linux/fs/f2fs/recovery.c
Namjae Jeon 24c366a9ea f2fs: remove unneeded INIT_LIST_HEAD at few places
While creating a new entry for addition to the list(orphan inode list
and fsync inode entry list), there is no need to call HEAD initialization
for these entries. So, remove that init part.

Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Amit Sahrawat <a.sahrawat@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2013-01-04 09:42:59 +09:00

379 lines
9.1 KiB
C

/*
* fs/f2fs/recovery.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
static struct kmem_cache *fsync_entry_slab;
bool space_for_roll_forward(struct f2fs_sb_info *sbi)
{
if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
> sbi->user_block_count)
return false;
return true;
}
static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
nid_t ino)
{
struct list_head *this;
struct fsync_inode_entry *entry;
list_for_each(this, head) {
entry = list_entry(this, struct fsync_inode_entry, list);
if (entry->inode->i_ino == ino)
return entry;
}
return NULL;
}
static int recover_dentry(struct page *ipage, struct inode *inode)
{
struct f2fs_node *raw_node = (struct f2fs_node *)kmap(ipage);
struct f2fs_inode *raw_inode = &(raw_node->i);
struct dentry dent, parent;
struct f2fs_dir_entry *de;
struct page *page;
struct inode *dir;
int err = 0;
if (!is_dent_dnode(ipage))
goto out;
dir = f2fs_iget(inode->i_sb, le32_to_cpu(raw_inode->i_pino));
if (IS_ERR(dir)) {
err = -EINVAL;
goto out;
}
parent.d_inode = dir;
dent.d_parent = &parent;
dent.d_name.len = le32_to_cpu(raw_inode->i_namelen);
dent.d_name.name = raw_inode->i_name;
de = f2fs_find_entry(dir, &dent.d_name, &page);
if (de) {
kunmap(page);
f2fs_put_page(page, 0);
} else {
f2fs_add_link(&dent, inode);
}
iput(dir);
out:
kunmap(ipage);
return err;
}
static int recover_inode(struct inode *inode, struct page *node_page)
{
void *kaddr = page_address(node_page);
struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
struct f2fs_inode *raw_inode = &(raw_node->i);
inode->i_mode = le16_to_cpu(raw_inode->i_mode);
i_size_write(inode, le64_to_cpu(raw_inode->i_size));
inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
return recover_dentry(node_page, inode);
}
static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
{
unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
struct curseg_info *curseg;
struct page *page;
block_t blkaddr;
int err = 0;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
/* read node page */
page = alloc_page(GFP_F2FS_ZERO);
if (IS_ERR(page))
return PTR_ERR(page);
lock_page(page);
while (1) {
struct fsync_inode_entry *entry;
if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
goto out;
if (cp_ver != cpver_of_node(page))
goto out;
if (!is_fsync_dnode(page))
goto next;
entry = get_fsync_inode(head, ino_of_node(page));
if (entry) {
entry->blkaddr = blkaddr;
if (IS_INODE(page) && is_dent_dnode(page))
set_inode_flag(F2FS_I(entry->inode),
FI_INC_LINK);
} else {
if (IS_INODE(page) && is_dent_dnode(page)) {
if (recover_inode_page(sbi, page)) {
err = -ENOMEM;
goto out;
}
}
/* add this fsync inode to the list */
entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
if (!entry) {
err = -ENOMEM;
goto out;
}
entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
if (IS_ERR(entry->inode)) {
err = PTR_ERR(entry->inode);
kmem_cache_free(fsync_entry_slab, entry);
goto out;
}
list_add_tail(&entry->list, head);
entry->blkaddr = blkaddr;
}
if (IS_INODE(page)) {
err = recover_inode(entry->inode, page);
if (err)
goto out;
}
next:
/* check next segment */
blkaddr = next_blkaddr_of_node(page);
ClearPageUptodate(page);
}
out:
unlock_page(page);
__free_pages(page, 0);
return err;
}
static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi,
struct list_head *head)
{
struct list_head *this;
struct fsync_inode_entry *entry;
list_for_each(this, head) {
entry = list_entry(this, struct fsync_inode_entry, list);
iput(entry->inode);
list_del(&entry->list);
kmem_cache_free(fsync_entry_slab, entry);
}
}
static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
block_t blkaddr)
{
struct seg_entry *sentry;
unsigned int segno = GET_SEGNO(sbi, blkaddr);
unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
(sbi->blocks_per_seg - 1);
struct f2fs_summary sum;
nid_t ino;
void *kaddr;
struct inode *inode;
struct page *node_page;
block_t bidx;
int i;
sentry = get_seg_entry(sbi, segno);
if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
return;
/* Get the previous summary */
for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
if (curseg->segno == segno) {
sum = curseg->sum_blk->entries[blkoff];
break;
}
}
if (i > CURSEG_COLD_DATA) {
struct page *sum_page = get_sum_page(sbi, segno);
struct f2fs_summary_block *sum_node;
kaddr = page_address(sum_page);
sum_node = (struct f2fs_summary_block *)kaddr;
sum = sum_node->entries[blkoff];
f2fs_put_page(sum_page, 1);
}
/* Get the node page */
node_page = get_node_page(sbi, le32_to_cpu(sum.nid));
bidx = start_bidx_of_node(ofs_of_node(node_page)) +
le16_to_cpu(sum.ofs_in_node);
ino = ino_of_node(node_page);
f2fs_put_page(node_page, 1);
/* Deallocate previous index in the node page */
inode = f2fs_iget_nowait(sbi->sb, ino);
if (IS_ERR(inode))
return;
truncate_hole(inode, bidx, bidx + 1);
iput(inode);
}
static void do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
struct page *page, block_t blkaddr)
{
unsigned int start, end;
struct dnode_of_data dn;
struct f2fs_summary sum;
struct node_info ni;
start = start_bidx_of_node(ofs_of_node(page));
if (IS_INODE(page))
end = start + ADDRS_PER_INODE;
else
end = start + ADDRS_PER_BLOCK;
set_new_dnode(&dn, inode, NULL, NULL, 0);
if (get_dnode_of_data(&dn, start, 0))
return;
wait_on_page_writeback(dn.node_page);
get_node_info(sbi, dn.nid, &ni);
BUG_ON(ni.ino != ino_of_node(page));
BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page));
for (; start < end; start++) {
block_t src, dest;
src = datablock_addr(dn.node_page, dn.ofs_in_node);
dest = datablock_addr(page, dn.ofs_in_node);
if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
if (src == NULL_ADDR) {
int err = reserve_new_block(&dn);
/* We should not get -ENOSPC */
BUG_ON(err);
}
/* Check the previous node page having this index */
check_index_in_prev_nodes(sbi, dest);
set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
/* write dummy data page */
recover_data_page(sbi, NULL, &sum, src, dest);
update_extent_cache(dest, &dn);
}
dn.ofs_in_node++;
}
/* write node page in place */
set_summary(&sum, dn.nid, 0, 0);
if (IS_INODE(dn.node_page))
sync_inode_page(&dn);
copy_node_footer(dn.node_page, page);
fill_node_footer(dn.node_page, dn.nid, ni.ino,
ofs_of_node(page), false);
set_page_dirty(dn.node_page);
recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
f2fs_put_dnode(&dn);
}
static void recover_data(struct f2fs_sb_info *sbi,
struct list_head *head, int type)
{
unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
struct curseg_info *curseg;
struct page *page;
block_t blkaddr;
/* get node pages in the current segment */
curseg = CURSEG_I(sbi, type);
blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
/* read node page */
page = alloc_page(GFP_NOFS | __GFP_ZERO);
if (IS_ERR(page))
return;
lock_page(page);
while (1) {
struct fsync_inode_entry *entry;
if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
goto out;
if (cp_ver != cpver_of_node(page))
goto out;
entry = get_fsync_inode(head, ino_of_node(page));
if (!entry)
goto next;
do_recover_data(sbi, entry->inode, page, blkaddr);
if (entry->blkaddr == blkaddr) {
iput(entry->inode);
list_del(&entry->list);
kmem_cache_free(fsync_entry_slab, entry);
}
next:
/* check next segment */
blkaddr = next_blkaddr_of_node(page);
ClearPageUptodate(page);
}
out:
unlock_page(page);
__free_pages(page, 0);
allocate_new_segments(sbi);
}
void recover_fsync_data(struct f2fs_sb_info *sbi)
{
struct list_head inode_list;
fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
sizeof(struct fsync_inode_entry), NULL);
if (unlikely(!fsync_entry_slab))
return;
INIT_LIST_HEAD(&inode_list);
/* step #1: find fsynced inode numbers */
if (find_fsync_dnodes(sbi, &inode_list))
goto out;
if (list_empty(&inode_list))
goto out;
/* step #2: recover data */
sbi->por_doing = 1;
recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
sbi->por_doing = 0;
BUG_ON(!list_empty(&inode_list));
out:
destroy_fsync_dnodes(sbi, &inode_list);
kmem_cache_destroy(fsync_entry_slab);
write_checkpoint(sbi, false, false);
}