linux/fs/bcachefs/recovery.c
Kent Overstreet ef4f6c322b bcachefs: Ensure BCH_FS_may_go_rw is set before exiting recovery
If BCH_FS_may_go_rw is not yet set, it indicates to the transaction
commit path that updates should be done via the list of journal replay
keys.

This must be set before multithreaded use commences.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-11-07 16:48:21 -05:00

1145 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "alloc_background.h"
#include "bkey_buf.h"
#include "btree_journal_iter.h"
#include "btree_node_scan.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "buckets.h"
#include "dirent.h"
#include "disk_accounting.h"
#include "errcode.h"
#include "error.h"
#include "fs-common.h"
#include "journal_io.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "logged_ops.h"
#include "move.h"
#include "quota.h"
#include "rebalance.h"
#include "recovery.h"
#include "recovery_passes.h"
#include "replicas.h"
#include "sb-clean.h"
#include "sb-downgrade.h"
#include "snapshot.h"
#include "super-io.h"
#include <linux/sort.h>
#include <linux/stat.h>
#define QSTR(n) { { { .len = strlen(n) } }, .name = n }
void bch2_btree_lost_data(struct bch_fs *c, enum btree_id btree)
{
if (btree >= BTREE_ID_NR_MAX)
return;
u64 b = BIT_ULL(btree);
if (!(c->sb.btrees_lost_data & b)) {
bch_err(c, "flagging btree %s lost data", bch2_btree_id_str(btree));
mutex_lock(&c->sb_lock);
bch2_sb_field_get(c->disk_sb.sb, ext)->btrees_lost_data |= cpu_to_le64(b);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
}
}
/* for -o reconstruct_alloc: */
static void bch2_reconstruct_alloc(struct bch_fs *c)
{
bch2_journal_log_msg(c, "dropping alloc info");
bch_info(c, "dropping and reconstructing all alloc info");
mutex_lock(&c->sb_lock);
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_allocations, ext->recovery_passes_required);
__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_info, ext->recovery_passes_required);
__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_lrus, ext->recovery_passes_required);
__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_extents_to_backpointers, ext->recovery_passes_required);
__set_bit_le64(BCH_RECOVERY_PASS_STABLE_check_alloc_to_lru_refs, ext->recovery_passes_required);
__set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_alloc_key, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_ptr_gen_newer_than_bucket_gen, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_stale_dirty_ptr, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_dev_usage_buckets_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_dev_usage_sectors_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_dev_usage_fragmented_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_fs_usage_btree_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_fs_usage_cached_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_fs_usage_persistent_reserved_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_fs_usage_replicas_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_alloc_key_data_type_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_alloc_key_gen_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_alloc_key_dirty_sectors_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_alloc_key_cached_sectors_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_alloc_key_stripe_redundancy_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_need_discard_key_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_freespace_key_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_bucket_gens_key_wrong, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_freespace_hole_missing, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_ptr_to_missing_backpointer, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_lru_entry_bad, ext->errors_silent);
__set_bit_le64(BCH_FSCK_ERR_accounting_mismatch, ext->errors_silent);
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
c->opts.recovery_passes |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
bch2_shoot_down_journal_keys(c, BTREE_ID_alloc,
0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
bch2_shoot_down_journal_keys(c, BTREE_ID_backpointers,
0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
bch2_shoot_down_journal_keys(c, BTREE_ID_need_discard,
0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
bch2_shoot_down_journal_keys(c, BTREE_ID_freespace,
0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
bch2_shoot_down_journal_keys(c, BTREE_ID_bucket_gens,
0, BTREE_MAX_DEPTH, POS_MIN, SPOS_MAX);
}
/*
* Btree node pointers have a field to stack a pointer to the in memory btree
* node; we need to zero out this field when reading in btree nodes, or when
* reading in keys from the journal:
*/
static void zero_out_btree_mem_ptr(struct journal_keys *keys)
{
darray_for_each(*keys, i)
if (i->k->k.type == KEY_TYPE_btree_ptr_v2)
bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0;
}
/* journal replay: */
static void replay_now_at(struct journal *j, u64 seq)
{
BUG_ON(seq < j->replay_journal_seq);
seq = min(seq, j->replay_journal_seq_end);
while (j->replay_journal_seq < seq)
bch2_journal_pin_put(j, j->replay_journal_seq++);
}
static int bch2_journal_replay_accounting_key(struct btree_trans *trans,
struct journal_key *k)
{
struct btree_iter iter;
bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
BTREE_MAX_DEPTH, k->level,
BTREE_ITER_intent);
int ret = bch2_btree_iter_traverse(&iter);
if (ret)
goto out;
struct bkey u;
struct bkey_s_c old = bch2_btree_path_peek_slot(btree_iter_path(trans, &iter), &u);
/* Has this delta already been applied to the btree? */
if (bversion_cmp(old.k->bversion, k->k->k.bversion) >= 0) {
ret = 0;
goto out;
}
struct bkey_i *new = k->k;
if (old.k->type == KEY_TYPE_accounting) {
new = bch2_bkey_make_mut_noupdate(trans, bkey_i_to_s_c(k->k));
ret = PTR_ERR_OR_ZERO(new);
if (ret)
goto out;
bch2_accounting_accumulate(bkey_i_to_accounting(new),
bkey_s_c_to_accounting(old));
}
trans->journal_res.seq = k->journal_seq;
ret = bch2_trans_update(trans, &iter, new, BTREE_TRIGGER_norun);
out:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static int bch2_journal_replay_key(struct btree_trans *trans,
struct journal_key *k)
{
struct btree_iter iter;
unsigned iter_flags =
BTREE_ITER_intent|
BTREE_ITER_not_extents;
unsigned update_flags = BTREE_TRIGGER_norun;
int ret;
if (k->overwritten)
return 0;
trans->journal_res.seq = k->journal_seq;
/*
* BTREE_UPDATE_key_cache_reclaim disables key cache lookup/update to
* keep the key cache coherent with the underlying btree. Nothing
* besides the allocator is doing updates yet so we don't need key cache
* coherency for non-alloc btrees, and key cache fills for snapshots
* btrees use BTREE_ITER_filter_snapshots, which isn't available until
* the snapshots recovery pass runs.
*/
if (!k->level && k->btree_id == BTREE_ID_alloc)
iter_flags |= BTREE_ITER_cached;
else
update_flags |= BTREE_UPDATE_key_cache_reclaim;
bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
BTREE_MAX_DEPTH, k->level,
iter_flags);
ret = bch2_btree_iter_traverse(&iter);
if (ret)
goto out;
struct btree_path *path = btree_iter_path(trans, &iter);
if (unlikely(!btree_path_node(path, k->level))) {
bch2_trans_iter_exit(trans, &iter);
bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p,
BTREE_MAX_DEPTH, 0, iter_flags);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_btree_increase_depth(trans, iter.path, 0) ?:
-BCH_ERR_transaction_restart_nested;
goto out;
}
/* Must be checked with btree locked: */
if (k->overwritten)
goto out;
if (k->k->k.type == KEY_TYPE_accounting) {
ret = bch2_trans_update_buffered(trans, BTREE_ID_accounting, k->k);
goto out;
}
ret = bch2_trans_update(trans, &iter, k->k, update_flags);
out:
bch2_trans_iter_exit(trans, &iter);
return ret;
}
static int journal_sort_seq_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = *((const struct journal_key **)_l);
const struct journal_key *r = *((const struct journal_key **)_r);
/*
* Map 0 to U64_MAX, so that keys with journal_seq === 0 come last
*
* journal_seq == 0 means that the key comes from early repair, and
* should be inserted last so as to avoid overflowing the journal
*/
return cmp_int(l->journal_seq - 1, r->journal_seq - 1);
}
int bch2_journal_replay(struct bch_fs *c)
{
struct journal_keys *keys = &c->journal_keys;
DARRAY(struct journal_key *) keys_sorted = { 0 };
struct journal *j = &c->journal;
u64 start_seq = c->journal_replay_seq_start;
u64 end_seq = c->journal_replay_seq_start;
struct btree_trans *trans = NULL;
bool immediate_flush = false;
int ret = 0;
if (keys->nr) {
ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)",
keys->nr, start_seq, end_seq);
if (ret)
goto err;
}
BUG_ON(!atomic_read(&keys->ref));
move_gap(keys, keys->nr);
trans = bch2_trans_get(c);
/*
* Replay accounting keys first: we can't allow the write buffer to
* flush accounting keys until we're done
*/
darray_for_each(*keys, k) {
if (!(k->k->k.type == KEY_TYPE_accounting && !k->allocated))
continue;
cond_resched();
ret = commit_do(trans, NULL, NULL,
BCH_TRANS_COMMIT_no_enospc|
BCH_TRANS_COMMIT_journal_reclaim|
BCH_TRANS_COMMIT_skip_accounting_apply|
BCH_TRANS_COMMIT_no_journal_res|
BCH_WATERMARK_reclaim,
bch2_journal_replay_accounting_key(trans, k));
if (bch2_fs_fatal_err_on(ret, c, "error replaying accounting; %s", bch2_err_str(ret)))
goto err;
k->overwritten = true;
}
set_bit(BCH_FS_accounting_replay_done, &c->flags);
/*
* First, attempt to replay keys in sorted order. This is more
* efficient - better locality of btree access - but some might fail if
* that would cause a journal deadlock.
*/
darray_for_each(*keys, k) {
cond_resched();
/*
* k->allocated means the key wasn't read in from the journal,
* rather it was from early repair code
*/
if (k->allocated)
immediate_flush = true;
/* Skip fastpath if we're low on space in the journal */
ret = c->journal.watermark ? -1 :
commit_do(trans, NULL, NULL,
BCH_TRANS_COMMIT_no_enospc|
BCH_TRANS_COMMIT_journal_reclaim|
BCH_TRANS_COMMIT_skip_accounting_apply|
(!k->allocated ? BCH_TRANS_COMMIT_no_journal_res : 0),
bch2_journal_replay_key(trans, k));
BUG_ON(!ret && !k->overwritten && k->k->k.type != KEY_TYPE_accounting);
if (ret) {
ret = darray_push(&keys_sorted, k);
if (ret)
goto err;
}
}
bch2_trans_unlock_long(trans);
/*
* Now, replay any remaining keys in the order in which they appear in
* the journal, unpinning those journal entries as we go:
*/
sort(keys_sorted.data, keys_sorted.nr,
sizeof(keys_sorted.data[0]),
journal_sort_seq_cmp, NULL);
darray_for_each(keys_sorted, kp) {
cond_resched();
struct journal_key *k = *kp;
if (k->journal_seq)
replay_now_at(j, k->journal_seq);
else
replay_now_at(j, j->replay_journal_seq_end);
ret = commit_do(trans, NULL, NULL,
BCH_TRANS_COMMIT_no_enospc|
BCH_TRANS_COMMIT_skip_accounting_apply|
(!k->allocated
? BCH_TRANS_COMMIT_no_journal_res|BCH_WATERMARK_reclaim
: 0),
bch2_journal_replay_key(trans, k));
bch_err_msg(c, ret, "while replaying key at btree %s level %u:",
bch2_btree_id_str(k->btree_id), k->level);
if (ret)
goto err;
BUG_ON(k->btree_id != BTREE_ID_accounting && !k->overwritten);
}
/*
* We need to put our btree_trans before calling flush_all_pins(), since
* that will use a btree_trans internally
*/
bch2_trans_put(trans);
trans = NULL;
if (!c->opts.retain_recovery_info &&
c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay)
bch2_journal_keys_put_initial(c);
replay_now_at(j, j->replay_journal_seq_end);
j->replay_journal_seq = 0;
bch2_journal_set_replay_done(j);
/* if we did any repair, flush it immediately */
if (immediate_flush) {
bch2_journal_flush_all_pins(&c->journal);
ret = bch2_journal_meta(&c->journal);
}
if (keys->nr)
bch2_journal_log_msg(c, "journal replay finished");
err:
if (trans)
bch2_trans_put(trans);
darray_exit(&keys_sorted);
bch_err_fn(c, ret);
return ret;
}
/* journal replay early: */
static int journal_replay_entry_early(struct bch_fs *c,
struct jset_entry *entry)
{
int ret = 0;
switch (entry->type) {
case BCH_JSET_ENTRY_btree_root: {
struct btree_root *r;
if (fsck_err_on(entry->btree_id >= BTREE_ID_NR_MAX,
c, invalid_btree_id,
"invalid btree id %u (max %u)",
entry->btree_id, BTREE_ID_NR_MAX))
return 0;
while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) {
ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL });
if (ret)
return ret;
}
r = bch2_btree_id_root(c, entry->btree_id);
if (entry->u64s) {
r->level = entry->level;
bkey_copy(&r->key, (struct bkey_i *) entry->start);
r->error = 0;
} else {
r->error = -BCH_ERR_btree_node_read_error;
}
r->alive = true;
break;
}
case BCH_JSET_ENTRY_usage: {
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
switch (entry->btree_id) {
case BCH_FS_USAGE_key_version:
atomic64_set(&c->key_version, le64_to_cpu(u->v));
break;
}
break;
}
case BCH_JSET_ENTRY_blacklist: {
struct jset_entry_blacklist *bl_entry =
container_of(entry, struct jset_entry_blacklist, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->seq),
le64_to_cpu(bl_entry->seq) + 1);
break;
}
case BCH_JSET_ENTRY_blacklist_v2: {
struct jset_entry_blacklist_v2 *bl_entry =
container_of(entry, struct jset_entry_blacklist_v2, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->start),
le64_to_cpu(bl_entry->end) + 1);
break;
}
case BCH_JSET_ENTRY_clock: {
struct jset_entry_clock *clock =
container_of(entry, struct jset_entry_clock, entry);
atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time));
}
}
fsck_err:
return ret;
}
static int journal_replay_early(struct bch_fs *c,
struct bch_sb_field_clean *clean)
{
if (clean) {
for (struct jset_entry *entry = clean->start;
entry != vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
int ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
} else {
struct genradix_iter iter;
struct journal_replay *i, **_i;
genradix_for_each(&c->journal_entries, iter, _i) {
i = *_i;
if (journal_replay_ignore(i))
continue;
vstruct_for_each(&i->j, entry) {
int ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
}
}
return 0;
}
/* sb clean section: */
static int read_btree_roots(struct bch_fs *c)
{
int ret = 0;
for (unsigned i = 0; i < btree_id_nr_alive(c); i++) {
struct btree_root *r = bch2_btree_id_root(c, i);
if (!r->alive)
continue;
if (btree_id_is_alloc(i) && c->opts.reconstruct_alloc)
continue;
if (mustfix_fsck_err_on((ret = r->error),
c, btree_root_bkey_invalid,
"invalid btree root %s",
bch2_btree_id_str(i)) ||
mustfix_fsck_err_on((ret = r->error = bch2_btree_root_read(c, i, &r->key, r->level)),
c, btree_root_read_error,
"error reading btree root %s l=%u: %s",
bch2_btree_id_str(i), r->level, bch2_err_str(ret))) {
if (btree_id_is_alloc(i)) {
c->opts.recovery_passes |= BIT_ULL(BCH_RECOVERY_PASS_check_allocations);
c->opts.recovery_passes |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_info);
c->opts.recovery_passes |= BIT_ULL(BCH_RECOVERY_PASS_check_lrus);
c->opts.recovery_passes |= BIT_ULL(BCH_RECOVERY_PASS_check_extents_to_backpointers);
c->opts.recovery_passes |= BIT_ULL(BCH_RECOVERY_PASS_check_alloc_to_lru_refs);
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
r->error = 0;
} else if (!(c->opts.recovery_passes & BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes))) {
bch_info(c, "will run btree node scan");
c->opts.recovery_passes |= BIT_ULL(BCH_RECOVERY_PASS_scan_for_btree_nodes);
c->opts.recovery_passes |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
}
ret = 0;
bch2_btree_lost_data(c, i);
}
}
for (unsigned i = 0; i < BTREE_ID_NR; i++) {
struct btree_root *r = bch2_btree_id_root(c, i);
if (!r->b && !r->error) {
r->alive = false;
r->level = 0;
bch2_btree_root_alloc_fake(c, i, 0);
}
}
fsck_err:
return ret;
}
static bool check_version_upgrade(struct bch_fs *c)
{
unsigned latest_version = bcachefs_metadata_version_current;
unsigned latest_compatible = min(latest_version,
bch2_latest_compatible_version(c->sb.version));
unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version;
unsigned new_version = 0;
if (old_version < bcachefs_metadata_required_upgrade_below) {
if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible ||
latest_compatible < bcachefs_metadata_required_upgrade_below)
new_version = latest_version;
else
new_version = latest_compatible;
} else {
switch (c->opts.version_upgrade) {
case BCH_VERSION_UPGRADE_compatible:
new_version = latest_compatible;
break;
case BCH_VERSION_UPGRADE_incompatible:
new_version = latest_version;
break;
case BCH_VERSION_UPGRADE_none:
new_version = min(old_version, latest_version);
break;
}
}
if (new_version > old_version) {
struct printbuf buf = PRINTBUF;
if (old_version < bcachefs_metadata_required_upgrade_below)
prt_str(&buf, "Version upgrade required:\n");
if (old_version != c->sb.version) {
prt_str(&buf, "Version upgrade from ");
bch2_version_to_text(&buf, c->sb.version_upgrade_complete);
prt_str(&buf, " to ");
bch2_version_to_text(&buf, c->sb.version);
prt_str(&buf, " incomplete\n");
}
prt_printf(&buf, "Doing %s version upgrade from ",
BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version)
? "incompatible" : "compatible");
bch2_version_to_text(&buf, old_version);
prt_str(&buf, " to ");
bch2_version_to_text(&buf, new_version);
prt_newline(&buf);
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
__le64 passes = ext->recovery_passes_required[0];
bch2_sb_set_upgrade(c, old_version, new_version);
passes = ext->recovery_passes_required[0] & ~passes;
if (passes) {
prt_str(&buf, " running recovery passes: ");
prt_bitflags(&buf, bch2_recovery_passes,
bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
}
bch_info(c, "%s", buf.buf);
bch2_sb_upgrade(c, new_version);
printbuf_exit(&buf);
return true;
}
return false;
}
int bch2_fs_recovery(struct bch_fs *c)
{
struct bch_sb_field_clean *clean = NULL;
struct jset *last_journal_entry = NULL;
u64 last_seq = 0, blacklist_seq, journal_seq;
int ret = 0;
if (c->sb.clean) {
clean = bch2_read_superblock_clean(c);
ret = PTR_ERR_OR_ZERO(clean);
if (ret)
goto err;
bch_info(c, "recovering from clean shutdown, journal seq %llu",
le64_to_cpu(clean->journal_seq));
} else {
bch_info(c, "recovering from unclean shutdown");
}
if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) {
bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported");
ret = -EINVAL;
goto err;
}
if (!c->sb.clean &&
!(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
ret = -EINVAL;
goto err;
}
if (c->opts.norecovery)
c->opts.recovery_pass_last = BCH_RECOVERY_PASS_journal_replay - 1;
mutex_lock(&c->sb_lock);
struct bch_sb_field_ext *ext = bch2_sb_field_get(c->disk_sb.sb, ext);
bool write_sb = false;
if (BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb)) {
ext->recovery_passes_required[0] |=
cpu_to_le64(bch2_recovery_passes_to_stable(BIT_ULL(BCH_RECOVERY_PASS_check_topology)));
write_sb = true;
}
u64 sb_passes = bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
if (sb_passes) {
struct printbuf buf = PRINTBUF;
prt_str(&buf, "superblock requires following recovery passes to be run:\n ");
prt_bitflags(&buf, bch2_recovery_passes, sb_passes);
bch_info(c, "%s", buf.buf);
printbuf_exit(&buf);
}
if (bch2_check_version_downgrade(c)) {
struct printbuf buf = PRINTBUF;
prt_str(&buf, "Version downgrade required:");
__le64 passes = ext->recovery_passes_required[0];
bch2_sb_set_downgrade(c,
BCH_VERSION_MINOR(bcachefs_metadata_version_current),
BCH_VERSION_MINOR(c->sb.version));
passes = ext->recovery_passes_required[0] & ~passes;
if (passes) {
prt_str(&buf, "\n running recovery passes: ");
prt_bitflags(&buf, bch2_recovery_passes,
bch2_recovery_passes_from_stable(le64_to_cpu(passes)));
}
bch_info(c, "%s", buf.buf);
printbuf_exit(&buf);
write_sb = true;
}
if (check_version_upgrade(c))
write_sb = true;
c->opts.recovery_passes |= bch2_recovery_passes_from_stable(le64_to_cpu(ext->recovery_passes_required[0]));
if (write_sb)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (c->opts.fsck && IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
c->opts.recovery_passes |= BIT_ULL(BCH_RECOVERY_PASS_check_topology);
if (c->opts.fsck)
set_bit(BCH_FS_fsck_running, &c->flags);
if (c->sb.clean)
set_bit(BCH_FS_clean_recovery, &c->flags);
ret = bch2_blacklist_table_initialize(c);
if (ret) {
bch_err(c, "error initializing blacklist table");
goto err;
}
bch2_journal_pos_from_member_info_resume(c);
if (!c->sb.clean || c->opts.retain_recovery_info) {
struct genradix_iter iter;
struct journal_replay **i;
bch_verbose(c, "starting journal read");
ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq);
if (ret)
goto err;
/*
* note: cmd_list_journal needs the blacklist table fully up to date so
* it can asterisk ignored journal entries:
*/
if (c->opts.read_journal_only)
goto out;
genradix_for_each_reverse(&c->journal_entries, iter, i)
if (!journal_replay_ignore(*i)) {
last_journal_entry = &(*i)->j;
break;
}
if (mustfix_fsck_err_on(c->sb.clean &&
last_journal_entry &&
!journal_entry_empty(last_journal_entry), c,
clean_but_journal_not_empty,
"filesystem marked clean but journal not empty")) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
}
if (!last_journal_entry) {
fsck_err_on(!c->sb.clean, c,
dirty_but_no_journal_entries,
"no journal entries found");
if (clean)
goto use_clean;
genradix_for_each_reverse(&c->journal_entries, iter, i)
if (*i) {
last_journal_entry = &(*i)->j;
(*i)->ignore_blacklisted = false;
(*i)->ignore_not_dirty= false;
/*
* This was probably a NO_FLUSH entry,
* so last_seq was garbage - but we know
* we're only using a single journal
* entry, set it here:
*/
(*i)->j.last_seq = (*i)->j.seq;
break;
}
}
ret = bch2_journal_keys_sort(c);
if (ret)
goto err;
if (c->sb.clean && last_journal_entry) {
ret = bch2_verify_superblock_clean(c, &clean,
last_journal_entry);
if (ret)
goto err;
}
} else {
use_clean:
if (!clean) {
bch_err(c, "no superblock clean section found");
ret = -BCH_ERR_fsck_repair_impossible;
goto err;
}
blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
}
c->journal_replay_seq_start = last_seq;
c->journal_replay_seq_end = blacklist_seq - 1;
if (c->opts.reconstruct_alloc)
bch2_reconstruct_alloc(c);
zero_out_btree_mem_ptr(&c->journal_keys);
ret = journal_replay_early(c, clean);
if (ret)
goto err;
/*
* After an unclean shutdown, skip then next few journal sequence
* numbers as they may have been referenced by btree writes that
* happened before their corresponding journal writes - those btree
* writes need to be ignored, by skipping and blacklisting the next few
* journal sequence numbers:
*/
if (!c->sb.clean)
journal_seq += 8;
if (blacklist_seq != journal_seq) {
ret = bch2_journal_log_msg(c, "blacklisting entries %llu-%llu",
blacklist_seq, journal_seq) ?:
bch2_journal_seq_blacklist_add(c,
blacklist_seq, journal_seq);
if (ret) {
bch_err_msg(c, ret, "error creating new journal seq blacklist entry");
goto err;
}
}
ret = bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu",
journal_seq, last_seq, blacklist_seq - 1) ?:
bch2_fs_journal_start(&c->journal, journal_seq);
if (ret)
goto err;
/*
* Skip past versions that might have possibly been used (as nonces),
* but hadn't had their pointers written:
*/
if (c->sb.encryption_type && !c->sb.clean)
atomic64_add(1 << 16, &c->key_version);
ret = read_btree_roots(c);
if (ret)
goto err;
set_bit(BCH_FS_btree_running, &c->flags);
ret = bch2_sb_set_upgrade_extra(c);
ret = bch2_run_recovery_passes(c);
if (ret)
goto err;
/*
* Normally set by the appropriate recovery pass: when cleared, this
* indicates we're in early recovery and btree updates should be done by
* being applied to the journal replay keys. _Must_ be cleared before
* multithreaded use:
*/
set_bit(BCH_FS_may_go_rw, &c->flags);
clear_bit(BCH_FS_fsck_running, &c->flags);
/* in case we don't run journal replay, i.e. norecovery mode */
set_bit(BCH_FS_accounting_replay_done, &c->flags);
/* fsync if we fixed errors */
if (test_bit(BCH_FS_errors_fixed, &c->flags) &&
bch2_write_ref_tryget(c, BCH_WRITE_REF_fsync)) {
bch2_journal_flush_all_pins(&c->journal);
bch2_journal_meta(&c->journal);
bch2_write_ref_put(c, BCH_WRITE_REF_fsync);
}
/* If we fixed errors, verify that fs is actually clean now: */
if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) &&
test_bit(BCH_FS_errors_fixed, &c->flags) &&
!test_bit(BCH_FS_errors_not_fixed, &c->flags) &&
!test_bit(BCH_FS_error, &c->flags)) {
bch2_flush_fsck_errs(c);
bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean");
clear_bit(BCH_FS_errors_fixed, &c->flags);
c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info;
ret = bch2_run_recovery_passes(c);
if (ret)
goto err;
if (test_bit(BCH_FS_errors_fixed, &c->flags) ||
test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
bch_err(c, "Second fsck run was not clean");
set_bit(BCH_FS_errors_not_fixed, &c->flags);
}
set_bit(BCH_FS_errors_fixed, &c->flags);
}
if (enabled_qtypes(c)) {
bch_verbose(c, "reading quotas");
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
bch_verbose(c, "quotas done");
}
mutex_lock(&c->sb_lock);
ext = bch2_sb_field_get(c->disk_sb.sb, ext);
write_sb = false;
if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != le16_to_cpu(c->disk_sb.sb->version)) {
SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, le16_to_cpu(c->disk_sb.sb->version));
write_sb = true;
}
if (!test_bit(BCH_FS_error, &c->flags) &&
!(c->disk_sb.sb->compat[0] & cpu_to_le64(1ULL << BCH_COMPAT_alloc_info))) {
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info);
write_sb = true;
}
if (!test_bit(BCH_FS_error, &c->flags) &&
!bch2_is_zero(ext->errors_silent, sizeof(ext->errors_silent))) {
memset(ext->errors_silent, 0, sizeof(ext->errors_silent));
write_sb = true;
}
if (c->opts.fsck &&
!test_bit(BCH_FS_error, &c->flags) &&
c->recovery_pass_done == BCH_RECOVERY_PASS_NR - 1 &&
ext->btrees_lost_data) {
ext->btrees_lost_data = 0;
write_sb = true;
}
if (c->opts.fsck &&
!test_bit(BCH_FS_error, &c->flags) &&
!test_bit(BCH_FS_errors_not_fixed, &c->flags)) {
SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0);
write_sb = true;
}
if (bch2_blacklist_entries_gc(c))
write_sb = true;
if (write_sb)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) {
struct bch_move_stats stats;
bch2_move_stats_init(&stats, "recovery");
struct printbuf buf = PRINTBUF;
bch2_version_to_text(&buf, c->sb.version_min);
bch_info(c, "scanning for old btree nodes: min_version %s", buf.buf);
printbuf_exit(&buf);
ret = bch2_fs_read_write_early(c) ?:
bch2_scan_old_btree_nodes(c, &stats);
if (ret)
goto err;
bch_info(c, "scanning for old btree nodes done");
}
ret = 0;
out:
bch2_flush_fsck_errs(c);
if (!c->opts.retain_recovery_info) {
bch2_journal_keys_put_initial(c);
bch2_find_btree_nodes_exit(&c->found_btree_nodes);
}
if (!IS_ERR(clean))
kfree(clean);
if (!ret &&
test_bit(BCH_FS_need_delete_dead_snapshots, &c->flags) &&
!c->opts.nochanges) {
bch2_fs_read_write_early(c);
bch2_delete_dead_snapshots_async(c);
}
bch_err_fn(c, ret);
return ret;
err:
fsck_err:
bch2_fs_emergency_read_only(c);
goto out;
}
int bch2_fs_initialize(struct bch_fs *c)
{
struct bch_inode_unpacked root_inode, lostfound_inode;
struct bkey_inode_buf packed_inode;
struct qstr lostfound = QSTR("lost+found");
struct bch_member *m;
int ret;
bch_notice(c, "initializing new filesystem");
set_bit(BCH_FS_new_fs, &c->flags);
mutex_lock(&c->sb_lock);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done);
c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done);
bch2_check_version_downgrade(c);
if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) {
bch2_sb_upgrade(c, bcachefs_metadata_version_current);
SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current);
bch2_write_super(c);
}
for_each_member_device(c, ca) {
m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
SET_BCH_MEMBER_FREESPACE_INITIALIZED(m, false);
ca->mi = bch2_mi_to_cpu(m);
}
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
c->curr_recovery_pass = BCH_RECOVERY_PASS_NR;
set_bit(BCH_FS_btree_running, &c->flags);
set_bit(BCH_FS_may_go_rw, &c->flags);
for (unsigned i = 0; i < BTREE_ID_NR; i++)
bch2_btree_root_alloc_fake(c, i, 0);
ret = bch2_fs_journal_alloc(c);
if (ret)
goto err;
/*
* journal_res_get() will crash if called before this has
* set up the journal.pin FIFO and journal.cur pointer:
*/
bch2_fs_journal_start(&c->journal, 1);
set_bit(BCH_FS_accounting_replay_done, &c->flags);
bch2_journal_set_replay_done(&c->journal);
ret = bch2_fs_read_write_early(c);
if (ret)
goto err;
for_each_member_device(c, ca) {
ret = bch2_dev_usage_init(ca, false);
if (ret) {
bch2_dev_put(ca);
goto err;
}
}
/*
* Write out the superblock and journal buckets, now that we can do
* btree updates
*/
bch_verbose(c, "marking superblocks");
ret = bch2_trans_mark_dev_sbs(c);
bch_err_msg(c, ret, "marking superblocks");
if (ret)
goto err;
for_each_online_member(c, ca)
ca->new_fs_bucket_idx = 0;
ret = bch2_fs_freespace_init(c);
if (ret)
goto err;
ret = bch2_initialize_subvolumes(c);
if (ret)
goto err;
bch_verbose(c, "reading snapshots table");
ret = bch2_snapshots_read(c);
if (ret)
goto err;
bch_verbose(c, "reading snapshots done");
bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL);
root_inode.bi_inum = BCACHEFS_ROOT_INO;
root_inode.bi_subvol = BCACHEFS_ROOT_SUBVOL;
bch2_inode_pack(&packed_inode, &root_inode);
packed_inode.inode.k.p.snapshot = U32_MAX;
ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0, 0);
bch_err_msg(c, ret, "creating root directory");
if (ret)
goto err;
bch2_inode_init_early(c, &lostfound_inode);
ret = bch2_trans_commit_do(c, NULL, NULL, 0,
bch2_create_trans(trans,
BCACHEFS_ROOT_SUBVOL_INUM,
&root_inode, &lostfound_inode,
&lostfound,
0, 0, S_IFDIR|0700, 0,
NULL, NULL, (subvol_inum) { 0 }, 0));
bch_err_msg(c, ret, "creating lost+found");
if (ret)
goto err;
c->recovery_pass_done = BCH_RECOVERY_PASS_NR - 1;
if (enabled_qtypes(c)) {
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
}
ret = bch2_journal_flush(&c->journal);
bch_err_msg(c, ret, "writing first journal entry");
if (ret)
goto err;
mutex_lock(&c->sb_lock);
SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return 0;
err:
bch_err_fn(c, ret);
return ret;
}