linux/mm/nommu.c
Vernon Yang c5d5546ea0 maple_tree: remove the parameter entry of mas_preallocate
The parameter entry of mas_preallocate is not used, so drop it.

Link: https://lkml.kernel.org/r/20230110154211.1758562-1-vernon2gm@gmail.com
Signed-off-by: Vernon Yang <vernon2gm@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-02-02 22:32:52 -08:00

1869 lines
45 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/nommu.c
*
* Replacement code for mm functions to support CPU's that don't
* have any form of memory management unit (thus no virtual memory).
*
* See Documentation/admin-guide/mm/nommu-mmap.rst
*
* Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
* Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
* Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
* Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
* Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/file.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/backing-dev.h>
#include <linux/compiler.h>
#include <linux/mount.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/audit.h>
#include <linux/printk.h>
#include <linux/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include "internal.h"
void *high_memory;
EXPORT_SYMBOL(high_memory);
struct page *mem_map;
unsigned long max_mapnr;
EXPORT_SYMBOL(max_mapnr);
unsigned long highest_memmap_pfn;
int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
int heap_stack_gap = 0;
atomic_long_t mmap_pages_allocated;
EXPORT_SYMBOL(mem_map);
/* list of mapped, potentially shareable regions */
static struct kmem_cache *vm_region_jar;
struct rb_root nommu_region_tree = RB_ROOT;
DECLARE_RWSEM(nommu_region_sem);
const struct vm_operations_struct generic_file_vm_ops = {
};
/*
* Return the total memory allocated for this pointer, not
* just what the caller asked for.
*
* Doesn't have to be accurate, i.e. may have races.
*/
unsigned int kobjsize(const void *objp)
{
struct page *page;
/*
* If the object we have should not have ksize performed on it,
* return size of 0
*/
if (!objp || !virt_addr_valid(objp))
return 0;
page = virt_to_head_page(objp);
/*
* If the allocator sets PageSlab, we know the pointer came from
* kmalloc().
*/
if (PageSlab(page))
return ksize(objp);
/*
* If it's not a compound page, see if we have a matching VMA
* region. This test is intentionally done in reverse order,
* so if there's no VMA, we still fall through and hand back
* PAGE_SIZE for 0-order pages.
*/
if (!PageCompound(page)) {
struct vm_area_struct *vma;
vma = find_vma(current->mm, (unsigned long)objp);
if (vma)
return vma->vm_end - vma->vm_start;
}
/*
* The ksize() function is only guaranteed to work for pointers
* returned by kmalloc(). So handle arbitrary pointers here.
*/
return page_size(page);
}
/**
* follow_pfn - look up PFN at a user virtual address
* @vma: memory mapping
* @address: user virtual address
* @pfn: location to store found PFN
*
* Only IO mappings and raw PFN mappings are allowed.
*
* Returns zero and the pfn at @pfn on success, -ve otherwise.
*/
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
unsigned long *pfn)
{
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
return -EINVAL;
*pfn = address >> PAGE_SHIFT;
return 0;
}
EXPORT_SYMBOL(follow_pfn);
LIST_HEAD(vmap_area_list);
void vfree(const void *addr)
{
kfree(addr);
}
EXPORT_SYMBOL(vfree);
void *__vmalloc(unsigned long size, gfp_t gfp_mask)
{
/*
* You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
* returns only a logical address.
*/
return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
}
EXPORT_SYMBOL(__vmalloc);
void *__vmalloc_node_range(unsigned long size, unsigned long align,
unsigned long start, unsigned long end, gfp_t gfp_mask,
pgprot_t prot, unsigned long vm_flags, int node,
const void *caller)
{
return __vmalloc(size, gfp_mask);
}
void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
int node, const void *caller)
{
return __vmalloc(size, gfp_mask);
}
static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
{
void *ret;
ret = __vmalloc(size, flags);
if (ret) {
struct vm_area_struct *vma;
mmap_write_lock(current->mm);
vma = find_vma(current->mm, (unsigned long)ret);
if (vma)
vma->vm_flags |= VM_USERMAP;
mmap_write_unlock(current->mm);
}
return ret;
}
void *vmalloc_user(unsigned long size)
{
return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
}
EXPORT_SYMBOL(vmalloc_user);
struct page *vmalloc_to_page(const void *addr)
{
return virt_to_page(addr);
}
EXPORT_SYMBOL(vmalloc_to_page);
unsigned long vmalloc_to_pfn(const void *addr)
{
return page_to_pfn(virt_to_page(addr));
}
EXPORT_SYMBOL(vmalloc_to_pfn);
long vread(char *buf, char *addr, unsigned long count)
{
/* Don't allow overflow */
if ((unsigned long) buf + count < count)
count = -(unsigned long) buf;
memcpy(buf, addr, count);
return count;
}
/*
* vmalloc - allocate virtually contiguous memory
*
* @size: allocation size
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL);
}
EXPORT_SYMBOL(vmalloc);
void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
/*
* vzalloc - allocate virtually contiguous memory with zero fill
*
* @size: allocation size
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
* The memory allocated is set to zero.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vzalloc(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
}
EXPORT_SYMBOL(vzalloc);
/**
* vmalloc_node - allocate memory on a specific node
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vmalloc_node(unsigned long size, int node)
{
return vmalloc(size);
}
EXPORT_SYMBOL(vmalloc_node);
/**
* vzalloc_node - allocate memory on a specific node with zero fill
* @size: allocation size
* @node: numa node
*
* Allocate enough pages to cover @size from the page level
* allocator and map them into contiguous kernel virtual space.
* The memory allocated is set to zero.
*
* For tight control over page level allocator and protection flags
* use __vmalloc() instead.
*/
void *vzalloc_node(unsigned long size, int node)
{
return vzalloc(size);
}
EXPORT_SYMBOL(vzalloc_node);
/**
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
* @size: allocation size
*
* Allocate enough 32bit PA addressable pages to cover @size from the
* page level allocator and map them into contiguous kernel virtual space.
*/
void *vmalloc_32(unsigned long size)
{
return __vmalloc(size, GFP_KERNEL);
}
EXPORT_SYMBOL(vmalloc_32);
/**
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
* @size: allocation size
*
* The resulting memory area is 32bit addressable and zeroed so it can be
* mapped to userspace without leaking data.
*
* VM_USERMAP is set on the corresponding VMA so that subsequent calls to
* remap_vmalloc_range() are permissible.
*/
void *vmalloc_32_user(unsigned long size)
{
/*
* We'll have to sort out the ZONE_DMA bits for 64-bit,
* but for now this can simply use vmalloc_user() directly.
*/
return vmalloc_user(size);
}
EXPORT_SYMBOL(vmalloc_32_user);
void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
{
BUG();
return NULL;
}
EXPORT_SYMBOL(vmap);
void vunmap(const void *addr)
{
BUG();
}
EXPORT_SYMBOL(vunmap);
void *vm_map_ram(struct page **pages, unsigned int count, int node)
{
BUG();
return NULL;
}
EXPORT_SYMBOL(vm_map_ram);
void vm_unmap_ram(const void *mem, unsigned int count)
{
BUG();
}
EXPORT_SYMBOL(vm_unmap_ram);
void vm_unmap_aliases(void)
{
}
EXPORT_SYMBOL_GPL(vm_unmap_aliases);
void free_vm_area(struct vm_struct *area)
{
BUG();
}
EXPORT_SYMBOL_GPL(free_vm_area);
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page)
{
return -EINVAL;
}
EXPORT_SYMBOL(vm_insert_page);
int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
unsigned long num)
{
return -EINVAL;
}
EXPORT_SYMBOL(vm_map_pages);
int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
unsigned long num)
{
return -EINVAL;
}
EXPORT_SYMBOL(vm_map_pages_zero);
/*
* sys_brk() for the most part doesn't need the global kernel
* lock, except when an application is doing something nasty
* like trying to un-brk an area that has already been mapped
* to a regular file. in this case, the unmapping will need
* to invoke file system routines that need the global lock.
*/
SYSCALL_DEFINE1(brk, unsigned long, brk)
{
struct mm_struct *mm = current->mm;
if (brk < mm->start_brk || brk > mm->context.end_brk)
return mm->brk;
if (mm->brk == brk)
return mm->brk;
/*
* Always allow shrinking brk
*/
if (brk <= mm->brk) {
mm->brk = brk;
return brk;
}
/*
* Ok, looks good - let it rip.
*/
flush_icache_user_range(mm->brk, brk);
return mm->brk = brk;
}
/*
* initialise the percpu counter for VM and region record slabs
*/
void __init mmap_init(void)
{
int ret;
ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
VM_BUG_ON(ret);
vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
}
/*
* validate the region tree
* - the caller must hold the region lock
*/
#ifdef CONFIG_DEBUG_NOMMU_REGIONS
static noinline void validate_nommu_regions(void)
{
struct vm_region *region, *last;
struct rb_node *p, *lastp;
lastp = rb_first(&nommu_region_tree);
if (!lastp)
return;
last = rb_entry(lastp, struct vm_region, vm_rb);
BUG_ON(last->vm_end <= last->vm_start);
BUG_ON(last->vm_top < last->vm_end);
while ((p = rb_next(lastp))) {
region = rb_entry(p, struct vm_region, vm_rb);
last = rb_entry(lastp, struct vm_region, vm_rb);
BUG_ON(region->vm_end <= region->vm_start);
BUG_ON(region->vm_top < region->vm_end);
BUG_ON(region->vm_start < last->vm_top);
lastp = p;
}
}
#else
static void validate_nommu_regions(void)
{
}
#endif
/*
* add a region into the global tree
*/
static void add_nommu_region(struct vm_region *region)
{
struct vm_region *pregion;
struct rb_node **p, *parent;
validate_nommu_regions();
parent = NULL;
p = &nommu_region_tree.rb_node;
while (*p) {
parent = *p;
pregion = rb_entry(parent, struct vm_region, vm_rb);
if (region->vm_start < pregion->vm_start)
p = &(*p)->rb_left;
else if (region->vm_start > pregion->vm_start)
p = &(*p)->rb_right;
else if (pregion == region)
return;
else
BUG();
}
rb_link_node(&region->vm_rb, parent, p);
rb_insert_color(&region->vm_rb, &nommu_region_tree);
validate_nommu_regions();
}
/*
* delete a region from the global tree
*/
static void delete_nommu_region(struct vm_region *region)
{
BUG_ON(!nommu_region_tree.rb_node);
validate_nommu_regions();
rb_erase(&region->vm_rb, &nommu_region_tree);
validate_nommu_regions();
}
/*
* free a contiguous series of pages
*/
static void free_page_series(unsigned long from, unsigned long to)
{
for (; from < to; from += PAGE_SIZE) {
struct page *page = virt_to_page((void *)from);
atomic_long_dec(&mmap_pages_allocated);
put_page(page);
}
}
/*
* release a reference to a region
* - the caller must hold the region semaphore for writing, which this releases
* - the region may not have been added to the tree yet, in which case vm_top
* will equal vm_start
*/
static void __put_nommu_region(struct vm_region *region)
__releases(nommu_region_sem)
{
BUG_ON(!nommu_region_tree.rb_node);
if (--region->vm_usage == 0) {
if (region->vm_top > region->vm_start)
delete_nommu_region(region);
up_write(&nommu_region_sem);
if (region->vm_file)
fput(region->vm_file);
/* IO memory and memory shared directly out of the pagecache
* from ramfs/tmpfs mustn't be released here */
if (region->vm_flags & VM_MAPPED_COPY)
free_page_series(region->vm_start, region->vm_top);
kmem_cache_free(vm_region_jar, region);
} else {
up_write(&nommu_region_sem);
}
}
/*
* release a reference to a region
*/
static void put_nommu_region(struct vm_region *region)
{
down_write(&nommu_region_sem);
__put_nommu_region(region);
}
void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
{
mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
mas_store_prealloc(mas, vma);
}
void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
{
mas->index = vma->vm_start;
mas->last = vma->vm_end - 1;
mas_store_prealloc(mas, NULL);
}
static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
{
vma->vm_mm = mm;
/* add the VMA to the mapping */
if (vma->vm_file) {
struct address_space *mapping = vma->vm_file->f_mapping;
i_mmap_lock_write(mapping);
flush_dcache_mmap_lock(mapping);
vma_interval_tree_insert(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
i_mmap_unlock_write(mapping);
}
}
/*
* mas_add_vma_to_mm() - Maple state variant of add_mas_to_mm().
* @mas: The maple state with preallocations.
* @mm: The mm_struct
* @vma: The vma to add
*
*/
static void mas_add_vma_to_mm(struct ma_state *mas, struct mm_struct *mm,
struct vm_area_struct *vma)
{
BUG_ON(!vma->vm_region);
setup_vma_to_mm(vma, mm);
mm->map_count++;
/* add the VMA to the tree */
vma_mas_store(vma, mas);
}
/*
* add a VMA into a process's mm_struct in the appropriate place in the list
* and tree and add to the address space's page tree also if not an anonymous
* page
* - should be called with mm->mmap_lock held writelocked
*/
static int add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
{
MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end);
if (mas_preallocate(&mas, GFP_KERNEL)) {
pr_warn("Allocation of vma tree for process %d failed\n",
current->pid);
return -ENOMEM;
}
mas_add_vma_to_mm(&mas, mm, vma);
return 0;
}
static void cleanup_vma_from_mm(struct vm_area_struct *vma)
{
vma->vm_mm->map_count--;
/* remove the VMA from the mapping */
if (vma->vm_file) {
struct address_space *mapping;
mapping = vma->vm_file->f_mapping;
i_mmap_lock_write(mapping);
flush_dcache_mmap_lock(mapping);
vma_interval_tree_remove(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
i_mmap_unlock_write(mapping);
}
}
/*
* delete a VMA from its owning mm_struct and address space
*/
static int delete_vma_from_mm(struct vm_area_struct *vma)
{
MA_STATE(mas, &vma->vm_mm->mm_mt, 0, 0);
if (mas_preallocate(&mas, GFP_KERNEL)) {
pr_warn("Allocation of vma tree for process %d failed\n",
current->pid);
return -ENOMEM;
}
cleanup_vma_from_mm(vma);
/* remove from the MM's tree and list */
vma_mas_remove(vma, &mas);
return 0;
}
/*
* destroy a VMA record
*/
static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
{
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (vma->vm_file)
fput(vma->vm_file);
put_nommu_region(vma->vm_region);
vm_area_free(vma);
}
struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
unsigned long start_addr,
unsigned long end_addr)
{
unsigned long index = start_addr;
mmap_assert_locked(mm);
return mt_find(&mm->mm_mt, &index, end_addr - 1);
}
EXPORT_SYMBOL(find_vma_intersection);
/*
* look up the first VMA in which addr resides, NULL if none
* - should be called with mm->mmap_lock at least held readlocked
*/
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
MA_STATE(mas, &mm->mm_mt, addr, addr);
return mas_walk(&mas);
}
EXPORT_SYMBOL(find_vma);
/*
* find a VMA
* - we don't extend stack VMAs under NOMMU conditions
*/
struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
{
return find_vma(mm, addr);
}
/*
* expand a stack to a given address
* - not supported under NOMMU conditions
*/
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
return -ENOMEM;
}
/*
* look up the first VMA exactly that exactly matches addr
* - should be called with mm->mmap_lock at least held readlocked
*/
static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
unsigned long addr,
unsigned long len)
{
struct vm_area_struct *vma;
unsigned long end = addr + len;
MA_STATE(mas, &mm->mm_mt, addr, addr);
vma = mas_walk(&mas);
if (!vma)
return NULL;
if (vma->vm_start != addr)
return NULL;
if (vma->vm_end != end)
return NULL;
return vma;
}
/*
* determine whether a mapping should be permitted and, if so, what sort of
* mapping we're capable of supporting
*/
static int validate_mmap_request(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long prot,
unsigned long flags,
unsigned long pgoff,
unsigned long *_capabilities)
{
unsigned long capabilities, rlen;
int ret;
/* do the simple checks first */
if (flags & MAP_FIXED)
return -EINVAL;
if ((flags & MAP_TYPE) != MAP_PRIVATE &&
(flags & MAP_TYPE) != MAP_SHARED)
return -EINVAL;
if (!len)
return -EINVAL;
/* Careful about overflows.. */
rlen = PAGE_ALIGN(len);
if (!rlen || rlen > TASK_SIZE)
return -ENOMEM;
/* offset overflow? */
if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
if (file) {
/* files must support mmap */
if (!file->f_op->mmap)
return -ENODEV;
/* work out if what we've got could possibly be shared
* - we support chardevs that provide their own "memory"
* - we support files/blockdevs that are memory backed
*/
if (file->f_op->mmap_capabilities) {
capabilities = file->f_op->mmap_capabilities(file);
} else {
/* no explicit capabilities set, so assume some
* defaults */
switch (file_inode(file)->i_mode & S_IFMT) {
case S_IFREG:
case S_IFBLK:
capabilities = NOMMU_MAP_COPY;
break;
case S_IFCHR:
capabilities =
NOMMU_MAP_DIRECT |
NOMMU_MAP_READ |
NOMMU_MAP_WRITE;
break;
default:
return -EINVAL;
}
}
/* eliminate any capabilities that we can't support on this
* device */
if (!file->f_op->get_unmapped_area)
capabilities &= ~NOMMU_MAP_DIRECT;
if (!(file->f_mode & FMODE_CAN_READ))
capabilities &= ~NOMMU_MAP_COPY;
/* The file shall have been opened with read permission. */
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (flags & MAP_SHARED) {
/* do checks for writing, appending and locking */
if ((prot & PROT_WRITE) &&
!(file->f_mode & FMODE_WRITE))
return -EACCES;
if (IS_APPEND(file_inode(file)) &&
(file->f_mode & FMODE_WRITE))
return -EACCES;
if (!(capabilities & NOMMU_MAP_DIRECT))
return -ENODEV;
/* we mustn't privatise shared mappings */
capabilities &= ~NOMMU_MAP_COPY;
} else {
/* we're going to read the file into private memory we
* allocate */
if (!(capabilities & NOMMU_MAP_COPY))
return -ENODEV;
/* we don't permit a private writable mapping to be
* shared with the backing device */
if (prot & PROT_WRITE)
capabilities &= ~NOMMU_MAP_DIRECT;
}
if (capabilities & NOMMU_MAP_DIRECT) {
if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
) {
capabilities &= ~NOMMU_MAP_DIRECT;
if (flags & MAP_SHARED) {
pr_warn("MAP_SHARED not completely supported on !MMU\n");
return -EINVAL;
}
}
}
/* handle executable mappings and implied executable
* mappings */
if (path_noexec(&file->f_path)) {
if (prot & PROT_EXEC)
return -EPERM;
} else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
/* handle implication of PROT_EXEC by PROT_READ */
if (current->personality & READ_IMPLIES_EXEC) {
if (capabilities & NOMMU_MAP_EXEC)
prot |= PROT_EXEC;
}
} else if ((prot & PROT_READ) &&
(prot & PROT_EXEC) &&
!(capabilities & NOMMU_MAP_EXEC)
) {
/* backing file is not executable, try to copy */
capabilities &= ~NOMMU_MAP_DIRECT;
}
} else {
/* anonymous mappings are always memory backed and can be
* privately mapped
*/
capabilities = NOMMU_MAP_COPY;
/* handle PROT_EXEC implication by PROT_READ */
if ((prot & PROT_READ) &&
(current->personality & READ_IMPLIES_EXEC))
prot |= PROT_EXEC;
}
/* allow the security API to have its say */
ret = security_mmap_addr(addr);
if (ret < 0)
return ret;
/* looks okay */
*_capabilities = capabilities;
return 0;
}
/*
* we've determined that we can make the mapping, now translate what we
* now know into VMA flags
*/
static unsigned long determine_vm_flags(struct file *file,
unsigned long prot,
unsigned long flags,
unsigned long capabilities)
{
unsigned long vm_flags;
vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
if (!file) {
/*
* MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
* there is no fork().
*/
vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
} else if (flags & MAP_PRIVATE) {
/* MAP_PRIVATE file mapping */
if (capabilities & NOMMU_MAP_DIRECT)
vm_flags |= (capabilities & NOMMU_VMFLAGS);
else
vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
if (!(prot & PROT_WRITE) && !current->ptrace)
/*
* R/O private file mapping which cannot be used to
* modify memory, especially also not via active ptrace
* (e.g., set breakpoints) or later by upgrading
* permissions (no mprotect()). We can try overlaying
* the file mapping, which will work e.g., on chardevs,
* ramfs/tmpfs/shmfs and romfs/cramf.
*/
vm_flags |= VM_MAYOVERLAY;
} else {
/* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
vm_flags |= VM_SHARED | VM_MAYSHARE |
(capabilities & NOMMU_VMFLAGS);
}
return vm_flags;
}
/*
* set up a shared mapping on a file (the driver or filesystem provides and
* pins the storage)
*/
static int do_mmap_shared_file(struct vm_area_struct *vma)
{
int ret;
ret = call_mmap(vma->vm_file, vma);
if (ret == 0) {
vma->vm_region->vm_top = vma->vm_region->vm_end;
return 0;
}
if (ret != -ENOSYS)
return ret;
/* getting -ENOSYS indicates that direct mmap isn't possible (as
* opposed to tried but failed) so we can only give a suitable error as
* it's not possible to make a private copy if MAP_SHARED was given */
return -ENODEV;
}
/*
* set up a private mapping or an anonymous shared mapping
*/
static int do_mmap_private(struct vm_area_struct *vma,
struct vm_region *region,
unsigned long len,
unsigned long capabilities)
{
unsigned long total, point;
void *base;
int ret, order;
/*
* Invoke the file's mapping function so that it can keep track of
* shared mappings on devices or memory. VM_MAYOVERLAY will be set if
* it may attempt to share, which will make is_nommu_shared_mapping()
* happy.
*/
if (capabilities & NOMMU_MAP_DIRECT) {
ret = call_mmap(vma->vm_file, vma);
/* shouldn't return success if we're not sharing */
if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
ret = -ENOSYS;
if (ret == 0) {
vma->vm_region->vm_top = vma->vm_region->vm_end;
return 0;
}
if (ret != -ENOSYS)
return ret;
/* getting an ENOSYS error indicates that direct mmap isn't
* possible (as opposed to tried but failed) so we'll try to
* make a private copy of the data and map that instead */
}
/* allocate some memory to hold the mapping
* - note that this may not return a page-aligned address if the object
* we're allocating is smaller than a page
*/
order = get_order(len);
total = 1 << order;
point = len >> PAGE_SHIFT;
/* we don't want to allocate a power-of-2 sized page set */
if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
total = point;
base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
if (!base)
goto enomem;
atomic_long_add(total, &mmap_pages_allocated);
region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
region->vm_start = (unsigned long) base;
region->vm_end = region->vm_start + len;
region->vm_top = region->vm_start + (total << PAGE_SHIFT);
vma->vm_start = region->vm_start;
vma->vm_end = region->vm_start + len;
if (vma->vm_file) {
/* read the contents of a file into the copy */
loff_t fpos;
fpos = vma->vm_pgoff;
fpos <<= PAGE_SHIFT;
ret = kernel_read(vma->vm_file, base, len, &fpos);
if (ret < 0)
goto error_free;
/* clear the last little bit */
if (ret < len)
memset(base + ret, 0, len - ret);
} else {
vma_set_anonymous(vma);
}
return 0;
error_free:
free_page_series(region->vm_start, region->vm_top);
region->vm_start = vma->vm_start = 0;
region->vm_end = vma->vm_end = 0;
region->vm_top = 0;
return ret;
enomem:
pr_err("Allocation of length %lu from process %d (%s) failed\n",
len, current->pid, current->comm);
show_free_areas(0, NULL);
return -ENOMEM;
}
/*
* handle mapping creation for uClinux
*/
unsigned long do_mmap(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long prot,
unsigned long flags,
unsigned long pgoff,
unsigned long *populate,
struct list_head *uf)
{
struct vm_area_struct *vma;
struct vm_region *region;
struct rb_node *rb;
vm_flags_t vm_flags;
unsigned long capabilities, result;
int ret;
MA_STATE(mas, &current->mm->mm_mt, 0, 0);
*populate = 0;
/* decide whether we should attempt the mapping, and if so what sort of
* mapping */
ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
&capabilities);
if (ret < 0)
return ret;
/* we ignore the address hint */
addr = 0;
len = PAGE_ALIGN(len);
/* we've determined that we can make the mapping, now translate what we
* now know into VMA flags */
vm_flags = determine_vm_flags(file, prot, flags, capabilities);
/* we're going to need to record the mapping */
region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
if (!region)
goto error_getting_region;
vma = vm_area_alloc(current->mm);
if (!vma)
goto error_getting_vma;
if (mas_preallocate(&mas, GFP_KERNEL))
goto error_maple_preallocate;
region->vm_usage = 1;
region->vm_flags = vm_flags;
region->vm_pgoff = pgoff;
vma->vm_flags = vm_flags;
vma->vm_pgoff = pgoff;
if (file) {
region->vm_file = get_file(file);
vma->vm_file = get_file(file);
}
down_write(&nommu_region_sem);
/* if we want to share, we need to check for regions created by other
* mmap() calls that overlap with our proposed mapping
* - we can only share with a superset match on most regular files
* - shared mappings on character devices and memory backed files are
* permitted to overlap inexactly as far as we are concerned for in
* these cases, sharing is handled in the driver or filesystem rather
* than here
*/
if (is_nommu_shared_mapping(vm_flags)) {
struct vm_region *pregion;
unsigned long pglen, rpglen, pgend, rpgend, start;
pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
pgend = pgoff + pglen;
for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
pregion = rb_entry(rb, struct vm_region, vm_rb);
if (!is_nommu_shared_mapping(pregion->vm_flags))
continue;
/* search for overlapping mappings on the same file */
if (file_inode(pregion->vm_file) !=
file_inode(file))
continue;
if (pregion->vm_pgoff >= pgend)
continue;
rpglen = pregion->vm_end - pregion->vm_start;
rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
rpgend = pregion->vm_pgoff + rpglen;
if (pgoff >= rpgend)
continue;
/* handle inexactly overlapping matches between
* mappings */
if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
!(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
/* new mapping is not a subset of the region */
if (!(capabilities & NOMMU_MAP_DIRECT))
goto sharing_violation;
continue;
}
/* we've found a region we can share */
pregion->vm_usage++;
vma->vm_region = pregion;
start = pregion->vm_start;
start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
vma->vm_start = start;
vma->vm_end = start + len;
if (pregion->vm_flags & VM_MAPPED_COPY)
vma->vm_flags |= VM_MAPPED_COPY;
else {
ret = do_mmap_shared_file(vma);
if (ret < 0) {
vma->vm_region = NULL;
vma->vm_start = 0;
vma->vm_end = 0;
pregion->vm_usage--;
pregion = NULL;
goto error_just_free;
}
}
fput(region->vm_file);
kmem_cache_free(vm_region_jar, region);
region = pregion;
result = start;
goto share;
}
/* obtain the address at which to make a shared mapping
* - this is the hook for quasi-memory character devices to
* tell us the location of a shared mapping
*/
if (capabilities & NOMMU_MAP_DIRECT) {
addr = file->f_op->get_unmapped_area(file, addr, len,
pgoff, flags);
if (IS_ERR_VALUE(addr)) {
ret = addr;
if (ret != -ENOSYS)
goto error_just_free;
/* the driver refused to tell us where to site
* the mapping so we'll have to attempt to copy
* it */
ret = -ENODEV;
if (!(capabilities & NOMMU_MAP_COPY))
goto error_just_free;
capabilities &= ~NOMMU_MAP_DIRECT;
} else {
vma->vm_start = region->vm_start = addr;
vma->vm_end = region->vm_end = addr + len;
}
}
}
vma->vm_region = region;
/* set up the mapping
* - the region is filled in if NOMMU_MAP_DIRECT is still set
*/
if (file && vma->vm_flags & VM_SHARED)
ret = do_mmap_shared_file(vma);
else
ret = do_mmap_private(vma, region, len, capabilities);
if (ret < 0)
goto error_just_free;
add_nommu_region(region);
/* clear anonymous mappings that don't ask for uninitialized data */
if (!vma->vm_file &&
(!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
!(flags & MAP_UNINITIALIZED)))
memset((void *)region->vm_start, 0,
region->vm_end - region->vm_start);
/* okay... we have a mapping; now we have to register it */
result = vma->vm_start;
current->mm->total_vm += len >> PAGE_SHIFT;
share:
mas_add_vma_to_mm(&mas, current->mm, vma);
/* we flush the region from the icache only when the first executable
* mapping of it is made */
if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
flush_icache_user_range(region->vm_start, region->vm_end);
region->vm_icache_flushed = true;
}
up_write(&nommu_region_sem);
return result;
error_just_free:
up_write(&nommu_region_sem);
error:
mas_destroy(&mas);
if (region->vm_file)
fput(region->vm_file);
kmem_cache_free(vm_region_jar, region);
if (vma->vm_file)
fput(vma->vm_file);
vm_area_free(vma);
return ret;
sharing_violation:
up_write(&nommu_region_sem);
pr_warn("Attempt to share mismatched mappings\n");
ret = -EINVAL;
goto error;
error_getting_vma:
kmem_cache_free(vm_region_jar, region);
pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
len, current->pid);
show_free_areas(0, NULL);
return -ENOMEM;
error_getting_region:
pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
len, current->pid);
show_free_areas(0, NULL);
return -ENOMEM;
error_maple_preallocate:
kmem_cache_free(vm_region_jar, region);
vm_area_free(vma);
pr_warn("Allocation of vma tree for process %d failed\n", current->pid);
show_free_areas(0, NULL);
return -ENOMEM;
}
unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
unsigned long prot, unsigned long flags,
unsigned long fd, unsigned long pgoff)
{
struct file *file = NULL;
unsigned long retval = -EBADF;
audit_mmap_fd(fd, flags);
if (!(flags & MAP_ANONYMOUS)) {
file = fget(fd);
if (!file)
goto out;
}
retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
if (file)
fput(file);
out:
return retval;
}
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, pgoff)
{
return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
}
#ifdef __ARCH_WANT_SYS_OLD_MMAP
struct mmap_arg_struct {
unsigned long addr;
unsigned long len;
unsigned long prot;
unsigned long flags;
unsigned long fd;
unsigned long offset;
};
SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
{
struct mmap_arg_struct a;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
if (offset_in_page(a.offset))
return -EINVAL;
return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
a.offset >> PAGE_SHIFT);
}
#endif /* __ARCH_WANT_SYS_OLD_MMAP */
/*
* split a vma into two pieces at address 'addr', a new vma is allocated either
* for the first part or the tail.
*/
int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, int new_below)
{
struct vm_area_struct *new;
struct vm_region *region;
unsigned long npages;
MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_end);
/* we're only permitted to split anonymous regions (these should have
* only a single usage on the region) */
if (vma->vm_file)
return -ENOMEM;
mm = vma->vm_mm;
if (mm->map_count >= sysctl_max_map_count)
return -ENOMEM;
region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
if (!region)
return -ENOMEM;
new = vm_area_dup(vma);
if (!new)
goto err_vma_dup;
if (mas_preallocate(&mas, GFP_KERNEL)) {
pr_warn("Allocation of vma tree for process %d failed\n",
current->pid);
goto err_mas_preallocate;
}
/* most fields are the same, copy all, and then fixup */
*region = *vma->vm_region;
new->vm_region = region;
npages = (addr - vma->vm_start) >> PAGE_SHIFT;
if (new_below) {
region->vm_top = region->vm_end = new->vm_end = addr;
} else {
region->vm_start = new->vm_start = addr;
region->vm_pgoff = new->vm_pgoff += npages;
}
if (new->vm_ops && new->vm_ops->open)
new->vm_ops->open(new);
down_write(&nommu_region_sem);
delete_nommu_region(vma->vm_region);
if (new_below) {
vma->vm_region->vm_start = vma->vm_start = addr;
vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
} else {
vma->vm_region->vm_end = vma->vm_end = addr;
vma->vm_region->vm_top = addr;
}
add_nommu_region(vma->vm_region);
add_nommu_region(new->vm_region);
up_write(&nommu_region_sem);
setup_vma_to_mm(vma, mm);
setup_vma_to_mm(new, mm);
mas_set_range(&mas, vma->vm_start, vma->vm_end - 1);
mas_store(&mas, vma);
vma_mas_store(new, &mas);
mm->map_count++;
return 0;
err_mas_preallocate:
vm_area_free(new);
err_vma_dup:
kmem_cache_free(vm_region_jar, region);
return -ENOMEM;
}
/*
* shrink a VMA by removing the specified chunk from either the beginning or
* the end
*/
static int shrink_vma(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long from, unsigned long to)
{
struct vm_region *region;
/* adjust the VMA's pointers, which may reposition it in the MM's tree
* and list */
if (delete_vma_from_mm(vma))
return -ENOMEM;
if (from > vma->vm_start)
vma->vm_end = from;
else
vma->vm_start = to;
if (add_vma_to_mm(mm, vma))
return -ENOMEM;
/* cut the backing region down to size */
region = vma->vm_region;
BUG_ON(region->vm_usage != 1);
down_write(&nommu_region_sem);
delete_nommu_region(region);
if (from > region->vm_start) {
to = region->vm_top;
region->vm_top = region->vm_end = from;
} else {
region->vm_start = to;
}
add_nommu_region(region);
up_write(&nommu_region_sem);
free_page_series(from, to);
return 0;
}
/*
* release a mapping
* - under NOMMU conditions the chunk to be unmapped must be backed by a single
* VMA, though it need not cover the whole VMA
*/
int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
{
MA_STATE(mas, &mm->mm_mt, start, start);
struct vm_area_struct *vma;
unsigned long end;
int ret = 0;
len = PAGE_ALIGN(len);
if (len == 0)
return -EINVAL;
end = start + len;
/* find the first potentially overlapping VMA */
vma = mas_find(&mas, end - 1);
if (!vma) {
static int limit;
if (limit < 5) {
pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
current->pid, current->comm,
start, start + len - 1);
limit++;
}
return -EINVAL;
}
/* we're allowed to split an anonymous VMA but not a file-backed one */
if (vma->vm_file) {
do {
if (start > vma->vm_start)
return -EINVAL;
if (end == vma->vm_end)
goto erase_whole_vma;
vma = mas_next(&mas, end - 1);
} while (vma);
return -EINVAL;
} else {
/* the chunk must be a subset of the VMA found */
if (start == vma->vm_start && end == vma->vm_end)
goto erase_whole_vma;
if (start < vma->vm_start || end > vma->vm_end)
return -EINVAL;
if (offset_in_page(start))
return -EINVAL;
if (end != vma->vm_end && offset_in_page(end))
return -EINVAL;
if (start != vma->vm_start && end != vma->vm_end) {
ret = split_vma(mm, vma, start, 1);
if (ret < 0)
return ret;
}
return shrink_vma(mm, vma, start, end);
}
erase_whole_vma:
if (delete_vma_from_mm(vma))
ret = -ENOMEM;
else
delete_vma(mm, vma);
return ret;
}
int vm_munmap(unsigned long addr, size_t len)
{
struct mm_struct *mm = current->mm;
int ret;
mmap_write_lock(mm);
ret = do_munmap(mm, addr, len, NULL);
mmap_write_unlock(mm);
return ret;
}
EXPORT_SYMBOL(vm_munmap);
SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
{
return vm_munmap(addr, len);
}
/*
* release all the mappings made in a process's VM space
*/
void exit_mmap(struct mm_struct *mm)
{
VMA_ITERATOR(vmi, mm, 0);
struct vm_area_struct *vma;
if (!mm)
return;
mm->total_vm = 0;
/*
* Lock the mm to avoid assert complaining even though this is the only
* user of the mm
*/
mmap_write_lock(mm);
for_each_vma(vmi, vma) {
cleanup_vma_from_mm(vma);
delete_vma(mm, vma);
cond_resched();
}
__mt_destroy(&mm->mm_mt);
mmap_write_unlock(mm);
}
int vm_brk(unsigned long addr, unsigned long len)
{
return -ENOMEM;
}
/*
* expand (or shrink) an existing mapping, potentially moving it at the same
* time (controlled by the MREMAP_MAYMOVE flag and available VM space)
*
* under NOMMU conditions, we only permit changing a mapping's size, and only
* as long as it stays within the region allocated by do_mmap_private() and the
* block is not shareable
*
* MREMAP_FIXED is not supported under NOMMU conditions
*/
static unsigned long do_mremap(unsigned long addr,
unsigned long old_len, unsigned long new_len,
unsigned long flags, unsigned long new_addr)
{
struct vm_area_struct *vma;
/* insanity checks first */
old_len = PAGE_ALIGN(old_len);
new_len = PAGE_ALIGN(new_len);
if (old_len == 0 || new_len == 0)
return (unsigned long) -EINVAL;
if (offset_in_page(addr))
return -EINVAL;
if (flags & MREMAP_FIXED && new_addr != addr)
return (unsigned long) -EINVAL;
vma = find_vma_exact(current->mm, addr, old_len);
if (!vma)
return (unsigned long) -EINVAL;
if (vma->vm_end != vma->vm_start + old_len)
return (unsigned long) -EFAULT;
if (is_nommu_shared_mapping(vma->vm_flags))
return (unsigned long) -EPERM;
if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
return (unsigned long) -ENOMEM;
/* all checks complete - do it */
vma->vm_end = vma->vm_start + new_len;
return vma->vm_start;
}
SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
unsigned long, new_len, unsigned long, flags,
unsigned long, new_addr)
{
unsigned long ret;
mmap_write_lock(current->mm);
ret = do_mremap(addr, old_len, new_len, flags, new_addr);
mmap_write_unlock(current->mm);
return ret;
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags)
{
return NULL;
}
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
if (addr != (pfn << PAGE_SHIFT))
return -EINVAL;
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
return 0;
}
EXPORT_SYMBOL(remap_pfn_range);
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
unsigned long pfn = start >> PAGE_SHIFT;
unsigned long vm_len = vma->vm_end - vma->vm_start;
pfn += vma->vm_pgoff;
return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
unsigned long pgoff)
{
unsigned int size = vma->vm_end - vma->vm_start;
if (!(vma->vm_flags & VM_USERMAP))
return -EINVAL;
vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
vma->vm_end = vma->vm_start + size;
return 0;
}
EXPORT_SYMBOL(remap_vmalloc_range);
vm_fault_t filemap_fault(struct vm_fault *vmf)
{
BUG();
return 0;
}
EXPORT_SYMBOL(filemap_fault);
vm_fault_t filemap_map_pages(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff)
{
BUG();
return 0;
}
EXPORT_SYMBOL(filemap_map_pages);
int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
int len, unsigned int gup_flags)
{
struct vm_area_struct *vma;
int write = gup_flags & FOLL_WRITE;
if (mmap_read_lock_killable(mm))
return 0;
/* the access must start within one of the target process's mappings */
vma = find_vma(mm, addr);
if (vma) {
/* don't overrun this mapping */
if (addr + len >= vma->vm_end)
len = vma->vm_end - addr;
/* only read or write mappings where it is permitted */
if (write && vma->vm_flags & VM_MAYWRITE)
copy_to_user_page(vma, NULL, addr,
(void *) addr, buf, len);
else if (!write && vma->vm_flags & VM_MAYREAD)
copy_from_user_page(vma, NULL, addr,
buf, (void *) addr, len);
else
len = 0;
} else {
len = 0;
}
mmap_read_unlock(mm);
return len;
}
/**
* access_remote_vm - access another process' address space
* @mm: the mm_struct of the target address space
* @addr: start address to access
* @buf: source or destination buffer
* @len: number of bytes to transfer
* @gup_flags: flags modifying lookup behaviour
*
* The caller must hold a reference on @mm.
*/
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags)
{
return __access_remote_vm(mm, addr, buf, len, gup_flags);
}
/*
* Access another process' address space.
* - source/target buffer must be kernel space
*/
int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
unsigned int gup_flags)
{
struct mm_struct *mm;
if (addr + len < addr)
return 0;
mm = get_task_mm(tsk);
if (!mm)
return 0;
len = __access_remote_vm(mm, addr, buf, len, gup_flags);
mmput(mm);
return len;
}
EXPORT_SYMBOL_GPL(access_process_vm);
/**
* nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
* @inode: The inode to check
* @size: The current filesize of the inode
* @newsize: The proposed filesize of the inode
*
* Check the shared mappings on an inode on behalf of a shrinking truncate to
* make sure that any outstanding VMAs aren't broken and then shrink the
* vm_regions that extend beyond so that do_mmap() doesn't
* automatically grant mappings that are too large.
*/
int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
size_t newsize)
{
struct vm_area_struct *vma;
struct vm_region *region;
pgoff_t low, high;
size_t r_size, r_top;
low = newsize >> PAGE_SHIFT;
high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
down_write(&nommu_region_sem);
i_mmap_lock_read(inode->i_mapping);
/* search for VMAs that fall within the dead zone */
vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
/* found one - only interested if it's shared out of the page
* cache */
if (vma->vm_flags & VM_SHARED) {
i_mmap_unlock_read(inode->i_mapping);
up_write(&nommu_region_sem);
return -ETXTBSY; /* not quite true, but near enough */
}
}
/* reduce any regions that overlap the dead zone - if in existence,
* these will be pointed to by VMAs that don't overlap the dead zone
*
* we don't check for any regions that start beyond the EOF as there
* shouldn't be any
*/
vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
if (!(vma->vm_flags & VM_SHARED))
continue;
region = vma->vm_region;
r_size = region->vm_top - region->vm_start;
r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
if (r_top > newsize) {
region->vm_top -= r_top - newsize;
if (region->vm_end > region->vm_top)
region->vm_end = region->vm_top;
}
}
i_mmap_unlock_read(inode->i_mapping);
up_write(&nommu_region_sem);
return 0;
}
/*
* Initialise sysctl_user_reserve_kbytes.
*
* This is intended to prevent a user from starting a single memory hogging
* process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
* mode.
*
* The default value is min(3% of free memory, 128MB)
* 128MB is enough to recover with sshd/login, bash, and top/kill.
*/
static int __meminit init_user_reserve(void)
{
unsigned long free_kbytes;
free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
return 0;
}
subsys_initcall(init_user_reserve);
/*
* Initialise sysctl_admin_reserve_kbytes.
*
* The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
* to log in and kill a memory hogging process.
*
* Systems with more than 256MB will reserve 8MB, enough to recover
* with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
* only reserve 3% of free pages by default.
*/
static int __meminit init_admin_reserve(void)
{
unsigned long free_kbytes;
free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
return 0;
}
subsys_initcall(init_admin_reserve);