linux/net/mac80211/key.c
Alexander Wetzel 62872a9b9a mac80211: Fix PTK rekey freezes and clear text leak
Rekeying PTK keys without "Extended Key ID for Individually Addressed
Frames" did use a procedure not suitable to replace in-use keys and
could caused the following issues:

 1) Freeze caused by incoming frames:
    If the local STA installed the key prior to the remote STA we still
    had the old key active in the hardware when mac80211 switched over
    to the new key.
    Therefore there was a window where the card could hand over frames
    decoded with the old key to mac80211 and bump the new PN (IV) value
    to an incorrect high number. When it happened the local replay
    detection silently started to drop all frames sent with the new key.

 2) Freeze caused by outgoing frames:
    If mac80211 was providing the PN (IV) and handed over a clear text
    frame for encryption to the hardware prior to a key change the
    driver/card could have processed the queued frame after switching
    to the new key. This bumped the PN value on the remote STA to an
    incorrect high number, tricking the remote STA to discard all frames
    we sent later.

 3) Freeze caused by RX aggregation reorder buffer:
    An aggregation session started with the old key and ending after the
    switch to the new key also bumped the PN to an incorrect high number,
    freezing the connection quite similar to 1).

 4) Freeze caused by repeating lost frames in an aggregation session:
    A driver could repeat a lost frame and encrypt it with the new key
    while in a TX aggregation session without updating the PN for the
    new key. This also could freeze connections similar to 2).

 5) Clear text leak:
    Removing encryption offload from the card cleared the encryption
    offload flag only after the card had deleted the key and we did not
    stop TX during the rekey. The driver/card could therefore get
    unencrypted frames from mac80211 while no longer be instructed to
    encrypt them.

To prevent those issues the key install logic has been changed:
 - Mac80211 divers known to be able to rekey PTK0 keys have to set
   @NL80211_EXT_FEATURE_CAN_REPLACE_PTK0,
 - mac80211 stops queuing frames depending on the key during the replace
 - the key is first replaced in the hardware and after that in mac80211
 - and mac80211 stops/blocks new aggregation sessions during the rekey.

For drivers not setting
@NL80211_EXT_FEATURE_CAN_REPLACE_PTK0 the user space must avoid PTK
rekeys if "Extended Key ID for Individually Addressed Frames" is not
being used. Rekeys for mac80211 drivers without this flag will generate a
warning and use an extra call to ieee80211_flush_queues() to both
highlight and try to prevent the issues with not updated drivers.

The core of the fix changes the key install procedure from:
 - atomic switch over to the new key in mac80211
 - remove the old key in the hardware (stops encryption offloading, fall
   back to software encryption with a potential clear text packet leak
   in between)
 - delete the inactive old key in mac80211
 - enable hardware encryption offloading for the new key
to:
 - if it's a PTK mark the old key as tainted to drop TX frames with the
   outgoing key
 - replace the key in hardware with the new one
 - atomic switch over to the new (not marked as tainted) key in
   mac80211 (which also resumes TX)
 - delete the inactive old key in mac80211

With the new sequence the hardware will be unable to decrypt frames
encrypted with the old key prior to switching to the new key in mac80211
and thus prevent PNs from packets decrypted with the old key to be
accounted against the new key.

For that to work the drivers have to provide a clear boundary.
Mac80211 drivers setting @NL80211_EXT_FEATURE_CAN_REPLACE_PTK0 confirm
to provide it and mac80211 will then be able to correctly rekey in-use
PTK keys with those drivers.

The mac80211 requirements for drivers to set the flag have been added to
the "Hardware crypto acceleration" documentation section. It drills down
to:
The drivers must not hand over frames decrypted with the old key to
mac80211 once the call to set_key() with %DISABLE_KEY has been
completed. It's allowed to either drop or continue to use the old key
for any outgoing frames which are already in the queues, but it must not
send out any of them unencrypted or encrypted with the new key.

Even with the new boundary in place aggregation sessions with the
reorder buffer are problematic:
RX aggregation session started prior and completed after the rekey could
still dump frames received with the old key at mac80211 after it
switched over to the new key. This is side stepped by stopping all (RX
and TX) aggregation sessions when replacing a PTK key and hardware key
offloading.
Stopping TX aggregation sessions avoids the need to get
the PNs (IVs) updated in frames prepared for the old key and
(re)transmitted after the switch to the new key. As a bonus it improves
the compatibility when the remote STA is not handling rekeys as it
should.

When using software crypto aggregation sessions are not stopped.
Mac80211 won't be able to decode the dangerous frames and discard them
without special handling.

Signed-off-by: Alexander Wetzel <alexander@wetzel-home.de>
[trim overly long rekey warning]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2018-09-05 10:03:17 +02:00

1231 lines
34 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright 2015-2017 Intel Deutschland GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/list.h>
#include <linux/rcupdate.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <net/mac80211.h>
#include <crypto/algapi.h>
#include <asm/unaligned.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "debugfs_key.h"
#include "aes_ccm.h"
#include "aes_cmac.h"
#include "aes_gmac.h"
#include "aes_gcm.h"
/**
* DOC: Key handling basics
*
* Key handling in mac80211 is done based on per-interface (sub_if_data)
* keys and per-station keys. Since each station belongs to an interface,
* each station key also belongs to that interface.
*
* Hardware acceleration is done on a best-effort basis for algorithms
* that are implemented in software, for each key the hardware is asked
* to enable that key for offloading but if it cannot do that the key is
* simply kept for software encryption (unless it is for an algorithm
* that isn't implemented in software).
* There is currently no way of knowing whether a key is handled in SW
* or HW except by looking into debugfs.
*
* All key management is internally protected by a mutex. Within all
* other parts of mac80211, key references are, just as STA structure
* references, protected by RCU. Note, however, that some things are
* unprotected, namely the key->sta dereferences within the hardware
* acceleration functions. This means that sta_info_destroy() must
* remove the key which waits for an RCU grace period.
*/
static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static void assert_key_lock(struct ieee80211_local *local)
{
lockdep_assert_held(&local->key_mtx);
}
static void
update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
{
struct ieee80211_sub_if_data *vlan;
if (sdata->vif.type != NL80211_IFTYPE_AP)
return;
/* crypto_tx_tailroom_needed_cnt is protected by this */
assert_key_lock(sdata->local);
rcu_read_lock();
list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
vlan->crypto_tx_tailroom_needed_cnt += delta;
rcu_read_unlock();
}
static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
{
/*
* When this count is zero, SKB resizing for allocating tailroom
* for IV or MMIC is skipped. But, this check has created two race
* cases in xmit path while transiting from zero count to one:
*
* 1. SKB resize was skipped because no key was added but just before
* the xmit key is added and SW encryption kicks off.
*
* 2. SKB resize was skipped because all the keys were hw planted but
* just before xmit one of the key is deleted and SW encryption kicks
* off.
*
* In both the above case SW encryption will find not enough space for
* tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
*
* Solution has been explained at
* http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
*/
assert_key_lock(sdata->local);
update_vlan_tailroom_need_count(sdata, 1);
if (!sdata->crypto_tx_tailroom_needed_cnt++) {
/*
* Flush all XMIT packets currently using HW encryption or no
* encryption at all if the count transition is from 0 -> 1.
*/
synchronize_net();
}
}
static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
int delta)
{
assert_key_lock(sdata->local);
WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
update_vlan_tailroom_need_count(sdata, -delta);
sdata->crypto_tx_tailroom_needed_cnt -= delta;
}
static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
{
struct ieee80211_sub_if_data *sdata = key->sdata;
struct sta_info *sta;
int ret = -EOPNOTSUPP;
might_sleep();
if (key->flags & KEY_FLAG_TAINTED) {
/* If we get here, it's during resume and the key is
* tainted so shouldn't be used/programmed any more.
* However, its flags may still indicate that it was
* programmed into the device (since we're in resume)
* so clear that flag now to avoid trying to remove
* it again later.
*/
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
return -EINVAL;
}
if (!key->local->ops->set_key)
goto out_unsupported;
assert_key_lock(key->local);
sta = key->sta;
/*
* If this is a per-STA GTK, check if it
* is supported; if not, return.
*/
if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
!ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
goto out_unsupported;
if (sta && !sta->uploaded)
goto out_unsupported;
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
/*
* The driver doesn't know anything about VLAN interfaces.
* Hence, don't send GTKs for VLAN interfaces to the driver.
*/
if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
goto out_unsupported;
}
ret = drv_set_key(key->local, SET_KEY, sdata,
sta ? &sta->sta : NULL, &key->conf);
if (!ret) {
key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
if (!((key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
IEEE80211_KEY_FLAG_PUT_MIC_SPACE)) ||
(key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
decrease_tailroom_need_count(sdata, 1);
WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
return 0;
}
if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
sdata_err(sdata,
"failed to set key (%d, %pM) to hardware (%d)\n",
key->conf.keyidx,
sta ? sta->sta.addr : bcast_addr, ret);
out_unsupported:
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
/* all of these we can do in software - if driver can */
if (ret == 1)
return 0;
if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL)) {
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
return 0;
return -EINVAL;
}
return 0;
default:
return -EINVAL;
}
}
static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
{
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
int ret;
might_sleep();
if (!key || !key->local->ops->set_key)
return;
assert_key_lock(key->local);
if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
return;
sta = key->sta;
sdata = key->sdata;
if (!((key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
IEEE80211_KEY_FLAG_PUT_MIC_SPACE)) ||
(key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
increment_tailroom_need_count(sdata);
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
ret = drv_set_key(key->local, DISABLE_KEY, sdata,
sta ? &sta->sta : NULL, &key->conf);
if (ret)
sdata_err(sdata,
"failed to remove key (%d, %pM) from hardware (%d)\n",
key->conf.keyidx,
sta ? sta->sta.addr : bcast_addr, ret);
}
static int ieee80211_hw_key_replace(struct ieee80211_key *old_key,
struct ieee80211_key *new_key,
bool ptk0rekey)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local;
struct sta_info *sta;
int ret;
/* Aggregation sessions are OK when running on SW crypto.
* A broken remote STA may cause issues not observed with HW
* crypto, though.
*/
if (!(old_key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
return 0;
assert_key_lock(old_key->local);
sta = old_key->sta;
/* PTK only using key ID 0 needs special handling on rekey */
if (new_key && sta && ptk0rekey) {
local = old_key->local;
sdata = old_key->sdata;
/* Stop TX till we are on the new key */
old_key->flags |= KEY_FLAG_TAINTED;
ieee80211_clear_fast_xmit(sta);
/* Aggregation sessions during rekey are complicated due to the
* reorder buffer and retransmits. Side step that by blocking
* aggregation during rekey and tear down running sessions.
*/
if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
set_sta_flag(sta, WLAN_STA_BLOCK_BA);
ieee80211_sta_tear_down_BA_sessions(sta,
AGG_STOP_LOCAL_REQUEST);
}
if (!wiphy_ext_feature_isset(local->hw.wiphy,
NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
sta->sta.addr);
/* Flushing the driver queues *may* help prevent
* the clear text leaks and freezes.
*/
ieee80211_flush_queues(local, sdata, false);
}
}
ieee80211_key_disable_hw_accel(old_key);
if (new_key)
ret = ieee80211_key_enable_hw_accel(new_key);
else
ret = 0;
return ret;
}
static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
int idx, bool uni, bool multi)
{
struct ieee80211_key *key = NULL;
assert_key_lock(sdata->local);
if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
if (uni) {
rcu_assign_pointer(sdata->default_unicast_key, key);
ieee80211_check_fast_xmit_iface(sdata);
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
drv_set_default_unicast_key(sdata->local, sdata, idx);
}
if (multi)
rcu_assign_pointer(sdata->default_multicast_key, key);
ieee80211_debugfs_key_update_default(sdata);
}
void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
bool uni, bool multi)
{
mutex_lock(&sdata->local->key_mtx);
__ieee80211_set_default_key(sdata, idx, uni, multi);
mutex_unlock(&sdata->local->key_mtx);
}
static void
__ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
{
struct ieee80211_key *key = NULL;
assert_key_lock(sdata->local);
if (idx >= NUM_DEFAULT_KEYS &&
idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
rcu_assign_pointer(sdata->default_mgmt_key, key);
ieee80211_debugfs_key_update_default(sdata);
}
void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
int idx)
{
mutex_lock(&sdata->local->key_mtx);
__ieee80211_set_default_mgmt_key(sdata, idx);
mutex_unlock(&sdata->local->key_mtx);
}
static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta,
bool pairwise,
struct ieee80211_key *old,
struct ieee80211_key *new)
{
int idx;
int ret;
bool defunikey, defmultikey, defmgmtkey;
/* caller must provide at least one old/new */
if (WARN_ON(!new && !old))
return 0;
if (new)
list_add_tail_rcu(&new->list, &sdata->key_list);
WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
if (old) {
idx = old->conf.keyidx;
/* TODO: proper implement and test "Extended Key ID for
* Individually Addressed Frames" from IEEE 802.11-2016.
* Till then always assume only key ID 0 is used for
* pairwise keys.*/
ret = ieee80211_hw_key_replace(old, new, pairwise);
} else {
idx = new->conf.keyidx;
if (new && !new->local->wowlan)
ret = ieee80211_key_enable_hw_accel(new);
else
ret = 0;
}
if (ret)
return ret;
if (sta) {
if (pairwise) {
rcu_assign_pointer(sta->ptk[idx], new);
sta->ptk_idx = idx;
if (new) {
clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
ieee80211_check_fast_xmit(sta);
}
} else {
rcu_assign_pointer(sta->gtk[idx], new);
}
if (new)
ieee80211_check_fast_rx(sta);
} else {
defunikey = old &&
old == key_mtx_dereference(sdata->local,
sdata->default_unicast_key);
defmultikey = old &&
old == key_mtx_dereference(sdata->local,
sdata->default_multicast_key);
defmgmtkey = old &&
old == key_mtx_dereference(sdata->local,
sdata->default_mgmt_key);
if (defunikey && !new)
__ieee80211_set_default_key(sdata, -1, true, false);
if (defmultikey && !new)
__ieee80211_set_default_key(sdata, -1, false, true);
if (defmgmtkey && !new)
__ieee80211_set_default_mgmt_key(sdata, -1);
rcu_assign_pointer(sdata->keys[idx], new);
if (defunikey && new)
__ieee80211_set_default_key(sdata, new->conf.keyidx,
true, false);
if (defmultikey && new)
__ieee80211_set_default_key(sdata, new->conf.keyidx,
false, true);
if (defmgmtkey && new)
__ieee80211_set_default_mgmt_key(sdata,
new->conf.keyidx);
}
if (old)
list_del_rcu(&old->list);
return 0;
}
struct ieee80211_key *
ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
const u8 *key_data,
size_t seq_len, const u8 *seq,
const struct ieee80211_cipher_scheme *cs)
{
struct ieee80211_key *key;
int i, j, err;
if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
return ERR_PTR(-EINVAL);
key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
if (!key)
return ERR_PTR(-ENOMEM);
/*
* Default to software encryption; we'll later upload the
* key to the hardware if possible.
*/
key->conf.flags = 0;
key->flags = 0;
key->conf.cipher = cipher;
key->conf.keyidx = idx;
key->conf.keylen = key_len;
switch (cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
key->conf.iv_len = IEEE80211_WEP_IV_LEN;
key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
break;
case WLAN_CIPHER_SUITE_TKIP:
key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
if (seq) {
for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
key->u.tkip.rx[i].iv32 =
get_unaligned_le32(&seq[2]);
key->u.tkip.rx[i].iv16 =
get_unaligned_le16(seq);
}
}
spin_lock_init(&key->u.tkip.txlock);
break;
case WLAN_CIPHER_SUITE_CCMP:
key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
if (seq) {
for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
key->u.ccmp.rx_pn[i][j] =
seq[IEEE80211_CCMP_PN_LEN - j - 1];
}
/*
* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
key_data, key_len, IEEE80211_CCMP_MIC_LEN);
if (IS_ERR(key->u.ccmp.tfm)) {
err = PTR_ERR(key->u.ccmp.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
case WLAN_CIPHER_SUITE_CCMP_256:
key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
key->u.ccmp.rx_pn[i][j] =
seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
/* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
if (IS_ERR(key->u.ccmp.tfm)) {
err = PTR_ERR(key->u.ccmp.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
key->conf.iv_len = 0;
if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
key->conf.icv_len = sizeof(struct ieee80211_mmie);
else
key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
if (seq)
for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
key->u.aes_cmac.rx_pn[j] =
seq[IEEE80211_CMAC_PN_LEN - j - 1];
/*
* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.aes_cmac.tfm =
ieee80211_aes_cmac_key_setup(key_data, key_len);
if (IS_ERR(key->u.aes_cmac.tfm)) {
err = PTR_ERR(key->u.aes_cmac.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
key->conf.iv_len = 0;
key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
if (seq)
for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
key->u.aes_gmac.rx_pn[j] =
seq[IEEE80211_GMAC_PN_LEN - j - 1];
/* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.aes_gmac.tfm =
ieee80211_aes_gmac_key_setup(key_data, key_len);
if (IS_ERR(key->u.aes_gmac.tfm)) {
err = PTR_ERR(key->u.aes_gmac.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
key->u.gcmp.rx_pn[i][j] =
seq[IEEE80211_GCMP_PN_LEN - j - 1];
/* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
key_len);
if (IS_ERR(key->u.gcmp.tfm)) {
err = PTR_ERR(key->u.gcmp.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
default:
if (cs) {
if (seq_len && seq_len != cs->pn_len) {
kfree(key);
return ERR_PTR(-EINVAL);
}
key->conf.iv_len = cs->hdr_len;
key->conf.icv_len = cs->mic_len;
for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
for (j = 0; j < seq_len; j++)
key->u.gen.rx_pn[i][j] =
seq[seq_len - j - 1];
key->flags |= KEY_FLAG_CIPHER_SCHEME;
}
}
memcpy(key->conf.key, key_data, key_len);
INIT_LIST_HEAD(&key->list);
return key;
}
static void ieee80211_key_free_common(struct ieee80211_key *key)
{
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
ieee80211_aes_key_free(key->u.ccmp.tfm);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
break;
}
kzfree(key);
}
static void __ieee80211_key_destroy(struct ieee80211_key *key,
bool delay_tailroom)
{
if (key->local) {
struct ieee80211_sub_if_data *sdata = key->sdata;
ieee80211_debugfs_key_remove(key);
if (delay_tailroom) {
/* see ieee80211_delayed_tailroom_dec */
sdata->crypto_tx_tailroom_pending_dec++;
schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
HZ/2);
} else {
decrease_tailroom_need_count(sdata, 1);
}
}
ieee80211_key_free_common(key);
}
static void ieee80211_key_destroy(struct ieee80211_key *key,
bool delay_tailroom)
{
if (!key)
return;
/*
* Synchronize so the TX path and rcu key iterators
* can no longer be using this key before we free/remove it.
*/
synchronize_net();
__ieee80211_key_destroy(key, delay_tailroom);
}
void ieee80211_key_free_unused(struct ieee80211_key *key)
{
WARN_ON(key->sdata || key->local);
ieee80211_key_free_common(key);
}
static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
struct ieee80211_key *old,
struct ieee80211_key *new)
{
u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
u8 *tk_old, *tk_new;
if (!old || new->conf.keylen != old->conf.keylen)
return false;
tk_old = old->conf.key;
tk_new = new->conf.key;
/*
* In station mode, don't compare the TX MIC key, as it's never used
* and offloaded rekeying may not care to send it to the host. This
* is the case in iwlwifi, for example.
*/
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
new->conf.keylen == WLAN_KEY_LEN_TKIP &&
!(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
tk_old = tkip_old;
tk_new = tkip_new;
}
return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
}
int ieee80211_key_link(struct ieee80211_key *key,
struct ieee80211_sub_if_data *sdata,
struct sta_info *sta)
{
struct ieee80211_key *old_key;
int idx = key->conf.keyidx;
bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
/*
* We want to delay tailroom updates only for station - in that
* case it helps roaming speed, but in other cases it hurts and
* can cause warnings to appear.
*/
bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
int ret;
mutex_lock(&sdata->local->key_mtx);
if (sta && pairwise)
old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
else if (sta)
old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
else
old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
/*
* Silently accept key re-installation without really installing the
* new version of the key to avoid nonce reuse or replay issues.
*/
if (ieee80211_key_identical(sdata, old_key, key)) {
ieee80211_key_free_unused(key);
ret = 0;
goto out;
}
key->local = sdata->local;
key->sdata = sdata;
key->sta = sta;
increment_tailroom_need_count(sdata);
ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
if (!ret) {
ieee80211_debugfs_key_add(key);
ieee80211_key_destroy(old_key, delay_tailroom);
} else {
ieee80211_key_free(key, delay_tailroom);
}
out:
mutex_unlock(&sdata->local->key_mtx);
return ret;
}
void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
{
if (!key)
return;
/*
* Replace key with nothingness if it was ever used.
*/
if (key->sdata)
ieee80211_key_replace(key->sdata, key->sta,
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
key, NULL);
ieee80211_key_destroy(key, delay_tailroom);
}
void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_key *key;
struct ieee80211_sub_if_data *vlan;
ASSERT_RTNL();
if (WARN_ON(!ieee80211_sdata_running(sdata)))
return;
mutex_lock(&sdata->local->key_mtx);
WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
sdata->crypto_tx_tailroom_pending_dec);
if (sdata->vif.type == NL80211_IFTYPE_AP) {
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
vlan->crypto_tx_tailroom_pending_dec);
}
list_for_each_entry(key, &sdata->key_list, list) {
increment_tailroom_need_count(sdata);
ieee80211_key_enable_hw_accel(key);
}
mutex_unlock(&sdata->local->key_mtx);
}
void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_sub_if_data *vlan;
mutex_lock(&sdata->local->key_mtx);
sdata->crypto_tx_tailroom_needed_cnt = 0;
if (sdata->vif.type == NL80211_IFTYPE_AP) {
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
vlan->crypto_tx_tailroom_needed_cnt = 0;
}
mutex_unlock(&sdata->local->key_mtx);
}
void ieee80211_iter_keys(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
void (*iter)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key,
void *data),
void *iter_data)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_key *key, *tmp;
struct ieee80211_sub_if_data *sdata;
ASSERT_RTNL();
mutex_lock(&local->key_mtx);
if (vif) {
sdata = vif_to_sdata(vif);
list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
iter(hw, &sdata->vif,
key->sta ? &key->sta->sta : NULL,
&key->conf, iter_data);
} else {
list_for_each_entry(sdata, &local->interfaces, list)
list_for_each_entry_safe(key, tmp,
&sdata->key_list, list)
iter(hw, &sdata->vif,
key->sta ? &key->sta->sta : NULL,
&key->conf, iter_data);
}
mutex_unlock(&local->key_mtx);
}
EXPORT_SYMBOL(ieee80211_iter_keys);
static void
_ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
struct ieee80211_sub_if_data *sdata,
void (*iter)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key,
void *data),
void *iter_data)
{
struct ieee80211_key *key;
list_for_each_entry_rcu(key, &sdata->key_list, list) {
/* skip keys of station in removal process */
if (key->sta && key->sta->removed)
continue;
if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
continue;
iter(hw, &sdata->vif,
key->sta ? &key->sta->sta : NULL,
&key->conf, iter_data);
}
}
void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
void (*iter)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key,
void *data),
void *iter_data)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
if (vif) {
sdata = vif_to_sdata(vif);
_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
} else {
list_for_each_entry_rcu(sdata, &local->interfaces, list)
_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
}
}
EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
struct list_head *keys)
{
struct ieee80211_key *key, *tmp;
decrease_tailroom_need_count(sdata,
sdata->crypto_tx_tailroom_pending_dec);
sdata->crypto_tx_tailroom_pending_dec = 0;
ieee80211_debugfs_key_remove_mgmt_default(sdata);
list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
ieee80211_key_replace(key->sdata, key->sta,
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
key, NULL);
list_add_tail(&key->list, keys);
}
ieee80211_debugfs_key_update_default(sdata);
}
void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
bool force_synchronize)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_sub_if_data *vlan;
struct ieee80211_sub_if_data *master;
struct ieee80211_key *key, *tmp;
LIST_HEAD(keys);
cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
mutex_lock(&local->key_mtx);
ieee80211_free_keys_iface(sdata, &keys);
if (sdata->vif.type == NL80211_IFTYPE_AP) {
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
ieee80211_free_keys_iface(vlan, &keys);
}
if (!list_empty(&keys) || force_synchronize)
synchronize_net();
list_for_each_entry_safe(key, tmp, &keys, list)
__ieee80211_key_destroy(key, false);
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
if (sdata->bss) {
master = container_of(sdata->bss,
struct ieee80211_sub_if_data,
u.ap);
WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
master->crypto_tx_tailroom_needed_cnt);
}
} else {
WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
sdata->crypto_tx_tailroom_pending_dec);
}
if (sdata->vif.type == NL80211_IFTYPE_AP) {
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
vlan->crypto_tx_tailroom_pending_dec);
}
mutex_unlock(&local->key_mtx);
}
void ieee80211_free_sta_keys(struct ieee80211_local *local,
struct sta_info *sta)
{
struct ieee80211_key *key;
int i;
mutex_lock(&local->key_mtx);
for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
key = key_mtx_dereference(local, sta->gtk[i]);
if (!key)
continue;
ieee80211_key_replace(key->sdata, key->sta,
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
key, NULL);
__ieee80211_key_destroy(key, key->sdata->vif.type ==
NL80211_IFTYPE_STATION);
}
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
key = key_mtx_dereference(local, sta->ptk[i]);
if (!key)
continue;
ieee80211_key_replace(key->sdata, key->sta,
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
key, NULL);
__ieee80211_key_destroy(key, key->sdata->vif.type ==
NL80211_IFTYPE_STATION);
}
mutex_unlock(&local->key_mtx);
}
void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
{
struct ieee80211_sub_if_data *sdata;
sdata = container_of(wk, struct ieee80211_sub_if_data,
dec_tailroom_needed_wk.work);
/*
* The reason for the delayed tailroom needed decrementing is to
* make roaming faster: during roaming, all keys are first deleted
* and then new keys are installed. The first new key causes the
* crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
* the cost of synchronize_net() (which can be slow). Avoid this
* by deferring the crypto_tx_tailroom_needed_cnt decrementing on
* key removal for a while, so if we roam the value is larger than
* zero and no 0->1 transition happens.
*
* The cost is that if the AP switching was from an AP with keys
* to one without, we still allocate tailroom while it would no
* longer be needed. However, in the typical (fast) roaming case
* within an ESS this usually won't happen.
*/
mutex_lock(&sdata->local->key_mtx);
decrease_tailroom_need_count(sdata,
sdata->crypto_tx_tailroom_pending_dec);
sdata->crypto_tx_tailroom_pending_dec = 0;
mutex_unlock(&sdata->local->key_mtx);
}
void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
const u8 *replay_ctr, gfp_t gfp)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
}
EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
int tid, struct ieee80211_key_seq *seq)
{
struct ieee80211_key *key;
const u8 *pn;
key = container_of(keyconf, struct ieee80211_key, conf);
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
return;
seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
return;
if (tid < 0)
pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
else
pn = key->u.ccmp.rx_pn[tid];
memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
if (WARN_ON(tid != 0))
return;
pn = key->u.aes_cmac.rx_pn;
memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (WARN_ON(tid != 0))
return;
pn = key->u.aes_gmac.rx_pn;
memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
return;
if (tid < 0)
pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
else
pn = key->u.gcmp.rx_pn[tid];
memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
break;
}
}
EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
int tid, struct ieee80211_key_seq *seq)
{
struct ieee80211_key *key;
u8 *pn;
key = container_of(keyconf, struct ieee80211_key, conf);
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
return;
key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
return;
if (tid < 0)
pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
else
pn = key->u.ccmp.rx_pn[tid];
memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
if (WARN_ON(tid != 0))
return;
pn = key->u.aes_cmac.rx_pn;
memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (WARN_ON(tid != 0))
return;
pn = key->u.aes_gmac.rx_pn;
memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
return;
if (tid < 0)
pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
else
pn = key->u.gcmp.rx_pn[tid];
memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
break;
default:
WARN_ON(1);
break;
}
}
EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
{
struct ieee80211_key *key;
key = container_of(keyconf, struct ieee80211_key, conf);
assert_key_lock(key->local);
/*
* if key was uploaded, we assume the driver will/has remove(d)
* it, so adjust bookkeeping accordingly
*/
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
if (!((key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
IEEE80211_KEY_FLAG_PUT_MIC_SPACE)) ||
(key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
increment_tailroom_need_count(key->sdata);
}
ieee80211_key_free(key, false);
}
EXPORT_SYMBOL_GPL(ieee80211_remove_key);
struct ieee80211_key_conf *
ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
struct ieee80211_key_conf *keyconf)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_local *local = sdata->local;
struct ieee80211_key *key;
int err;
if (WARN_ON(!local->wowlan))
return ERR_PTR(-EINVAL);
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
return ERR_PTR(-EINVAL);
key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
keyconf->keylen, keyconf->key,
0, NULL, NULL);
if (IS_ERR(key))
return ERR_CAST(key);
if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
err = ieee80211_key_link(key, sdata, NULL);
if (err)
return ERR_PTR(err);
return &key->conf;
}
EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);