linux/drivers/mtd/spi-nor/aspeed-smc.c
Nishka Dasgupta 6597f0b051
mtd: spi-nor: aspeed-smc: Add of_node_put()
Each iteration of for_each_available_child_of_node puts the previous
node, but in the case of a break from the middle of the loop, there is
no put, thus causing a memory leak. Upon termination of the loop
(whether by break or a natural exit), either ret will have a non-zero
value or child will be NULL. Hence add an of_node_put() that will
execute only when ret has a non-zero value, as calling of_node_put() on
a possible NULL value does not cause any further issues.
Issue found with Coccinelle.

Signed-off-by: Nishka Dasgupta <nishkadg.linux@gmail.com>
Reviewed-by: Andrew Jeffery <andrew@aj.id.au>
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
2019-08-28 12:40:31 +03:00

906 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* ASPEED Static Memory Controller driver
*
* Copyright (c) 2015-2016, IBM Corporation.
*/
#include <linux/bug.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/sizes.h>
#include <linux/sysfs.h>
#define DEVICE_NAME "aspeed-smc"
/*
* The driver only support SPI flash
*/
enum aspeed_smc_flash_type {
smc_type_nor = 0,
smc_type_nand = 1,
smc_type_spi = 2,
};
struct aspeed_smc_chip;
struct aspeed_smc_info {
u32 maxsize; /* maximum size of chip window */
u8 nce; /* number of chip enables */
bool hastype; /* flash type field exists in config reg */
u8 we0; /* shift for write enable bit for CE0 */
u8 ctl0; /* offset in regs of ctl for CE0 */
void (*set_4b)(struct aspeed_smc_chip *chip);
};
static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
static const struct aspeed_smc_info fmc_2400_info = {
.maxsize = 64 * 1024 * 1024,
.nce = 5,
.hastype = true,
.we0 = 16,
.ctl0 = 0x10,
.set_4b = aspeed_smc_chip_set_4b,
};
static const struct aspeed_smc_info spi_2400_info = {
.maxsize = 64 * 1024 * 1024,
.nce = 1,
.hastype = false,
.we0 = 0,
.ctl0 = 0x04,
.set_4b = aspeed_smc_chip_set_4b_spi_2400,
};
static const struct aspeed_smc_info fmc_2500_info = {
.maxsize = 256 * 1024 * 1024,
.nce = 3,
.hastype = true,
.we0 = 16,
.ctl0 = 0x10,
.set_4b = aspeed_smc_chip_set_4b,
};
static const struct aspeed_smc_info spi_2500_info = {
.maxsize = 128 * 1024 * 1024,
.nce = 2,
.hastype = false,
.we0 = 16,
.ctl0 = 0x10,
.set_4b = aspeed_smc_chip_set_4b,
};
enum aspeed_smc_ctl_reg_value {
smc_base, /* base value without mode for other commands */
smc_read, /* command reg for (maybe fast) reads */
smc_write, /* command reg for writes */
smc_max,
};
struct aspeed_smc_controller;
struct aspeed_smc_chip {
int cs;
struct aspeed_smc_controller *controller;
void __iomem *ctl; /* control register */
void __iomem *ahb_base; /* base of chip window */
u32 ahb_window_size; /* chip mapping window size */
u32 ctl_val[smc_max]; /* control settings */
enum aspeed_smc_flash_type type; /* what type of flash */
struct spi_nor nor;
};
struct aspeed_smc_controller {
struct device *dev;
struct mutex mutex; /* controller access mutex */
const struct aspeed_smc_info *info; /* type info of controller */
void __iomem *regs; /* controller registers */
void __iomem *ahb_base; /* per-chip windows resource */
u32 ahb_window_size; /* full mapping window size */
struct aspeed_smc_chip *chips[0]; /* pointers to attached chips */
};
/*
* SPI Flash Configuration Register (AST2500 SPI)
* or
* Type setting Register (AST2500 FMC).
* CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
* driver does not support it.
*/
#define CONFIG_REG 0x0
#define CONFIG_DISABLE_LEGACY BIT(31) /* 1 */
#define CONFIG_CE2_WRITE BIT(18)
#define CONFIG_CE1_WRITE BIT(17)
#define CONFIG_CE0_WRITE BIT(16)
#define CONFIG_CE2_TYPE BIT(4) /* AST2500 FMC only */
#define CONFIG_CE1_TYPE BIT(2) /* AST2500 FMC only */
#define CONFIG_CE0_TYPE BIT(0) /* AST2500 FMC only */
/*
* CE Control Register
*/
#define CE_CONTROL_REG 0x4
/*
* CEx Control Register
*/
#define CONTROL_AAF_MODE BIT(31)
#define CONTROL_IO_MODE_MASK GENMASK(30, 28)
#define CONTROL_IO_DUAL_DATA BIT(29)
#define CONTROL_IO_DUAL_ADDR_DATA (BIT(29) | BIT(28))
#define CONTROL_IO_QUAD_DATA BIT(30)
#define CONTROL_IO_QUAD_ADDR_DATA (BIT(30) | BIT(28))
#define CONTROL_CE_INACTIVE_SHIFT 24
#define CONTROL_CE_INACTIVE_MASK GENMASK(27, \
CONTROL_CE_INACTIVE_SHIFT)
/* 0 = 16T ... 15 = 1T T=HCLK */
#define CONTROL_COMMAND_SHIFT 16
#define CONTROL_DUMMY_COMMAND_OUT BIT(15)
#define CONTROL_IO_DUMMY_HI BIT(14)
#define CONTROL_IO_DUMMY_HI_SHIFT 14
#define CONTROL_CLK_DIV4 BIT(13) /* others */
#define CONTROL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI */
#define CONTROL_RW_MERGE BIT(12)
#define CONTROL_IO_DUMMY_LO_SHIFT 6
#define CONTROL_IO_DUMMY_LO GENMASK(7, \
CONTROL_IO_DUMMY_LO_SHIFT)
#define CONTROL_IO_DUMMY_MASK (CONTROL_IO_DUMMY_HI | \
CONTROL_IO_DUMMY_LO)
#define CONTROL_IO_DUMMY_SET(dummy) \
(((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
(((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
#define CONTROL_CLOCK_FREQ_SEL_SHIFT 8
#define CONTROL_CLOCK_FREQ_SEL_MASK GENMASK(11, \
CONTROL_CLOCK_FREQ_SEL_SHIFT)
#define CONTROL_LSB_FIRST BIT(5)
#define CONTROL_CLOCK_MODE_3 BIT(4)
#define CONTROL_IN_DUAL_DATA BIT(3)
#define CONTROL_CE_STOP_ACTIVE_CONTROL BIT(2)
#define CONTROL_COMMAND_MODE_MASK GENMASK(1, 0)
#define CONTROL_COMMAND_MODE_NORMAL 0
#define CONTROL_COMMAND_MODE_FREAD 1
#define CONTROL_COMMAND_MODE_WRITE 2
#define CONTROL_COMMAND_MODE_USER 3
#define CONTROL_KEEP_MASK \
(CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
/*
* The Segment Register uses a 8MB unit to encode the start address
* and the end address of the mapping window of a flash SPI slave :
*
* | byte 1 | byte 2 | byte 3 | byte 4 |
* +--------+--------+--------+--------+
* | end | start | 0 | 0 |
*/
#define SEGMENT_ADDR_REG0 0x30
#define SEGMENT_ADDR_START(_r) ((((_r) >> 16) & 0xFF) << 23)
#define SEGMENT_ADDR_END(_r) ((((_r) >> 24) & 0xFF) << 23)
#define SEGMENT_ADDR_VALUE(start, end) \
(((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
#define SEGMENT_ADDR_REG(controller, cs) \
((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
/*
* In user mode all data bytes read or written to the chip decode address
* range are transferred to or from the SPI bus. The range is treated as a
* fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
* to its size. The address within the multiple 8kB range is ignored when
* sending bytes to the SPI bus.
*
* On the arm architecture, as of Linux version 4.3, memcpy_fromio and
* memcpy_toio on little endian targets use the optimized memcpy routines
* that were designed for well behavied memory storage. These routines
* have a stutter if the source and destination are not both word aligned,
* once with a duplicate access to the source after aligning to the
* destination to a word boundary, and again with a duplicate access to
* the source when the final byte count is not word aligned.
*
* When writing or reading the fifo this stutter discards data or sends
* too much data to the fifo and can not be used by this driver.
*
* While the low level io string routines that implement the insl family do
* the desired accesses and memory increments, the cross architecture io
* macros make them essentially impossible to use on a memory mapped address
* instead of a a token from the call to iomap of an io port.
*
* These fifo routines use readl and friends to a constant io port and update
* the memory buffer pointer and count via explicit code. The final updates
* to len are optimistically suppressed.
*/
static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
{
size_t offset = 0;
if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
ioread32_rep(src, buf, len >> 2);
offset = len & ~0x3;
len -= offset;
}
ioread8_rep(src, (u8 *)buf + offset, len);
return 0;
}
static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
size_t len)
{
size_t offset = 0;
if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
iowrite32_rep(dst, buf, len >> 2);
offset = len & ~0x3;
len -= offset;
}
iowrite8_rep(dst, (const u8 *)buf + offset, len);
return 0;
}
static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
{
return BIT(chip->controller->info->we0 + chip->cs);
}
static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
{
struct aspeed_smc_controller *controller = chip->controller;
u32 reg;
reg = readl(controller->regs + CONFIG_REG);
if (reg & aspeed_smc_chip_write_bit(chip))
return;
dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
controller->regs + CONFIG_REG, reg);
reg |= aspeed_smc_chip_write_bit(chip);
writel(reg, controller->regs + CONFIG_REG);
}
static void aspeed_smc_start_user(struct spi_nor *nor)
{
struct aspeed_smc_chip *chip = nor->priv;
u32 ctl = chip->ctl_val[smc_base];
/*
* When the chip is controlled in user mode, we need write
* access to send the opcodes to it. So check the config.
*/
aspeed_smc_chip_check_config(chip);
ctl |= CONTROL_COMMAND_MODE_USER |
CONTROL_CE_STOP_ACTIVE_CONTROL;
writel(ctl, chip->ctl);
ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
writel(ctl, chip->ctl);
}
static void aspeed_smc_stop_user(struct spi_nor *nor)
{
struct aspeed_smc_chip *chip = nor->priv;
u32 ctl = chip->ctl_val[smc_read];
u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
CONTROL_CE_STOP_ACTIVE_CONTROL;
writel(ctl2, chip->ctl); /* stop user CE control */
writel(ctl, chip->ctl); /* default to fread or read mode */
}
static int aspeed_smc_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct aspeed_smc_chip *chip = nor->priv;
mutex_lock(&chip->controller->mutex);
return 0;
}
static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct aspeed_smc_chip *chip = nor->priv;
mutex_unlock(&chip->controller->mutex);
}
static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
struct aspeed_smc_chip *chip = nor->priv;
aspeed_smc_start_user(nor);
aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
aspeed_smc_stop_user(nor);
return 0;
}
static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
int len)
{
struct aspeed_smc_chip *chip = nor->priv;
aspeed_smc_start_user(nor);
aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
aspeed_smc_stop_user(nor);
return 0;
}
static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
{
struct aspeed_smc_chip *chip = nor->priv;
__be32 temp;
u32 cmdaddr;
switch (nor->addr_width) {
default:
WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
nor->addr_width);
/* FALLTHROUGH */
case 3:
cmdaddr = addr & 0xFFFFFF;
cmdaddr |= cmd << 24;
temp = cpu_to_be32(cmdaddr);
aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
break;
case 4:
temp = cpu_to_be32(addr);
aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
break;
}
}
static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
size_t len, u_char *read_buf)
{
struct aspeed_smc_chip *chip = nor->priv;
int i;
u8 dummy = 0xFF;
aspeed_smc_start_user(nor);
aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
for (i = 0; i < chip->nor.read_dummy / 8; i++)
aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
aspeed_smc_stop_user(nor);
return len;
}
static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
size_t len, const u_char *write_buf)
{
struct aspeed_smc_chip *chip = nor->priv;
aspeed_smc_start_user(nor);
aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
aspeed_smc_stop_user(nor);
return len;
}
static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
{
struct aspeed_smc_chip *chip;
int n;
for (n = 0; n < controller->info->nce; n++) {
chip = controller->chips[n];
if (chip)
mtd_device_unregister(&chip->nor.mtd);
}
return 0;
}
static int aspeed_smc_remove(struct platform_device *dev)
{
return aspeed_smc_unregister(platform_get_drvdata(dev));
}
static const struct of_device_id aspeed_smc_matches[] = {
{ .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
{ .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
{ .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
{ .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
{ }
};
MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
/*
* Each chip has a mapping window defined by a segment address
* register defining a start and an end address on the AHB bus. These
* addresses can be configured to fit the chip size and offer a
* contiguous memory region across chips. For the moment, we only
* check that each chip segment is valid.
*/
static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
struct resource *res)
{
struct aspeed_smc_controller *controller = chip->controller;
u32 offset = 0;
u32 reg;
if (controller->info->nce > 1) {
reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
return NULL;
offset = SEGMENT_ADDR_START(reg) - res->start;
}
return controller->ahb_base + offset;
}
static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
{
u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
return SEGMENT_ADDR_START(seg0_val);
}
static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
u32 size)
{
struct aspeed_smc_controller *controller = chip->controller;
void __iomem *seg_reg;
u32 seg_oldval, seg_newval, ahb_base_phy, end;
ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
seg_reg = SEGMENT_ADDR_REG(controller, cs);
seg_oldval = readl(seg_reg);
/*
* If the chip size is not specified, use the default segment
* size, but take into account the possible overlap with the
* previous segment
*/
if (!size)
size = SEGMENT_ADDR_END(seg_oldval) - start;
/*
* The segment cannot exceed the maximum window size of the
* controller.
*/
if (start + size > ahb_base_phy + controller->ahb_window_size) {
size = ahb_base_phy + controller->ahb_window_size - start;
dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
cs, size >> 20);
}
end = start + size;
seg_newval = SEGMENT_ADDR_VALUE(start, end);
writel(seg_newval, seg_reg);
/*
* Restore default value if something goes wrong. The chip
* might have set some bogus value and we would loose access
* to the chip.
*/
if (seg_newval != readl(seg_reg)) {
dev_err(chip->nor.dev, "CE%d window invalid", cs);
writel(seg_oldval, seg_reg);
start = SEGMENT_ADDR_START(seg_oldval);
end = SEGMENT_ADDR_END(seg_oldval);
size = end - start;
}
dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
cs, start, end, size >> 20);
return size;
}
/*
* The segment register defines the mapping window on the AHB bus and
* it needs to be configured depending on the chip size. The segment
* register of the following CE also needs to be tuned in order to
* provide a contiguous window across multiple chips.
*
* This is expected to be called in increasing CE order
*/
static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
{
struct aspeed_smc_controller *controller = chip->controller;
u32 ahb_base_phy, start;
u32 size = chip->nor.mtd.size;
/*
* Each controller has a chip size limit for direct memory
* access
*/
if (size > controller->info->maxsize)
size = controller->info->maxsize;
/*
* The AST2400 SPI controller only handles one chip and does
* not have segment registers. Let's use the chip size for the
* AHB window.
*/
if (controller->info == &spi_2400_info)
goto out;
/*
* The AST2500 SPI controller has a HW bug when the CE0 chip
* size reaches 128MB. Enforce a size limit of 120MB to
* prevent the controller from using bogus settings in the
* segment register.
*/
if (chip->cs == 0 && controller->info == &spi_2500_info &&
size == SZ_128M) {
size = 120 << 20;
dev_info(chip->nor.dev,
"CE%d window resized to %dMB (AST2500 HW quirk)",
chip->cs, size >> 20);
}
ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
/*
* As a start address for the current segment, use the default
* start address if we are handling CE0 or use the previous
* segment ending address
*/
if (chip->cs) {
u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
start = SEGMENT_ADDR_END(prev);
} else {
start = ahb_base_phy;
}
size = chip_set_segment(chip, chip->cs, start, size);
/* Update chip base address on the AHB bus */
chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
/*
* Now, make sure the next segment does not overlap with the
* current one we just configured, even if there is no
* available chip. That could break access in Command Mode.
*/
if (chip->cs < controller->info->nce - 1)
chip_set_segment(chip, chip->cs + 1, start + size, 0);
out:
if (size < chip->nor.mtd.size)
dev_warn(chip->nor.dev,
"CE%d window too small for chip %dMB",
chip->cs, (u32)chip->nor.mtd.size >> 20);
return size;
}
static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
{
struct aspeed_smc_controller *controller = chip->controller;
u32 reg;
reg = readl(controller->regs + CONFIG_REG);
reg |= aspeed_smc_chip_write_bit(chip);
writel(reg, controller->regs + CONFIG_REG);
}
static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
{
struct aspeed_smc_controller *controller = chip->controller;
u32 reg;
chip->type = type;
reg = readl(controller->regs + CONFIG_REG);
reg &= ~(3 << (chip->cs * 2));
reg |= chip->type << (chip->cs * 2);
writel(reg, controller->regs + CONFIG_REG);
}
/*
* The first chip of the AST2500 FMC flash controller is strapped by
* hardware, or autodetected, but other chips need to be set. Enforce
* the 4B setting for all chips.
*/
static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
{
struct aspeed_smc_controller *controller = chip->controller;
u32 reg;
reg = readl(controller->regs + CE_CONTROL_REG);
reg |= 1 << chip->cs;
writel(reg, controller->regs + CE_CONTROL_REG);
}
/*
* The AST2400 SPI flash controller does not have a CE Control
* register. It uses the CE0 control register to set 4Byte mode at the
* controller level.
*/
static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
{
chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
}
static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
struct resource *res)
{
struct aspeed_smc_controller *controller = chip->controller;
const struct aspeed_smc_info *info = controller->info;
u32 reg, base_reg;
/*
* Always turn on the write enable bit to allow opcodes to be
* sent in user mode.
*/
aspeed_smc_chip_enable_write(chip);
/* The driver only supports SPI type flash */
if (info->hastype)
aspeed_smc_chip_set_type(chip, smc_type_spi);
/*
* Configure chip base address in memory
*/
chip->ahb_base = aspeed_smc_chip_base(chip, res);
if (!chip->ahb_base) {
dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
return -EINVAL;
}
/*
* Get value of the inherited control register. U-Boot usually
* does some timing calibration on the FMC chip, so it's good
* to keep them. In the future, we should handle calibration
* from Linux.
*/
reg = readl(chip->ctl);
dev_dbg(controller->dev, "control register: %08x\n", reg);
base_reg = reg & CONTROL_KEEP_MASK;
if (base_reg != reg) {
dev_dbg(controller->dev,
"control register changed to: %08x\n",
base_reg);
}
chip->ctl_val[smc_base] = base_reg;
/*
* Retain the prior value of the control register as the
* default if it was normal access mode. Otherwise start with
* the sanitized base value set to read mode.
*/
if ((reg & CONTROL_COMMAND_MODE_MASK) ==
CONTROL_COMMAND_MODE_NORMAL)
chip->ctl_val[smc_read] = reg;
else
chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
CONTROL_COMMAND_MODE_NORMAL;
dev_dbg(controller->dev, "default control register: %08x\n",
chip->ctl_val[smc_read]);
return 0;
}
static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
{
struct aspeed_smc_controller *controller = chip->controller;
const struct aspeed_smc_info *info = controller->info;
u32 cmd;
if (chip->nor.addr_width == 4 && info->set_4b)
info->set_4b(chip);
/* This is for direct AHB access when using Command Mode. */
chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
/*
* base mode has not been optimized yet. use it for writes.
*/
chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
CONTROL_COMMAND_MODE_WRITE;
dev_dbg(controller->dev, "write control register: %08x\n",
chip->ctl_val[smc_write]);
/*
* TODO: Adjust clocks if fast read is supported and interpret
* SPI-NOR flags to adjust controller settings.
*/
if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
if (chip->nor.read_dummy == 0)
cmd = CONTROL_COMMAND_MODE_NORMAL;
else
cmd = CONTROL_COMMAND_MODE_FREAD;
} else {
dev_err(chip->nor.dev, "unsupported SPI read mode\n");
return -EINVAL;
}
chip->ctl_val[smc_read] |= cmd |
CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
dev_dbg(controller->dev, "base control register: %08x\n",
chip->ctl_val[smc_read]);
return 0;
}
static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
struct device_node *np, struct resource *r)
{
const struct spi_nor_hwcaps hwcaps = {
.mask = SNOR_HWCAPS_READ |
SNOR_HWCAPS_READ_FAST |
SNOR_HWCAPS_PP,
};
const struct aspeed_smc_info *info = controller->info;
struct device *dev = controller->dev;
struct device_node *child;
unsigned int cs;
int ret = -ENODEV;
for_each_available_child_of_node(np, child) {
struct aspeed_smc_chip *chip;
struct spi_nor *nor;
struct mtd_info *mtd;
/* This driver does not support NAND or NOR flash devices. */
if (!of_device_is_compatible(child, "jedec,spi-nor"))
continue;
ret = of_property_read_u32(child, "reg", &cs);
if (ret) {
dev_err(dev, "Couldn't not read chip select.\n");
break;
}
if (cs >= info->nce) {
dev_err(dev, "Chip select %d out of range.\n",
cs);
ret = -ERANGE;
break;
}
if (controller->chips[cs]) {
dev_err(dev, "Chip select %d already in use by %s\n",
cs, dev_name(controller->chips[cs]->nor.dev));
ret = -EBUSY;
break;
}
chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
if (!chip) {
ret = -ENOMEM;
break;
}
chip->controller = controller;
chip->ctl = controller->regs + info->ctl0 + cs * 4;
chip->cs = cs;
nor = &chip->nor;
mtd = &nor->mtd;
nor->dev = dev;
nor->priv = chip;
spi_nor_set_flash_node(nor, child);
nor->read = aspeed_smc_read_user;
nor->write = aspeed_smc_write_user;
nor->read_reg = aspeed_smc_read_reg;
nor->write_reg = aspeed_smc_write_reg;
nor->prepare = aspeed_smc_prep;
nor->unprepare = aspeed_smc_unprep;
ret = aspeed_smc_chip_setup_init(chip, r);
if (ret)
break;
/*
* TODO: Add support for Dual and Quad SPI protocols
* attach when board support is present as determined
* by of property.
*/
ret = spi_nor_scan(nor, NULL, &hwcaps);
if (ret)
break;
ret = aspeed_smc_chip_setup_finish(chip);
if (ret)
break;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
break;
controller->chips[cs] = chip;
}
if (ret) {
of_node_put(child);
aspeed_smc_unregister(controller);
}
return ret;
}
static int aspeed_smc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct aspeed_smc_controller *controller;
const struct of_device_id *match;
const struct aspeed_smc_info *info;
struct resource *res;
int ret;
match = of_match_device(aspeed_smc_matches, &pdev->dev);
if (!match || !match->data)
return -ENODEV;
info = match->data;
controller = devm_kzalloc(&pdev->dev,
struct_size(controller, chips, info->nce),
GFP_KERNEL);
if (!controller)
return -ENOMEM;
controller->info = info;
controller->dev = dev;
mutex_init(&controller->mutex);
platform_set_drvdata(pdev, controller);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
controller->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(controller->regs))
return PTR_ERR(controller->regs);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
controller->ahb_base = devm_ioremap_resource(dev, res);
if (IS_ERR(controller->ahb_base))
return PTR_ERR(controller->ahb_base);
controller->ahb_window_size = resource_size(res);
ret = aspeed_smc_setup_flash(controller, np, res);
if (ret)
dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
return ret;
}
static struct platform_driver aspeed_smc_driver = {
.probe = aspeed_smc_probe,
.remove = aspeed_smc_remove,
.driver = {
.name = DEVICE_NAME,
.of_match_table = aspeed_smc_matches,
}
};
module_platform_driver(aspeed_smc_driver);
MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
MODULE_LICENSE("GPL v2");