->regions[mi];
|
|
phys_addr_t m_start = m->base;
|
|
phys_addr_t m_end = m->base + m->size;
|
|
|
|
/* only memory regions are associated with nodes, check it */
|
|
if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
|
|
continue;
|
|
|
|
/* scan areas before each reservation for intersection */
|
|
for ( ; ri >= 0; ri--) {
|
|
struct memblock_region *r = &rsv->regions[ri];
|
|
phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
|
|
phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
|
|
|
|
/* if ri advanced past mi, break out to advance mi */
|
|
if (r_end <= m_start)
|
|
break;
|
|
/* if the two regions intersect, we're done */
|
|
if (m_end > r_start) {
|
|
if (out_start)
|
|
*out_start = max(m_start, r_start);
|
|
if (out_end)
|
|
*out_end = min(m_end, r_end);
|
|
if (out_nid)
|
|
*out_nid = memblock_get_region_node(m);
|
|
|
|
if (m_start >= r_start)
|
|
mi--;
|
|
else
|
|
ri--;
|
|
*idx = (u32)mi | (u64)ri << 32;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
/*
|
|
* Common iterator interface used to define for_each_mem_range().
|
|
*/
|
|
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
|
|
unsigned long *out_start_pfn,
|
|
unsigned long *out_end_pfn, int *out_nid)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
struct memblock_region *r;
|
|
|
|
while (++*idx < type->cnt) {
|
|
r = &type->regions[*idx];
|
|
|
|
if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
|
|
continue;
|
|
if (nid == MAX_NUMNODES || nid == r->nid)
|
|
break;
|
|
}
|
|
if (*idx >= type->cnt) {
|
|
*idx = -1;
|
|
return;
|
|
}
|
|
|
|
if (out_start_pfn)
|
|
*out_start_pfn = PFN_UP(r->base);
|
|
if (out_end_pfn)
|
|
*out_end_pfn = PFN_DOWN(r->base + r->size);
|
|
if (out_nid)
|
|
*out_nid = r->nid;
|
|
}
|
|
|
|
/**
|
|
* memblock_set_node - set node ID on memblock regions
|
|
* @base: base of area to set node ID for
|
|
* @size: size of area to set node ID for
|
|
* @nid: node ID to set
|
|
*
|
|
* Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
|
|
* Regions which cross the area boundaries are split as necessary.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
|
|
int nid)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = start_rgn; i < end_rgn; i++)
|
|
type->regions[i].nid = nid;
|
|
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
|
|
static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
phys_addr_t found;
|
|
|
|
/* align @size to avoid excessive fragmentation on reserved array */
|
|
size = round_up(size, align);
|
|
|
|
found = memblock_find_in_range_node(0, max_addr, size, align, nid);
|
|
if (found && !memblock_reserve(found, size))
|
|
return found;
|
|
|
|
return 0;
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
|
|
}
|
|
|
|
phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
|
|
{
|
|
return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
|
|
{
|
|
phys_addr_t alloc;
|
|
|
|
alloc = __memblock_alloc_base(size, align, max_addr);
|
|
|
|
if (alloc == 0)
|
|
panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
|
|
(unsigned long long) size, (unsigned long long) max_addr);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
|
|
{
|
|
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
phys_addr_t res = memblock_alloc_nid(size, align, nid);
|
|
|
|
if (res)
|
|
return res;
|
|
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Remaining API functions
|
|
*/
|
|
|
|
phys_addr_t __init memblock_phys_mem_size(void)
|
|
{
|
|
return memblock.memory.total_size;
|
|
}
|
|
|
|
/* lowest address */
|
|
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
|
|
{
|
|
return memblock.memory.regions[0].base;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
|
|
{
|
|
int idx = memblock.memory.cnt - 1;
|
|
|
|
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
|
|
}
|
|
|
|
void __init memblock_enforce_memory_limit(phys_addr_t limit)
|
|
{
|
|
unsigned long i;
|
|
phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
|
|
|
|
if (!limit)
|
|
return;
|
|
|
|
/* find out max address */
|
|
for (i = 0; i < memblock.memory.cnt; i++) {
|
|
struct memblock_region *r = &memblock.memory.regions[i];
|
|
|
|
if (limit <= r->size) {
|
|
max_addr = r->base + limit;
|
|
break;
|
|
}
|
|
limit -= r->size;
|
|
}
|
|
|
|
/* truncate both memory and reserved regions */
|
|
__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
|
|
__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
|
|
}
|
|
|
|
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
|
|
{
|
|
unsigned int left = 0, right = type->cnt;
|
|
|
|
do {
|
|
unsigned int mid = (right + left) / 2;
|
|
|
|
if (addr < type->regions[mid].base)
|
|
right = mid;
|
|
else if (addr >= (type->regions[mid].base +
|
|
type->regions[mid].size))
|
|
left = mid + 1;
|
|
else
|
|
return mid;
|
|
} while (left < right);
|
|
return -1;
|
|
}
|
|
|
|
int __init memblock_is_reserved(phys_addr_t addr)
|
|
{
|
|
return memblock_search(&memblock.reserved, addr) != -1;
|
|
}
|
|
|
|
int __init_memblock memblock_is_memory(phys_addr_t addr)
|
|
{
|
|
return memblock_search(&memblock.memory, addr) != -1;
|
|
}
|
|
|
|
int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int idx = memblock_search(&memblock.memory, base);
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
|
|
if (idx == -1)
|
|
return 0;
|
|
return memblock.memory.regions[idx].base <= base &&
|
|
(memblock.memory.regions[idx].base +
|
|
memblock.memory.regions[idx].size) >= end;
|
|
}
|
|
|
|
int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
memblock_cap_size(base, &size);
|
|
return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
|
|
}
|
|
|
|
|
|
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
|
|
{
|
|
memblock.current_limit = limit;
|
|
}
|
|
|
|
static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
|
|
{
|
|
unsigned long long base, size;
|
|
int i;
|
|
|
|
pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
struct memblock_region *rgn = &type->regions[i];
|
|
char nid_buf[32] = "";
|
|
|
|
base = rgn->base;
|
|
size = rgn->size;
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
if (memblock_get_region_node(rgn) != MAX_NUMNODES)
|
|
snprintf(nid_buf, sizeof(nid_buf), " on node %d",
|
|
memblock_get_region_node(rgn));
|
|
#endif
|
|
pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
|
|
name, i, base, base + size - 1, size, nid_buf);
|
|
}
|
|
}
|
|
|
|
void __init_memblock __memblock_dump_all(void)
|
|
{
|
|
pr_info("MEMBLOCK configuration:\n");
|
|
pr_info(" memory size = %#llx reserved size = %#llx\n",
|
|
(unsigned long long)memblock.memory.total_size,
|
|
(unsigned long long)memblock.reserved.total_size);
|
|
|
|
memblock_dump(&memblock.memory, "memory");
|
|
memblock_dump(&memblock.reserved, "reserved");
|
|
}
|
|
|
|
void __init memblock_allow_resize(void)
|
|
{
|
|
memblock_can_resize = 1;
|
|
}
|
|
|
|
static int __init early_memblock(char *p)
|
|
{
|
|
if (p && strstr(p, "debug"))
|
|
memblock_debug = 1;
|
|
return 0;
|
|
}
|
|
early_param("memblock", early_memblock);
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
|
|
|
|
static int memblock_debug_show(struct seq_file *m, void *private)
|
|
{
|
|
struct memblock_type *type = m->private;
|
|
struct memblock_region *reg;
|
|
int i;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
reg = &type->regions[i];
|
|
seq_printf(m, "%4d: ", i);
|
|
if (sizeof(phys_addr_t) == 4)
|
|
seq_printf(m, "0x%08lx..0x%08lx\n",
|
|
(unsigned long)reg->base,
|
|
(unsigned long)(reg->base + reg->size - 1));
|
|
else
|
|
seq_printf(m, "0x%016llx..0x%016llx\n",
|
|
(unsigned long long)reg->base,
|
|
(unsigned long long)(reg->base + reg->size - 1));
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int memblock_debug_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, memblock_debug_show, inode->i_private);
|
|
}
|
|
|
|
static const struct file_operations memblock_debug_fops = {
|
|
.open = memblock_debug_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static int __init memblock_init_debugfs(void)
|
|
{
|
|
struct dentry *root = debugfs_create_dir("memblock", NULL);
|
|
if (!root)
|
|
return -ENXIO;
|
|
debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
|
|
debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
|
|
|
|
return 0;
|
|
}
|
|
__initcall(memblock_init_debugfs);
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|