mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 12:11:40 +00:00
6d335233fe
The atomic file exchange-range functionality is now a permanent filesystem feature instead of a dynamic log-incompat feature. It cannot be turned on at runtime, so we no longer need the XCHK_FSGATES flags and whatnot that supported it. Remove the flag and the enable function, and move the xfs_has_exchange_range checks to the start of the repair functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
313 lines
9.4 KiB
C
313 lines
9.4 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2017-2023 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <djwong@kernel.org>
|
|
*/
|
|
#ifndef __XFS_SCRUB_SCRUB_H__
|
|
#define __XFS_SCRUB_SCRUB_H__
|
|
|
|
struct xfs_scrub;
|
|
|
|
struct xchk_relax {
|
|
unsigned long next_resched;
|
|
unsigned int resched_nr;
|
|
bool interruptible;
|
|
};
|
|
|
|
/* Yield to the scheduler at most 10x per second. */
|
|
#define XCHK_RELAX_NEXT (jiffies + (HZ / 10))
|
|
|
|
#define INIT_XCHK_RELAX \
|
|
(struct xchk_relax){ \
|
|
.next_resched = XCHK_RELAX_NEXT, \
|
|
.resched_nr = 0, \
|
|
.interruptible = true, \
|
|
}
|
|
|
|
/*
|
|
* Relax during a scrub operation and exit if there's a fatal signal pending.
|
|
*
|
|
* If preemption is disabled, we need to yield to the scheduler every now and
|
|
* then so that we don't run afoul of the soft lockup watchdog or RCU stall
|
|
* detector. cond_resched calls are somewhat expensive (~5ns) so we want to
|
|
* ratelimit this to 10x per second. Amortize the cost of the other checks by
|
|
* only doing it once every 100 calls.
|
|
*/
|
|
static inline int xchk_maybe_relax(struct xchk_relax *widget)
|
|
{
|
|
/* Amortize the cost of scheduling and checking signals. */
|
|
if (likely(++widget->resched_nr < 100))
|
|
return 0;
|
|
widget->resched_nr = 0;
|
|
|
|
if (unlikely(widget->next_resched <= jiffies)) {
|
|
cond_resched();
|
|
widget->next_resched = XCHK_RELAX_NEXT;
|
|
}
|
|
|
|
if (widget->interruptible && fatal_signal_pending(current))
|
|
return -EINTR;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Standard flags for allocating memory within scrub. NOFS context is
|
|
* configured by the process allocation scope. Scrub and repair must be able
|
|
* to back out gracefully if there isn't enough memory. Force-cast to avoid
|
|
* complaints from static checkers.
|
|
*/
|
|
#define XCHK_GFP_FLAGS ((__force gfp_t)(GFP_KERNEL | __GFP_NOWARN | \
|
|
__GFP_RETRY_MAYFAIL))
|
|
|
|
/*
|
|
* For opening files by handle for fsck operations, we don't trust the inumber
|
|
* or the allocation state; therefore, perform an untrusted lookup. We don't
|
|
* want these inodes to pollute the cache, so mark them for immediate removal.
|
|
*/
|
|
#define XCHK_IGET_FLAGS (XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE)
|
|
|
|
/* Type info and names for the scrub types. */
|
|
enum xchk_type {
|
|
ST_NONE = 1, /* disabled */
|
|
ST_PERAG, /* per-AG metadata */
|
|
ST_FS, /* per-FS metadata */
|
|
ST_INODE, /* per-inode metadata */
|
|
};
|
|
|
|
struct xchk_meta_ops {
|
|
/* Acquire whatever resources are needed for the operation. */
|
|
int (*setup)(struct xfs_scrub *sc);
|
|
|
|
/* Examine metadata for errors. */
|
|
int (*scrub)(struct xfs_scrub *);
|
|
|
|
/* Repair or optimize the metadata. */
|
|
int (*repair)(struct xfs_scrub *);
|
|
|
|
/*
|
|
* Re-scrub the metadata we repaired, in case there's extra work that
|
|
* we need to do to check our repair work. If this is NULL, we'll use
|
|
* the ->scrub function pointer, assuming that the regular scrub is
|
|
* sufficient.
|
|
*/
|
|
int (*repair_eval)(struct xfs_scrub *sc);
|
|
|
|
/* Decide if we even have this piece of metadata. */
|
|
bool (*has)(struct xfs_mount *);
|
|
|
|
/* type describing required/allowed inputs */
|
|
enum xchk_type type;
|
|
};
|
|
|
|
/* Buffer pointers and btree cursors for an entire AG. */
|
|
struct xchk_ag {
|
|
struct xfs_perag *pag;
|
|
|
|
/* AG btree roots */
|
|
struct xfs_buf *agf_bp;
|
|
struct xfs_buf *agi_bp;
|
|
|
|
/* AG btrees */
|
|
struct xfs_btree_cur *bno_cur;
|
|
struct xfs_btree_cur *cnt_cur;
|
|
struct xfs_btree_cur *ino_cur;
|
|
struct xfs_btree_cur *fino_cur;
|
|
struct xfs_btree_cur *rmap_cur;
|
|
struct xfs_btree_cur *refc_cur;
|
|
};
|
|
|
|
struct xfs_scrub {
|
|
/* General scrub state. */
|
|
struct xfs_mount *mp;
|
|
struct xfs_scrub_metadata *sm;
|
|
const struct xchk_meta_ops *ops;
|
|
struct xfs_trans *tp;
|
|
|
|
/* File that scrub was called with. */
|
|
struct file *file;
|
|
|
|
/*
|
|
* File that is undergoing the scrub operation. This can differ from
|
|
* the file that scrub was called with if we're checking file-based fs
|
|
* metadata (e.g. rt bitmaps) or if we're doing a scrub-by-handle for
|
|
* something that can't be opened directly (e.g. symlinks).
|
|
*/
|
|
struct xfs_inode *ip;
|
|
|
|
/* Kernel memory buffer used by scrubbers; freed at teardown. */
|
|
void *buf;
|
|
|
|
/*
|
|
* Clean up resources owned by whatever is in the buffer. Cleanup can
|
|
* be deferred with this hook as a means for scrub functions to pass
|
|
* data to repair functions. This function must not free the buffer
|
|
* itself.
|
|
*/
|
|
void (*buf_cleanup)(void *buf);
|
|
|
|
/* xfile used by the scrubbers; freed at teardown. */
|
|
struct xfile *xfile;
|
|
|
|
/* buffer target for in-memory btrees; also freed at teardown. */
|
|
struct xfs_buftarg *xmbtp;
|
|
|
|
/* Lock flags for @ip. */
|
|
uint ilock_flags;
|
|
|
|
/* The orphanage, for stashing files that have lost their parent. */
|
|
uint orphanage_ilock_flags;
|
|
struct xfs_inode *orphanage;
|
|
|
|
/* A temporary file on this filesystem, for staging new metadata. */
|
|
struct xfs_inode *tempip;
|
|
uint temp_ilock_flags;
|
|
|
|
/* See the XCHK/XREP state flags below. */
|
|
unsigned int flags;
|
|
|
|
/*
|
|
* The XFS_SICK_* flags that correspond to the metadata being scrubbed
|
|
* or repaired. We will use this mask to update the in-core fs health
|
|
* status with whatever we find.
|
|
*/
|
|
unsigned int sick_mask;
|
|
|
|
/* next time we want to cond_resched() */
|
|
struct xchk_relax relax;
|
|
|
|
/* State tracking for single-AG operations. */
|
|
struct xchk_ag sa;
|
|
};
|
|
|
|
/* XCHK state flags grow up from zero, XREP state flags grown down from 2^31 */
|
|
#define XCHK_TRY_HARDER (1U << 0) /* can't get resources, try again */
|
|
#define XCHK_HAVE_FREEZE_PROT (1U << 1) /* do we have freeze protection? */
|
|
#define XCHK_FSGATES_DRAIN (1U << 2) /* defer ops draining enabled */
|
|
#define XCHK_NEED_DRAIN (1U << 3) /* scrub needs to drain defer ops */
|
|
#define XCHK_FSGATES_QUOTA (1U << 4) /* quota live update enabled */
|
|
#define XCHK_FSGATES_DIRENTS (1U << 5) /* directory live update enabled */
|
|
#define XCHK_FSGATES_RMAP (1U << 6) /* rmapbt live update enabled */
|
|
#define XREP_RESET_PERAG_RESV (1U << 30) /* must reset AG space reservation */
|
|
#define XREP_ALREADY_FIXED (1U << 31) /* checking our repair work */
|
|
|
|
/*
|
|
* The XCHK_FSGATES* flags reflect functionality in the main filesystem that
|
|
* are only enabled for this particular online fsck. When not in use, the
|
|
* features are gated off via dynamic code patching, which is why the state
|
|
* must be enabled during scrub setup and can only be torn down afterwards.
|
|
*/
|
|
#define XCHK_FSGATES_ALL (XCHK_FSGATES_DRAIN | \
|
|
XCHK_FSGATES_QUOTA | \
|
|
XCHK_FSGATES_DIRENTS | \
|
|
XCHK_FSGATES_RMAP)
|
|
|
|
struct xfs_scrub_subord {
|
|
struct xfs_scrub sc;
|
|
struct xfs_scrub *parent_sc;
|
|
unsigned int old_smtype;
|
|
unsigned int old_smflags;
|
|
};
|
|
|
|
struct xfs_scrub_subord *xchk_scrub_create_subord(struct xfs_scrub *sc,
|
|
unsigned int subtype);
|
|
void xchk_scrub_free_subord(struct xfs_scrub_subord *sub);
|
|
|
|
/*
|
|
* We /could/ terminate a scrub/repair operation early. If we're not
|
|
* in a good place to continue (fatal signal, etc.) then bail out.
|
|
* Note that we're careful not to make any judgements about *error.
|
|
*/
|
|
static inline bool
|
|
xchk_should_terminate(
|
|
struct xfs_scrub *sc,
|
|
int *error)
|
|
{
|
|
if (xchk_maybe_relax(&sc->relax)) {
|
|
if (*error == 0)
|
|
*error = -EINTR;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Metadata scrubbers */
|
|
int xchk_tester(struct xfs_scrub *sc);
|
|
int xchk_superblock(struct xfs_scrub *sc);
|
|
int xchk_agf(struct xfs_scrub *sc);
|
|
int xchk_agfl(struct xfs_scrub *sc);
|
|
int xchk_agi(struct xfs_scrub *sc);
|
|
int xchk_allocbt(struct xfs_scrub *sc);
|
|
int xchk_iallocbt(struct xfs_scrub *sc);
|
|
int xchk_rmapbt(struct xfs_scrub *sc);
|
|
int xchk_refcountbt(struct xfs_scrub *sc);
|
|
int xchk_inode(struct xfs_scrub *sc);
|
|
int xchk_bmap_data(struct xfs_scrub *sc);
|
|
int xchk_bmap_attr(struct xfs_scrub *sc);
|
|
int xchk_bmap_cow(struct xfs_scrub *sc);
|
|
int xchk_directory(struct xfs_scrub *sc);
|
|
int xchk_xattr(struct xfs_scrub *sc);
|
|
int xchk_symlink(struct xfs_scrub *sc);
|
|
int xchk_parent(struct xfs_scrub *sc);
|
|
int xchk_dirtree(struct xfs_scrub *sc);
|
|
#ifdef CONFIG_XFS_RT
|
|
int xchk_rtbitmap(struct xfs_scrub *sc);
|
|
int xchk_rtsummary(struct xfs_scrub *sc);
|
|
#else
|
|
static inline int
|
|
xchk_rtbitmap(struct xfs_scrub *sc)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
static inline int
|
|
xchk_rtsummary(struct xfs_scrub *sc)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_XFS_QUOTA
|
|
int xchk_quota(struct xfs_scrub *sc);
|
|
int xchk_quotacheck(struct xfs_scrub *sc);
|
|
#else
|
|
static inline int
|
|
xchk_quota(struct xfs_scrub *sc)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
static inline int
|
|
xchk_quotacheck(struct xfs_scrub *sc)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
#endif
|
|
int xchk_fscounters(struct xfs_scrub *sc);
|
|
int xchk_nlinks(struct xfs_scrub *sc);
|
|
|
|
/* cross-referencing helpers */
|
|
void xchk_xref_is_used_space(struct xfs_scrub *sc, xfs_agblock_t agbno,
|
|
xfs_extlen_t len);
|
|
void xchk_xref_is_not_inode_chunk(struct xfs_scrub *sc, xfs_agblock_t agbno,
|
|
xfs_extlen_t len);
|
|
void xchk_xref_is_inode_chunk(struct xfs_scrub *sc, xfs_agblock_t agbno,
|
|
xfs_extlen_t len);
|
|
void xchk_xref_is_only_owned_by(struct xfs_scrub *sc, xfs_agblock_t agbno,
|
|
xfs_extlen_t len, const struct xfs_owner_info *oinfo);
|
|
void xchk_xref_is_not_owned_by(struct xfs_scrub *sc, xfs_agblock_t agbno,
|
|
xfs_extlen_t len, const struct xfs_owner_info *oinfo);
|
|
void xchk_xref_has_no_owner(struct xfs_scrub *sc, xfs_agblock_t agbno,
|
|
xfs_extlen_t len);
|
|
void xchk_xref_is_cow_staging(struct xfs_scrub *sc, xfs_agblock_t bno,
|
|
xfs_extlen_t len);
|
|
void xchk_xref_is_not_shared(struct xfs_scrub *sc, xfs_agblock_t bno,
|
|
xfs_extlen_t len);
|
|
void xchk_xref_is_not_cow_staging(struct xfs_scrub *sc, xfs_agblock_t bno,
|
|
xfs_extlen_t len);
|
|
#ifdef CONFIG_XFS_RT
|
|
void xchk_xref_is_used_rt_space(struct xfs_scrub *sc, xfs_rtblock_t rtbno,
|
|
xfs_extlen_t len);
|
|
#else
|
|
# define xchk_xref_is_used_rt_space(sc, rtbno, len) do { } while (0)
|
|
#endif
|
|
|
|
#endif /* __XFS_SCRUB_SCRUB_H__ */
|