mirror of
https://github.com/torvalds/linux.git
synced 2024-11-24 05:02:12 +00:00
af3e9579ec
This reverts commit 4bf7fda4dc
.
It turns out that it was hopelessly naive to think that this would work,
considering that we've always done this. The first machine I actually
tested this on broke at bootup, getting to
Reached target cryptsetup.target - Local Encrypted Volumes.
and then hanging. It's unclear what actually fails, since there's a lot
else going on around that time (eg amdgpu probing also happens around
that same time, but it could be some other random init thing that didn't
complete earlier and just caused the boot to hang at that point).
The expectations that we should default to some unsafe and untested mode
seems entirely unfounded, and the belief that this wouldn't affect
modern systems is clearly entirely false. The machine in question is
about two years old, so it's not exactly shiny, but it's also not some
dusty old museum piece PDP-11 in a closet.
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Garry <john.garry@huawei.com>
Cc: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1689 lines
45 KiB
C
1689 lines
45 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* A fairly generic DMA-API to IOMMU-API glue layer.
|
|
*
|
|
* Copyright (C) 2014-2015 ARM Ltd.
|
|
*
|
|
* based in part on arch/arm/mm/dma-mapping.c:
|
|
* Copyright (C) 2000-2004 Russell King
|
|
*/
|
|
|
|
#include <linux/acpi_iort.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-iommu.h>
|
|
#include <linux/dma-map-ops.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/huge_mm.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/iova.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
struct iommu_dma_msi_page {
|
|
struct list_head list;
|
|
dma_addr_t iova;
|
|
phys_addr_t phys;
|
|
};
|
|
|
|
enum iommu_dma_cookie_type {
|
|
IOMMU_DMA_IOVA_COOKIE,
|
|
IOMMU_DMA_MSI_COOKIE,
|
|
};
|
|
|
|
struct iommu_dma_cookie {
|
|
enum iommu_dma_cookie_type type;
|
|
union {
|
|
/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
|
|
struct {
|
|
struct iova_domain iovad;
|
|
|
|
struct iova_fq __percpu *fq; /* Flush queue */
|
|
/* Number of TLB flushes that have been started */
|
|
atomic64_t fq_flush_start_cnt;
|
|
/* Number of TLB flushes that have been finished */
|
|
atomic64_t fq_flush_finish_cnt;
|
|
/* Timer to regularily empty the flush queues */
|
|
struct timer_list fq_timer;
|
|
/* 1 when timer is active, 0 when not */
|
|
atomic_t fq_timer_on;
|
|
};
|
|
/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
|
|
dma_addr_t msi_iova;
|
|
};
|
|
struct list_head msi_page_list;
|
|
|
|
/* Domain for flush queue callback; NULL if flush queue not in use */
|
|
struct iommu_domain *fq_domain;
|
|
struct mutex mutex;
|
|
};
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
|
|
bool iommu_dma_forcedac __read_mostly;
|
|
|
|
static int __init iommu_dma_forcedac_setup(char *str)
|
|
{
|
|
int ret = kstrtobool(str, &iommu_dma_forcedac);
|
|
|
|
if (!ret && iommu_dma_forcedac)
|
|
pr_info("Forcing DAC for PCI devices\n");
|
|
return ret;
|
|
}
|
|
early_param("iommu.forcedac", iommu_dma_forcedac_setup);
|
|
|
|
/* Number of entries per flush queue */
|
|
#define IOVA_FQ_SIZE 256
|
|
|
|
/* Timeout (in ms) after which entries are flushed from the queue */
|
|
#define IOVA_FQ_TIMEOUT 10
|
|
|
|
/* Flush queue entry for deferred flushing */
|
|
struct iova_fq_entry {
|
|
unsigned long iova_pfn;
|
|
unsigned long pages;
|
|
struct list_head freelist;
|
|
u64 counter; /* Flush counter when this entry was added */
|
|
};
|
|
|
|
/* Per-CPU flush queue structure */
|
|
struct iova_fq {
|
|
struct iova_fq_entry entries[IOVA_FQ_SIZE];
|
|
unsigned int head, tail;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
#define fq_ring_for_each(i, fq) \
|
|
for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
|
|
|
|
static inline bool fq_full(struct iova_fq *fq)
|
|
{
|
|
assert_spin_locked(&fq->lock);
|
|
return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
|
|
}
|
|
|
|
static inline unsigned int fq_ring_add(struct iova_fq *fq)
|
|
{
|
|
unsigned int idx = fq->tail;
|
|
|
|
assert_spin_locked(&fq->lock);
|
|
|
|
fq->tail = (idx + 1) % IOVA_FQ_SIZE;
|
|
|
|
return idx;
|
|
}
|
|
|
|
static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
|
|
{
|
|
u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
|
|
unsigned int idx;
|
|
|
|
assert_spin_locked(&fq->lock);
|
|
|
|
fq_ring_for_each(idx, fq) {
|
|
|
|
if (fq->entries[idx].counter >= counter)
|
|
break;
|
|
|
|
put_pages_list(&fq->entries[idx].freelist);
|
|
free_iova_fast(&cookie->iovad,
|
|
fq->entries[idx].iova_pfn,
|
|
fq->entries[idx].pages);
|
|
|
|
fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
|
|
}
|
|
}
|
|
|
|
static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
|
|
{
|
|
atomic64_inc(&cookie->fq_flush_start_cnt);
|
|
cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
|
|
atomic64_inc(&cookie->fq_flush_finish_cnt);
|
|
}
|
|
|
|
static void fq_flush_timeout(struct timer_list *t)
|
|
{
|
|
struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
|
|
int cpu;
|
|
|
|
atomic_set(&cookie->fq_timer_on, 0);
|
|
fq_flush_iotlb(cookie);
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
unsigned long flags;
|
|
struct iova_fq *fq;
|
|
|
|
fq = per_cpu_ptr(cookie->fq, cpu);
|
|
spin_lock_irqsave(&fq->lock, flags);
|
|
fq_ring_free(cookie, fq);
|
|
spin_unlock_irqrestore(&fq->lock, flags);
|
|
}
|
|
}
|
|
|
|
static void queue_iova(struct iommu_dma_cookie *cookie,
|
|
unsigned long pfn, unsigned long pages,
|
|
struct list_head *freelist)
|
|
{
|
|
struct iova_fq *fq;
|
|
unsigned long flags;
|
|
unsigned int idx;
|
|
|
|
/*
|
|
* Order against the IOMMU driver's pagetable update from unmapping
|
|
* @pte, to guarantee that fq_flush_iotlb() observes that if called
|
|
* from a different CPU before we release the lock below. Full barrier
|
|
* so it also pairs with iommu_dma_init_fq() to avoid seeing partially
|
|
* written fq state here.
|
|
*/
|
|
smp_mb();
|
|
|
|
fq = raw_cpu_ptr(cookie->fq);
|
|
spin_lock_irqsave(&fq->lock, flags);
|
|
|
|
/*
|
|
* First remove all entries from the flush queue that have already been
|
|
* flushed out on another CPU. This makes the fq_full() check below less
|
|
* likely to be true.
|
|
*/
|
|
fq_ring_free(cookie, fq);
|
|
|
|
if (fq_full(fq)) {
|
|
fq_flush_iotlb(cookie);
|
|
fq_ring_free(cookie, fq);
|
|
}
|
|
|
|
idx = fq_ring_add(fq);
|
|
|
|
fq->entries[idx].iova_pfn = pfn;
|
|
fq->entries[idx].pages = pages;
|
|
fq->entries[idx].counter = atomic64_read(&cookie->fq_flush_start_cnt);
|
|
list_splice(freelist, &fq->entries[idx].freelist);
|
|
|
|
spin_unlock_irqrestore(&fq->lock, flags);
|
|
|
|
/* Avoid false sharing as much as possible. */
|
|
if (!atomic_read(&cookie->fq_timer_on) &&
|
|
!atomic_xchg(&cookie->fq_timer_on, 1))
|
|
mod_timer(&cookie->fq_timer,
|
|
jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
|
|
}
|
|
|
|
static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
|
|
{
|
|
int cpu, idx;
|
|
|
|
if (!cookie->fq)
|
|
return;
|
|
|
|
del_timer_sync(&cookie->fq_timer);
|
|
/* The IOVAs will be torn down separately, so just free our queued pages */
|
|
for_each_possible_cpu(cpu) {
|
|
struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
|
|
|
|
fq_ring_for_each(idx, fq)
|
|
put_pages_list(&fq->entries[idx].freelist);
|
|
}
|
|
|
|
free_percpu(cookie->fq);
|
|
}
|
|
|
|
/* sysfs updates are serialised by the mutex of the group owning @domain */
|
|
int iommu_dma_init_fq(struct iommu_domain *domain)
|
|
{
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iova_fq __percpu *queue;
|
|
int i, cpu;
|
|
|
|
if (cookie->fq_domain)
|
|
return 0;
|
|
|
|
atomic64_set(&cookie->fq_flush_start_cnt, 0);
|
|
atomic64_set(&cookie->fq_flush_finish_cnt, 0);
|
|
|
|
queue = alloc_percpu(struct iova_fq);
|
|
if (!queue) {
|
|
pr_warn("iova flush queue initialization failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct iova_fq *fq = per_cpu_ptr(queue, cpu);
|
|
|
|
fq->head = 0;
|
|
fq->tail = 0;
|
|
|
|
spin_lock_init(&fq->lock);
|
|
|
|
for (i = 0; i < IOVA_FQ_SIZE; i++)
|
|
INIT_LIST_HEAD(&fq->entries[i].freelist);
|
|
}
|
|
|
|
cookie->fq = queue;
|
|
|
|
timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
|
|
atomic_set(&cookie->fq_timer_on, 0);
|
|
/*
|
|
* Prevent incomplete fq state being observable. Pairs with path from
|
|
* __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
|
|
*/
|
|
smp_wmb();
|
|
WRITE_ONCE(cookie->fq_domain, domain);
|
|
return 0;
|
|
}
|
|
|
|
static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
|
|
{
|
|
if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
|
|
return cookie->iovad.granule;
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
|
|
{
|
|
struct iommu_dma_cookie *cookie;
|
|
|
|
cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
|
|
if (cookie) {
|
|
INIT_LIST_HEAD(&cookie->msi_page_list);
|
|
cookie->type = type;
|
|
}
|
|
return cookie;
|
|
}
|
|
|
|
/**
|
|
* iommu_get_dma_cookie - Acquire DMA-API resources for a domain
|
|
* @domain: IOMMU domain to prepare for DMA-API usage
|
|
*/
|
|
int iommu_get_dma_cookie(struct iommu_domain *domain)
|
|
{
|
|
if (domain->iova_cookie)
|
|
return -EEXIST;
|
|
|
|
domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
|
|
if (!domain->iova_cookie)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&domain->iova_cookie->mutex);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* iommu_get_msi_cookie - Acquire just MSI remapping resources
|
|
* @domain: IOMMU domain to prepare
|
|
* @base: Start address of IOVA region for MSI mappings
|
|
*
|
|
* Users who manage their own IOVA allocation and do not want DMA API support,
|
|
* but would still like to take advantage of automatic MSI remapping, can use
|
|
* this to initialise their own domain appropriately. Users should reserve a
|
|
* contiguous IOVA region, starting at @base, large enough to accommodate the
|
|
* number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
|
|
* used by the devices attached to @domain.
|
|
*/
|
|
int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
|
|
{
|
|
struct iommu_dma_cookie *cookie;
|
|
|
|
if (domain->type != IOMMU_DOMAIN_UNMANAGED)
|
|
return -EINVAL;
|
|
|
|
if (domain->iova_cookie)
|
|
return -EEXIST;
|
|
|
|
cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
|
|
if (!cookie)
|
|
return -ENOMEM;
|
|
|
|
cookie->msi_iova = base;
|
|
domain->iova_cookie = cookie;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(iommu_get_msi_cookie);
|
|
|
|
/**
|
|
* iommu_put_dma_cookie - Release a domain's DMA mapping resources
|
|
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
|
|
* iommu_get_msi_cookie()
|
|
*/
|
|
void iommu_put_dma_cookie(struct iommu_domain *domain)
|
|
{
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iommu_dma_msi_page *msi, *tmp;
|
|
|
|
if (!cookie)
|
|
return;
|
|
|
|
if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
|
|
iommu_dma_free_fq(cookie);
|
|
put_iova_domain(&cookie->iovad);
|
|
}
|
|
|
|
list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
|
|
list_del(&msi->list);
|
|
kfree(msi);
|
|
}
|
|
kfree(cookie);
|
|
domain->iova_cookie = NULL;
|
|
}
|
|
|
|
/**
|
|
* iommu_dma_get_resv_regions - Reserved region driver helper
|
|
* @dev: Device from iommu_get_resv_regions()
|
|
* @list: Reserved region list from iommu_get_resv_regions()
|
|
*
|
|
* IOMMU drivers can use this to implement their .get_resv_regions callback
|
|
* for general non-IOMMU-specific reservations. Currently, this covers GICv3
|
|
* ITS region reservation on ACPI based ARM platforms that may require HW MSI
|
|
* reservation.
|
|
*/
|
|
void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
|
|
{
|
|
|
|
if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
|
|
iort_iommu_get_resv_regions(dev, list);
|
|
|
|
}
|
|
EXPORT_SYMBOL(iommu_dma_get_resv_regions);
|
|
|
|
static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
|
|
phys_addr_t start, phys_addr_t end)
|
|
{
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
struct iommu_dma_msi_page *msi_page;
|
|
int i, num_pages;
|
|
|
|
start -= iova_offset(iovad, start);
|
|
num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
|
|
|
|
for (i = 0; i < num_pages; i++) {
|
|
msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
|
|
if (!msi_page)
|
|
return -ENOMEM;
|
|
|
|
msi_page->phys = start;
|
|
msi_page->iova = start;
|
|
INIT_LIST_HEAD(&msi_page->list);
|
|
list_add(&msi_page->list, &cookie->msi_page_list);
|
|
start += iovad->granule;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
|
|
struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
|
|
|
|
return res_a->res->start > res_b->res->start;
|
|
}
|
|
|
|
static int iova_reserve_pci_windows(struct pci_dev *dev,
|
|
struct iova_domain *iovad)
|
|
{
|
|
struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
|
|
struct resource_entry *window;
|
|
unsigned long lo, hi;
|
|
phys_addr_t start = 0, end;
|
|
|
|
resource_list_for_each_entry(window, &bridge->windows) {
|
|
if (resource_type(window->res) != IORESOURCE_MEM)
|
|
continue;
|
|
|
|
lo = iova_pfn(iovad, window->res->start - window->offset);
|
|
hi = iova_pfn(iovad, window->res->end - window->offset);
|
|
reserve_iova(iovad, lo, hi);
|
|
}
|
|
|
|
/* Get reserved DMA windows from host bridge */
|
|
list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
|
|
resource_list_for_each_entry(window, &bridge->dma_ranges) {
|
|
end = window->res->start - window->offset;
|
|
resv_iova:
|
|
if (end > start) {
|
|
lo = iova_pfn(iovad, start);
|
|
hi = iova_pfn(iovad, end);
|
|
reserve_iova(iovad, lo, hi);
|
|
} else if (end < start) {
|
|
/* DMA ranges should be non-overlapping */
|
|
dev_err(&dev->dev,
|
|
"Failed to reserve IOVA [%pa-%pa]\n",
|
|
&start, &end);
|
|
return -EINVAL;
|
|
}
|
|
|
|
start = window->res->end - window->offset + 1;
|
|
/* If window is last entry */
|
|
if (window->node.next == &bridge->dma_ranges &&
|
|
end != ~(phys_addr_t)0) {
|
|
end = ~(phys_addr_t)0;
|
|
goto resv_iova;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iova_reserve_iommu_regions(struct device *dev,
|
|
struct iommu_domain *domain)
|
|
{
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
struct iommu_resv_region *region;
|
|
LIST_HEAD(resv_regions);
|
|
int ret = 0;
|
|
|
|
if (dev_is_pci(dev)) {
|
|
ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
iommu_get_resv_regions(dev, &resv_regions);
|
|
list_for_each_entry(region, &resv_regions, list) {
|
|
unsigned long lo, hi;
|
|
|
|
/* We ARE the software that manages these! */
|
|
if (region->type == IOMMU_RESV_SW_MSI)
|
|
continue;
|
|
|
|
lo = iova_pfn(iovad, region->start);
|
|
hi = iova_pfn(iovad, region->start + region->length - 1);
|
|
reserve_iova(iovad, lo, hi);
|
|
|
|
if (region->type == IOMMU_RESV_MSI)
|
|
ret = cookie_init_hw_msi_region(cookie, region->start,
|
|
region->start + region->length);
|
|
if (ret)
|
|
break;
|
|
}
|
|
iommu_put_resv_regions(dev, &resv_regions);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool dev_is_untrusted(struct device *dev)
|
|
{
|
|
return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
|
|
}
|
|
|
|
static bool dev_use_swiotlb(struct device *dev)
|
|
{
|
|
return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
|
|
}
|
|
|
|
/**
|
|
* iommu_dma_init_domain - Initialise a DMA mapping domain
|
|
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
|
|
* @base: IOVA at which the mappable address space starts
|
|
* @limit: Last address of the IOVA space
|
|
* @dev: Device the domain is being initialised for
|
|
*
|
|
* @base and @limit + 1 should be exact multiples of IOMMU page granularity to
|
|
* avoid rounding surprises. If necessary, we reserve the page at address 0
|
|
* to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
|
|
* any change which could make prior IOVAs invalid will fail.
|
|
*/
|
|
static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
|
|
dma_addr_t limit, struct device *dev)
|
|
{
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
unsigned long order, base_pfn;
|
|
struct iova_domain *iovad;
|
|
int ret;
|
|
|
|
if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
|
|
return -EINVAL;
|
|
|
|
iovad = &cookie->iovad;
|
|
|
|
/* Use the smallest supported page size for IOVA granularity */
|
|
order = __ffs(domain->pgsize_bitmap);
|
|
base_pfn = max_t(unsigned long, 1, base >> order);
|
|
|
|
/* Check the domain allows at least some access to the device... */
|
|
if (domain->geometry.force_aperture) {
|
|
if (base > domain->geometry.aperture_end ||
|
|
limit < domain->geometry.aperture_start) {
|
|
pr_warn("specified DMA range outside IOMMU capability\n");
|
|
return -EFAULT;
|
|
}
|
|
/* ...then finally give it a kicking to make sure it fits */
|
|
base_pfn = max_t(unsigned long, base_pfn,
|
|
domain->geometry.aperture_start >> order);
|
|
}
|
|
|
|
/* start_pfn is always nonzero for an already-initialised domain */
|
|
mutex_lock(&cookie->mutex);
|
|
if (iovad->start_pfn) {
|
|
if (1UL << order != iovad->granule ||
|
|
base_pfn != iovad->start_pfn) {
|
|
pr_warn("Incompatible range for DMA domain\n");
|
|
ret = -EFAULT;
|
|
goto done_unlock;
|
|
}
|
|
|
|
ret = 0;
|
|
goto done_unlock;
|
|
}
|
|
|
|
init_iova_domain(iovad, 1UL << order, base_pfn);
|
|
ret = iova_domain_init_rcaches(iovad);
|
|
if (ret)
|
|
goto done_unlock;
|
|
|
|
/* If the FQ fails we can simply fall back to strict mode */
|
|
if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
|
|
domain->type = IOMMU_DOMAIN_DMA;
|
|
|
|
ret = iova_reserve_iommu_regions(dev, domain);
|
|
|
|
done_unlock:
|
|
mutex_unlock(&cookie->mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
|
|
* page flags.
|
|
* @dir: Direction of DMA transfer
|
|
* @coherent: Is the DMA master cache-coherent?
|
|
* @attrs: DMA attributes for the mapping
|
|
*
|
|
* Return: corresponding IOMMU API page protection flags
|
|
*/
|
|
static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
|
|
unsigned long attrs)
|
|
{
|
|
int prot = coherent ? IOMMU_CACHE : 0;
|
|
|
|
if (attrs & DMA_ATTR_PRIVILEGED)
|
|
prot |= IOMMU_PRIV;
|
|
|
|
switch (dir) {
|
|
case DMA_BIDIRECTIONAL:
|
|
return prot | IOMMU_READ | IOMMU_WRITE;
|
|
case DMA_TO_DEVICE:
|
|
return prot | IOMMU_READ;
|
|
case DMA_FROM_DEVICE:
|
|
return prot | IOMMU_WRITE;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
|
|
size_t size, u64 dma_limit, struct device *dev)
|
|
{
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
unsigned long shift, iova_len, iova = 0;
|
|
|
|
if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
|
|
cookie->msi_iova += size;
|
|
return cookie->msi_iova - size;
|
|
}
|
|
|
|
shift = iova_shift(iovad);
|
|
iova_len = size >> shift;
|
|
|
|
dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
|
|
|
|
if (domain->geometry.force_aperture)
|
|
dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
|
|
|
|
/* Try to get PCI devices a SAC address */
|
|
if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
|
|
iova = alloc_iova_fast(iovad, iova_len,
|
|
DMA_BIT_MASK(32) >> shift, false);
|
|
|
|
if (!iova)
|
|
iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
|
|
true);
|
|
|
|
return (dma_addr_t)iova << shift;
|
|
}
|
|
|
|
static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
|
|
dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
|
|
{
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
|
|
/* The MSI case is only ever cleaning up its most recent allocation */
|
|
if (cookie->type == IOMMU_DMA_MSI_COOKIE)
|
|
cookie->msi_iova -= size;
|
|
else if (gather && gather->queued)
|
|
queue_iova(cookie, iova_pfn(iovad, iova),
|
|
size >> iova_shift(iovad),
|
|
&gather->freelist);
|
|
else
|
|
free_iova_fast(iovad, iova_pfn(iovad, iova),
|
|
size >> iova_shift(iovad));
|
|
}
|
|
|
|
static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
|
|
size_t size)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_dma_domain(dev);
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
size_t iova_off = iova_offset(iovad, dma_addr);
|
|
struct iommu_iotlb_gather iotlb_gather;
|
|
size_t unmapped;
|
|
|
|
dma_addr -= iova_off;
|
|
size = iova_align(iovad, size + iova_off);
|
|
iommu_iotlb_gather_init(&iotlb_gather);
|
|
iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
|
|
|
|
unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
|
|
WARN_ON(unmapped != size);
|
|
|
|
if (!iotlb_gather.queued)
|
|
iommu_iotlb_sync(domain, &iotlb_gather);
|
|
iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
|
|
}
|
|
|
|
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
|
|
size_t size, int prot, u64 dma_mask)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_dma_domain(dev);
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
size_t iova_off = iova_offset(iovad, phys);
|
|
dma_addr_t iova;
|
|
|
|
if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
|
|
iommu_deferred_attach(dev, domain))
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
size = iova_align(iovad, size + iova_off);
|
|
|
|
iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
|
|
if (!iova)
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
|
|
iommu_dma_free_iova(cookie, iova, size, NULL);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
return iova + iova_off;
|
|
}
|
|
|
|
static void __iommu_dma_free_pages(struct page **pages, int count)
|
|
{
|
|
while (count--)
|
|
__free_page(pages[count]);
|
|
kvfree(pages);
|
|
}
|
|
|
|
static struct page **__iommu_dma_alloc_pages(struct device *dev,
|
|
unsigned int count, unsigned long order_mask, gfp_t gfp)
|
|
{
|
|
struct page **pages;
|
|
unsigned int i = 0, nid = dev_to_node(dev);
|
|
|
|
order_mask &= (2U << MAX_ORDER) - 1;
|
|
if (!order_mask)
|
|
return NULL;
|
|
|
|
pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
/* IOMMU can map any pages, so himem can also be used here */
|
|
gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
|
|
|
|
/* It makes no sense to muck about with huge pages */
|
|
gfp &= ~__GFP_COMP;
|
|
|
|
while (count) {
|
|
struct page *page = NULL;
|
|
unsigned int order_size;
|
|
|
|
/*
|
|
* Higher-order allocations are a convenience rather
|
|
* than a necessity, hence using __GFP_NORETRY until
|
|
* falling back to minimum-order allocations.
|
|
*/
|
|
for (order_mask &= (2U << __fls(count)) - 1;
|
|
order_mask; order_mask &= ~order_size) {
|
|
unsigned int order = __fls(order_mask);
|
|
gfp_t alloc_flags = gfp;
|
|
|
|
order_size = 1U << order;
|
|
if (order_mask > order_size)
|
|
alloc_flags |= __GFP_NORETRY;
|
|
page = alloc_pages_node(nid, alloc_flags, order);
|
|
if (!page)
|
|
continue;
|
|
if (order)
|
|
split_page(page, order);
|
|
break;
|
|
}
|
|
if (!page) {
|
|
__iommu_dma_free_pages(pages, i);
|
|
return NULL;
|
|
}
|
|
count -= order_size;
|
|
while (order_size--)
|
|
pages[i++] = page++;
|
|
}
|
|
return pages;
|
|
}
|
|
|
|
/*
|
|
* If size is less than PAGE_SIZE, then a full CPU page will be allocated,
|
|
* but an IOMMU which supports smaller pages might not map the whole thing.
|
|
*/
|
|
static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
|
|
size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
|
|
unsigned long attrs)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_dma_domain(dev);
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
bool coherent = dev_is_dma_coherent(dev);
|
|
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
|
|
unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
|
|
struct page **pages;
|
|
dma_addr_t iova;
|
|
ssize_t ret;
|
|
|
|
if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
|
|
iommu_deferred_attach(dev, domain))
|
|
return NULL;
|
|
|
|
min_size = alloc_sizes & -alloc_sizes;
|
|
if (min_size < PAGE_SIZE) {
|
|
min_size = PAGE_SIZE;
|
|
alloc_sizes |= PAGE_SIZE;
|
|
} else {
|
|
size = ALIGN(size, min_size);
|
|
}
|
|
if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
|
|
alloc_sizes = min_size;
|
|
|
|
count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
|
|
gfp);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
size = iova_align(iovad, size);
|
|
iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
|
|
if (!iova)
|
|
goto out_free_pages;
|
|
|
|
if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
|
|
goto out_free_iova;
|
|
|
|
if (!(ioprot & IOMMU_CACHE)) {
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
|
|
arch_dma_prep_coherent(sg_page(sg), sg->length);
|
|
}
|
|
|
|
ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
|
|
if (ret < 0 || ret < size)
|
|
goto out_free_sg;
|
|
|
|
sgt->sgl->dma_address = iova;
|
|
sgt->sgl->dma_length = size;
|
|
return pages;
|
|
|
|
out_free_sg:
|
|
sg_free_table(sgt);
|
|
out_free_iova:
|
|
iommu_dma_free_iova(cookie, iova, size, NULL);
|
|
out_free_pages:
|
|
__iommu_dma_free_pages(pages, count);
|
|
return NULL;
|
|
}
|
|
|
|
static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
|
|
unsigned long attrs)
|
|
{
|
|
struct page **pages;
|
|
struct sg_table sgt;
|
|
void *vaddr;
|
|
|
|
pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
|
|
attrs);
|
|
if (!pages)
|
|
return NULL;
|
|
*dma_handle = sgt.sgl->dma_address;
|
|
sg_free_table(&sgt);
|
|
vaddr = dma_common_pages_remap(pages, size, prot,
|
|
__builtin_return_address(0));
|
|
if (!vaddr)
|
|
goto out_unmap;
|
|
return vaddr;
|
|
|
|
out_unmap:
|
|
__iommu_dma_unmap(dev, *dma_handle, size);
|
|
__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
|
|
return NULL;
|
|
}
|
|
|
|
static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
|
|
size_t size, enum dma_data_direction dir, gfp_t gfp,
|
|
unsigned long attrs)
|
|
{
|
|
struct dma_sgt_handle *sh;
|
|
|
|
sh = kmalloc(sizeof(*sh), gfp);
|
|
if (!sh)
|
|
return NULL;
|
|
|
|
sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
|
|
PAGE_KERNEL, attrs);
|
|
if (!sh->pages) {
|
|
kfree(sh);
|
|
return NULL;
|
|
}
|
|
return &sh->sgt;
|
|
}
|
|
|
|
static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
|
|
struct sg_table *sgt, enum dma_data_direction dir)
|
|
{
|
|
struct dma_sgt_handle *sh = sgt_handle(sgt);
|
|
|
|
__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
|
|
__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
|
|
sg_free_table(&sh->sgt);
|
|
kfree(sh);
|
|
}
|
|
|
|
static void iommu_dma_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t phys;
|
|
|
|
if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
|
|
return;
|
|
|
|
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_cpu(phys, size, dir);
|
|
|
|
if (is_swiotlb_buffer(dev, phys))
|
|
swiotlb_sync_single_for_cpu(dev, phys, size, dir);
|
|
}
|
|
|
|
static void iommu_dma_sync_single_for_device(struct device *dev,
|
|
dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t phys;
|
|
|
|
if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
|
|
return;
|
|
|
|
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
|
|
if (is_swiotlb_buffer(dev, phys))
|
|
swiotlb_sync_single_for_device(dev, phys, size, dir);
|
|
|
|
if (!dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_device(phys, size, dir);
|
|
}
|
|
|
|
static void iommu_dma_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (dev_use_swiotlb(dev))
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
|
|
sg->length, dir);
|
|
else if (!dev_is_dma_coherent(dev))
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
|
|
}
|
|
|
|
static void iommu_dma_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (dev_use_swiotlb(dev))
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
iommu_dma_sync_single_for_device(dev,
|
|
sg_dma_address(sg),
|
|
sg->length, dir);
|
|
else if (!dev_is_dma_coherent(dev))
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
|
|
}
|
|
|
|
static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
phys_addr_t phys = page_to_phys(page) + offset;
|
|
bool coherent = dev_is_dma_coherent(dev);
|
|
int prot = dma_info_to_prot(dir, coherent, attrs);
|
|
struct iommu_domain *domain = iommu_get_dma_domain(dev);
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
dma_addr_t iova, dma_mask = dma_get_mask(dev);
|
|
|
|
/*
|
|
* If both the physical buffer start address and size are
|
|
* page aligned, we don't need to use a bounce page.
|
|
*/
|
|
if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
|
|
void *padding_start;
|
|
size_t padding_size, aligned_size;
|
|
|
|
if (!is_swiotlb_active(dev)) {
|
|
dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
aligned_size = iova_align(iovad, size);
|
|
phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
|
|
iova_mask(iovad), dir, attrs);
|
|
|
|
if (phys == DMA_MAPPING_ERROR)
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
/* Cleanup the padding area. */
|
|
padding_start = phys_to_virt(phys);
|
|
padding_size = aligned_size;
|
|
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
|
(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
|
|
padding_start += size;
|
|
padding_size -= size;
|
|
}
|
|
|
|
memset(padding_start, 0, padding_size);
|
|
}
|
|
|
|
if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
arch_sync_dma_for_device(phys, size, dir);
|
|
|
|
iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
|
|
if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
|
|
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
|
|
return iova;
|
|
}
|
|
|
|
static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_dma_domain(dev);
|
|
phys_addr_t phys;
|
|
|
|
phys = iommu_iova_to_phys(domain, dma_handle);
|
|
if (WARN_ON(!phys))
|
|
return;
|
|
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
|
|
arch_sync_dma_for_cpu(phys, size, dir);
|
|
|
|
__iommu_dma_unmap(dev, dma_handle, size);
|
|
|
|
if (unlikely(is_swiotlb_buffer(dev, phys)))
|
|
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
|
|
}
|
|
|
|
/*
|
|
* Prepare a successfully-mapped scatterlist to give back to the caller.
|
|
*
|
|
* At this point the segments are already laid out by iommu_dma_map_sg() to
|
|
* avoid individually crossing any boundaries, so we merely need to check a
|
|
* segment's start address to avoid concatenating across one.
|
|
*/
|
|
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
dma_addr_t dma_addr)
|
|
{
|
|
struct scatterlist *s, *cur = sg;
|
|
unsigned long seg_mask = dma_get_seg_boundary(dev);
|
|
unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
|
|
int i, count = 0;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
/* Restore this segment's original unaligned fields first */
|
|
dma_addr_t s_dma_addr = sg_dma_address(s);
|
|
unsigned int s_iova_off = sg_dma_address(s);
|
|
unsigned int s_length = sg_dma_len(s);
|
|
unsigned int s_iova_len = s->length;
|
|
|
|
sg_dma_address(s) = DMA_MAPPING_ERROR;
|
|
sg_dma_len(s) = 0;
|
|
|
|
if (sg_is_dma_bus_address(s)) {
|
|
if (i > 0)
|
|
cur = sg_next(cur);
|
|
|
|
sg_dma_unmark_bus_address(s);
|
|
sg_dma_address(cur) = s_dma_addr;
|
|
sg_dma_len(cur) = s_length;
|
|
sg_dma_mark_bus_address(cur);
|
|
count++;
|
|
cur_len = 0;
|
|
continue;
|
|
}
|
|
|
|
s->offset += s_iova_off;
|
|
s->length = s_length;
|
|
|
|
/*
|
|
* Now fill in the real DMA data. If...
|
|
* - there is a valid output segment to append to
|
|
* - and this segment starts on an IOVA page boundary
|
|
* - but doesn't fall at a segment boundary
|
|
* - and wouldn't make the resulting output segment too long
|
|
*/
|
|
if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
|
|
(max_len - cur_len >= s_length)) {
|
|
/* ...then concatenate it with the previous one */
|
|
cur_len += s_length;
|
|
} else {
|
|
/* Otherwise start the next output segment */
|
|
if (i > 0)
|
|
cur = sg_next(cur);
|
|
cur_len = s_length;
|
|
count++;
|
|
|
|
sg_dma_address(cur) = dma_addr + s_iova_off;
|
|
}
|
|
|
|
sg_dma_len(cur) = cur_len;
|
|
dma_addr += s_iova_len;
|
|
|
|
if (s_length + s_iova_off < s_iova_len)
|
|
cur_len = 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* If mapping failed, then just restore the original list,
|
|
* but making sure the DMA fields are invalidated.
|
|
*/
|
|
static void __invalidate_sg(struct scatterlist *sg, int nents)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
if (sg_is_dma_bus_address(s)) {
|
|
sg_dma_unmark_bus_address(s);
|
|
} else {
|
|
if (sg_dma_address(s) != DMA_MAPPING_ERROR)
|
|
s->offset += sg_dma_address(s);
|
|
if (sg_dma_len(s))
|
|
s->length = sg_dma_len(s);
|
|
}
|
|
sg_dma_address(s) = DMA_MAPPING_ERROR;
|
|
sg_dma_len(s) = 0;
|
|
}
|
|
}
|
|
|
|
static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
iommu_dma_unmap_page(dev, sg_dma_address(s),
|
|
sg_dma_len(s), dir, attrs);
|
|
}
|
|
|
|
static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
|
|
s->offset, s->length, dir, attrs);
|
|
if (sg_dma_address(s) == DMA_MAPPING_ERROR)
|
|
goto out_unmap;
|
|
sg_dma_len(s) = s->length;
|
|
}
|
|
|
|
return nents;
|
|
|
|
out_unmap:
|
|
iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* The DMA API client is passing in a scatterlist which could describe
|
|
* any old buffer layout, but the IOMMU API requires everything to be
|
|
* aligned to IOMMU pages. Hence the need for this complicated bit of
|
|
* impedance-matching, to be able to hand off a suitably-aligned list,
|
|
* but still preserve the original offsets and sizes for the caller.
|
|
*/
|
|
static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_dma_domain(dev);
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iova_domain *iovad = &cookie->iovad;
|
|
struct scatterlist *s, *prev = NULL;
|
|
int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
|
|
struct pci_p2pdma_map_state p2pdma_state = {};
|
|
enum pci_p2pdma_map_type map;
|
|
dma_addr_t iova;
|
|
size_t iova_len = 0;
|
|
unsigned long mask = dma_get_seg_boundary(dev);
|
|
ssize_t ret;
|
|
int i;
|
|
|
|
if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
|
|
ret = iommu_deferred_attach(dev, domain);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (dev_use_swiotlb(dev))
|
|
return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
|
|
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
|
|
|
|
/*
|
|
* Work out how much IOVA space we need, and align the segments to
|
|
* IOVA granules for the IOMMU driver to handle. With some clever
|
|
* trickery we can modify the list in-place, but reversibly, by
|
|
* stashing the unaligned parts in the as-yet-unused DMA fields.
|
|
*/
|
|
for_each_sg(sg, s, nents, i) {
|
|
size_t s_iova_off = iova_offset(iovad, s->offset);
|
|
size_t s_length = s->length;
|
|
size_t pad_len = (mask - iova_len + 1) & mask;
|
|
|
|
if (is_pci_p2pdma_page(sg_page(s))) {
|
|
map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
|
|
switch (map) {
|
|
case PCI_P2PDMA_MAP_BUS_ADDR:
|
|
/*
|
|
* iommu_map_sg() will skip this segment as
|
|
* it is marked as a bus address,
|
|
* __finalise_sg() will copy the dma address
|
|
* into the output segment.
|
|
*/
|
|
continue;
|
|
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
|
|
/*
|
|
* Mapping through host bridge should be
|
|
* mapped with regular IOVAs, thus we
|
|
* do nothing here and continue below.
|
|
*/
|
|
break;
|
|
default:
|
|
ret = -EREMOTEIO;
|
|
goto out_restore_sg;
|
|
}
|
|
}
|
|
|
|
sg_dma_address(s) = s_iova_off;
|
|
sg_dma_len(s) = s_length;
|
|
s->offset -= s_iova_off;
|
|
s_length = iova_align(iovad, s_length + s_iova_off);
|
|
s->length = s_length;
|
|
|
|
/*
|
|
* Due to the alignment of our single IOVA allocation, we can
|
|
* depend on these assumptions about the segment boundary mask:
|
|
* - If mask size >= IOVA size, then the IOVA range cannot
|
|
* possibly fall across a boundary, so we don't care.
|
|
* - If mask size < IOVA size, then the IOVA range must start
|
|
* exactly on a boundary, therefore we can lay things out
|
|
* based purely on segment lengths without needing to know
|
|
* the actual addresses beforehand.
|
|
* - The mask must be a power of 2, so pad_len == 0 if
|
|
* iova_len == 0, thus we cannot dereference prev the first
|
|
* time through here (i.e. before it has a meaningful value).
|
|
*/
|
|
if (pad_len && pad_len < s_length - 1) {
|
|
prev->length += pad_len;
|
|
iova_len += pad_len;
|
|
}
|
|
|
|
iova_len += s_length;
|
|
prev = s;
|
|
}
|
|
|
|
if (!iova_len)
|
|
return __finalise_sg(dev, sg, nents, 0);
|
|
|
|
iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
|
|
if (!iova) {
|
|
ret = -ENOMEM;
|
|
goto out_restore_sg;
|
|
}
|
|
|
|
/*
|
|
* We'll leave any physical concatenation to the IOMMU driver's
|
|
* implementation - it knows better than we do.
|
|
*/
|
|
ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
|
|
if (ret < 0 || ret < iova_len)
|
|
goto out_free_iova;
|
|
|
|
return __finalise_sg(dev, sg, nents, iova);
|
|
|
|
out_free_iova:
|
|
iommu_dma_free_iova(cookie, iova, iova_len, NULL);
|
|
out_restore_sg:
|
|
__invalidate_sg(sg, nents);
|
|
out:
|
|
if (ret != -ENOMEM && ret != -EREMOTEIO)
|
|
return -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
dma_addr_t end = 0, start;
|
|
struct scatterlist *tmp;
|
|
int i;
|
|
|
|
if (dev_use_swiotlb(dev)) {
|
|
iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
|
|
return;
|
|
}
|
|
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
|
|
|
|
/*
|
|
* The scatterlist segments are mapped into a single
|
|
* contiguous IOVA allocation, the start and end points
|
|
* just have to be determined.
|
|
*/
|
|
for_each_sg(sg, tmp, nents, i) {
|
|
if (sg_is_dma_bus_address(tmp)) {
|
|
sg_dma_unmark_bus_address(tmp);
|
|
continue;
|
|
}
|
|
|
|
if (sg_dma_len(tmp) == 0)
|
|
break;
|
|
|
|
start = sg_dma_address(tmp);
|
|
break;
|
|
}
|
|
|
|
nents -= i;
|
|
for_each_sg(tmp, tmp, nents, i) {
|
|
if (sg_is_dma_bus_address(tmp)) {
|
|
sg_dma_unmark_bus_address(tmp);
|
|
continue;
|
|
}
|
|
|
|
if (sg_dma_len(tmp) == 0)
|
|
break;
|
|
|
|
end = sg_dma_address(tmp) + sg_dma_len(tmp);
|
|
}
|
|
|
|
if (end)
|
|
__iommu_dma_unmap(dev, start, end - start);
|
|
}
|
|
|
|
static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
return __iommu_dma_map(dev, phys, size,
|
|
dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
|
|
dma_get_mask(dev));
|
|
}
|
|
|
|
static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
|
|
size_t size, enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
__iommu_dma_unmap(dev, handle, size);
|
|
}
|
|
|
|
static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
|
|
{
|
|
size_t alloc_size = PAGE_ALIGN(size);
|
|
int count = alloc_size >> PAGE_SHIFT;
|
|
struct page *page = NULL, **pages = NULL;
|
|
|
|
/* Non-coherent atomic allocation? Easy */
|
|
if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
|
|
dma_free_from_pool(dev, cpu_addr, alloc_size))
|
|
return;
|
|
|
|
if (is_vmalloc_addr(cpu_addr)) {
|
|
/*
|
|
* If it the address is remapped, then it's either non-coherent
|
|
* or highmem CMA, or an iommu_dma_alloc_remap() construction.
|
|
*/
|
|
pages = dma_common_find_pages(cpu_addr);
|
|
if (!pages)
|
|
page = vmalloc_to_page(cpu_addr);
|
|
dma_common_free_remap(cpu_addr, alloc_size);
|
|
} else {
|
|
/* Lowmem means a coherent atomic or CMA allocation */
|
|
page = virt_to_page(cpu_addr);
|
|
}
|
|
|
|
if (pages)
|
|
__iommu_dma_free_pages(pages, count);
|
|
if (page)
|
|
dma_free_contiguous(dev, page, alloc_size);
|
|
}
|
|
|
|
static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs)
|
|
{
|
|
__iommu_dma_unmap(dev, handle, size);
|
|
__iommu_dma_free(dev, size, cpu_addr);
|
|
}
|
|
|
|
static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
|
|
struct page **pagep, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
bool coherent = dev_is_dma_coherent(dev);
|
|
size_t alloc_size = PAGE_ALIGN(size);
|
|
int node = dev_to_node(dev);
|
|
struct page *page = NULL;
|
|
void *cpu_addr;
|
|
|
|
page = dma_alloc_contiguous(dev, alloc_size, gfp);
|
|
if (!page)
|
|
page = alloc_pages_node(node, gfp, get_order(alloc_size));
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (!coherent || PageHighMem(page)) {
|
|
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
|
|
|
|
cpu_addr = dma_common_contiguous_remap(page, alloc_size,
|
|
prot, __builtin_return_address(0));
|
|
if (!cpu_addr)
|
|
goto out_free_pages;
|
|
|
|
if (!coherent)
|
|
arch_dma_prep_coherent(page, size);
|
|
} else {
|
|
cpu_addr = page_address(page);
|
|
}
|
|
|
|
*pagep = page;
|
|
memset(cpu_addr, 0, alloc_size);
|
|
return cpu_addr;
|
|
out_free_pages:
|
|
dma_free_contiguous(dev, page, alloc_size);
|
|
return NULL;
|
|
}
|
|
|
|
static void *iommu_dma_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
bool coherent = dev_is_dma_coherent(dev);
|
|
int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
|
|
struct page *page = NULL;
|
|
void *cpu_addr;
|
|
|
|
gfp |= __GFP_ZERO;
|
|
|
|
if (gfpflags_allow_blocking(gfp) &&
|
|
!(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
|
|
return iommu_dma_alloc_remap(dev, size, handle, gfp,
|
|
dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
|
|
!gfpflags_allow_blocking(gfp) && !coherent)
|
|
page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
|
|
gfp, NULL);
|
|
else
|
|
cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
|
|
if (!cpu_addr)
|
|
return NULL;
|
|
|
|
*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
|
|
dev->coherent_dma_mask);
|
|
if (*handle == DMA_MAPPING_ERROR) {
|
|
__iommu_dma_free(dev, size, cpu_addr);
|
|
return NULL;
|
|
}
|
|
|
|
return cpu_addr;
|
|
}
|
|
|
|
static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long pfn, off = vma->vm_pgoff;
|
|
int ret;
|
|
|
|
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
|
|
|
|
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
|
|
return -ENXIO;
|
|
|
|
if (is_vmalloc_addr(cpu_addr)) {
|
|
struct page **pages = dma_common_find_pages(cpu_addr);
|
|
|
|
if (pages)
|
|
return vm_map_pages(vma, pages, nr_pages);
|
|
pfn = vmalloc_to_pfn(cpu_addr);
|
|
} else {
|
|
pfn = page_to_pfn(virt_to_page(cpu_addr));
|
|
}
|
|
|
|
return remap_pfn_range(vma, vma->vm_start, pfn + off,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
struct page *page;
|
|
int ret;
|
|
|
|
if (is_vmalloc_addr(cpu_addr)) {
|
|
struct page **pages = dma_common_find_pages(cpu_addr);
|
|
|
|
if (pages) {
|
|
return sg_alloc_table_from_pages(sgt, pages,
|
|
PAGE_ALIGN(size) >> PAGE_SHIFT,
|
|
0, size, GFP_KERNEL);
|
|
}
|
|
|
|
page = vmalloc_to_page(cpu_addr);
|
|
} else {
|
|
page = virt_to_page(cpu_addr);
|
|
}
|
|
|
|
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
|
|
if (!ret)
|
|
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_dma_domain(dev);
|
|
|
|
return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
|
|
}
|
|
|
|
static size_t iommu_dma_opt_mapping_size(void)
|
|
{
|
|
return iova_rcache_range();
|
|
}
|
|
|
|
static const struct dma_map_ops iommu_dma_ops = {
|
|
.flags = DMA_F_PCI_P2PDMA_SUPPORTED,
|
|
.alloc = iommu_dma_alloc,
|
|
.free = iommu_dma_free,
|
|
.alloc_pages = dma_common_alloc_pages,
|
|
.free_pages = dma_common_free_pages,
|
|
.alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
|
|
.free_noncontiguous = iommu_dma_free_noncontiguous,
|
|
.mmap = iommu_dma_mmap,
|
|
.get_sgtable = iommu_dma_get_sgtable,
|
|
.map_page = iommu_dma_map_page,
|
|
.unmap_page = iommu_dma_unmap_page,
|
|
.map_sg = iommu_dma_map_sg,
|
|
.unmap_sg = iommu_dma_unmap_sg,
|
|
.sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
|
|
.sync_single_for_device = iommu_dma_sync_single_for_device,
|
|
.sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
|
|
.sync_sg_for_device = iommu_dma_sync_sg_for_device,
|
|
.map_resource = iommu_dma_map_resource,
|
|
.unmap_resource = iommu_dma_unmap_resource,
|
|
.get_merge_boundary = iommu_dma_get_merge_boundary,
|
|
.opt_mapping_size = iommu_dma_opt_mapping_size,
|
|
};
|
|
|
|
/*
|
|
* The IOMMU core code allocates the default DMA domain, which the underlying
|
|
* IOMMU driver needs to support via the dma-iommu layer.
|
|
*/
|
|
void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
|
|
if (!domain)
|
|
goto out_err;
|
|
|
|
/*
|
|
* The IOMMU core code allocates the default DMA domain, which the
|
|
* underlying IOMMU driver needs to support via the dma-iommu layer.
|
|
*/
|
|
if (iommu_is_dma_domain(domain)) {
|
|
if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
|
|
goto out_err;
|
|
dev->dma_ops = &iommu_dma_ops;
|
|
}
|
|
|
|
return;
|
|
out_err:
|
|
pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
|
|
dev_name(dev));
|
|
}
|
|
EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
|
|
|
|
static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
|
|
phys_addr_t msi_addr, struct iommu_domain *domain)
|
|
{
|
|
struct iommu_dma_cookie *cookie = domain->iova_cookie;
|
|
struct iommu_dma_msi_page *msi_page;
|
|
dma_addr_t iova;
|
|
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
|
|
size_t size = cookie_msi_granule(cookie);
|
|
|
|
msi_addr &= ~(phys_addr_t)(size - 1);
|
|
list_for_each_entry(msi_page, &cookie->msi_page_list, list)
|
|
if (msi_page->phys == msi_addr)
|
|
return msi_page;
|
|
|
|
msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
|
|
if (!msi_page)
|
|
return NULL;
|
|
|
|
iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
|
|
if (!iova)
|
|
goto out_free_page;
|
|
|
|
if (iommu_map(domain, iova, msi_addr, size, prot))
|
|
goto out_free_iova;
|
|
|
|
INIT_LIST_HEAD(&msi_page->list);
|
|
msi_page->phys = msi_addr;
|
|
msi_page->iova = iova;
|
|
list_add(&msi_page->list, &cookie->msi_page_list);
|
|
return msi_page;
|
|
|
|
out_free_iova:
|
|
iommu_dma_free_iova(cookie, iova, size, NULL);
|
|
out_free_page:
|
|
kfree(msi_page);
|
|
return NULL;
|
|
}
|
|
|
|
int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
|
|
{
|
|
struct device *dev = msi_desc_to_dev(desc);
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
struct iommu_dma_msi_page *msi_page;
|
|
static DEFINE_MUTEX(msi_prepare_lock); /* see below */
|
|
|
|
if (!domain || !domain->iova_cookie) {
|
|
desc->iommu_cookie = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* In fact the whole prepare operation should already be serialised by
|
|
* irq_domain_mutex further up the callchain, but that's pretty subtle
|
|
* on its own, so consider this locking as failsafe documentation...
|
|
*/
|
|
mutex_lock(&msi_prepare_lock);
|
|
msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
|
|
mutex_unlock(&msi_prepare_lock);
|
|
|
|
msi_desc_set_iommu_cookie(desc, msi_page);
|
|
|
|
if (!msi_page)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void iommu_dma_compose_msi_msg(struct msi_desc *desc,
|
|
struct msi_msg *msg)
|
|
{
|
|
struct device *dev = msi_desc_to_dev(desc);
|
|
const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
const struct iommu_dma_msi_page *msi_page;
|
|
|
|
msi_page = msi_desc_get_iommu_cookie(desc);
|
|
|
|
if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
|
|
return;
|
|
|
|
msg->address_hi = upper_32_bits(msi_page->iova);
|
|
msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
|
|
msg->address_lo += lower_32_bits(msi_page->iova);
|
|
}
|
|
|
|
static int iommu_dma_init(void)
|
|
{
|
|
if (is_kdump_kernel())
|
|
static_branch_enable(&iommu_deferred_attach_enabled);
|
|
|
|
return iova_cache_get();
|
|
}
|
|
arch_initcall(iommu_dma_init);
|