linux/drivers/mtd/nand/spi/esmt.c
Ezra Buehler 4bd14b2fd8 mtd: spinand: esmt: Extend IDs to 5 bytes
According to the datasheets, the ESMT chips in question will return a 5
byte long identification code where the last 3 bytes are the JEDEC
continuation codes (7Fh). Although, I would have expected 4 continuation
codes as Powerchip Semiconductor (C8h, corresponding to the parameter
page data) is located in bank 5 of the JEDEC database.

By matching the full 5 bytes we can avoid clashes with GigaDevice NAND
flashes.

This fix allows the MT7688-based GARDENA smart Gateway to boot again.

Fixes: aa08bf187f ("mtd: spinand: esmt: add support for F50D2G41KA")
Signed-off-by: Ezra Buehler <ezra.buehler@husqvarnagroup.com>
Reviewed-by: Martin Kurbanov <mmkurbanov@salutedevices.com>
Tested-by: Martin Kurbanov <mmkurbanov@salutedevices.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240125200108.24374-3-ezra@easyb.ch
2024-02-05 14:23:53 +01:00

148 lines
5.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Author:
* Chuanhong Guo <gch981213@gmail.com> - the main driver logic
* Martin Kurbanov <mmkurbanov@sberdevices.ru> - OOB layout
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/mtd/spinand.h>
/* ESMT uses GigaDevice 0xc8 JECDEC ID on some SPI NANDs */
#define SPINAND_MFR_ESMT_C8 0xc8
static SPINAND_OP_VARIANTS(read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
static SPINAND_OP_VARIANTS(write_cache_variants,
SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
SPINAND_PROG_LOAD(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(update_cache_variants,
SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
SPINAND_PROG_LOAD(false, 0, NULL, 0));
/*
* OOB spare area map (64 bytes)
*
* Bad Block Markers
* filled by HW and kernel Reserved
* | +-----------------------+-----------------------+
* | | | |
* | | OOB free data Area |non ECC protected |
* | +-------------|-----+-----------------|-----+-----------------|-----+
* | | | | | | | |
* +-|---|----------+--|-----|--------------+--|-----|--------------+--|-----|--------------+
* | | | section0 | | | section1 | | | section2 | | | section3 |
* +-v-+-v-+---+----+--v--+--v--+-----+-----+--v--+--v--+-----+-----+--v--+--v--+-----+-----+
* | | | | | | | | | | | | | | | | |
* |0:1|2:3|4:7|8:15|16:17|18:19|20:23|24:31|32:33|34:35|36:39|40:47|48:49|50:51|52:55|56:63|
* | | | | | | | | | | | | | | | | |
* +---+---+-^-+--^-+-----+-----+--^--+--^--+-----+-----+--^--+--^--+-----+-----+--^--+--^--+
* | | | | | | | |
* | +----------------|-----+-----------------|-----+-----------------|-----+
* | ECC Area|(Main + Spare) - filled|by ESMT NAND HW |
* | | | |
* +---------------------+-----------------------+-----------------------+
* OOB ECC protected Area - not used due to
* partial programming from some filesystems
* (like JFFS2 with cleanmarkers)
*/
#define ESMT_OOB_SECTION_COUNT 4
#define ESMT_OOB_SECTION_SIZE(nand) \
(nanddev_per_page_oobsize(nand) / ESMT_OOB_SECTION_COUNT)
#define ESMT_OOB_FREE_SIZE(nand) \
(ESMT_OOB_SECTION_SIZE(nand) / 2)
#define ESMT_OOB_ECC_SIZE(nand) \
(ESMT_OOB_SECTION_SIZE(nand) - ESMT_OOB_FREE_SIZE(nand))
#define ESMT_OOB_BBM_SIZE 2
static int f50l1g41lb_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
if (section >= ESMT_OOB_SECTION_COUNT)
return -ERANGE;
region->offset = section * ESMT_OOB_SECTION_SIZE(nand) +
ESMT_OOB_FREE_SIZE(nand);
region->length = ESMT_OOB_ECC_SIZE(nand);
return 0;
}
static int f50l1g41lb_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
struct nand_device *nand = mtd_to_nanddev(mtd);
if (section >= ESMT_OOB_SECTION_COUNT)
return -ERANGE;
/*
* Reserve space for bad blocks markers (section0) and
* reserved bytes (sections 1-3)
*/
region->offset = section * ESMT_OOB_SECTION_SIZE(nand) + 2;
/* Use only 2 non-protected ECC bytes per each OOB section */
region->length = 2;
return 0;
}
static const struct mtd_ooblayout_ops f50l1g41lb_ooblayout = {
.ecc = f50l1g41lb_ooblayout_ecc,
.free = f50l1g41lb_ooblayout_free,
};
static const struct spinand_info esmt_c8_spinand_table[] = {
SPINAND_INFO("F50L1G41LB",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0x01, 0x7f,
0x7f, 0x7f),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&f50l1g41lb_ooblayout, NULL)),
SPINAND_INFO("F50D1G41LB",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0x11, 0x7f,
0x7f, 0x7f),
NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(1, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&f50l1g41lb_ooblayout, NULL)),
SPINAND_INFO("F50D2G41KA",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0x51, 0x7f,
0x7f, 0x7f),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
&write_cache_variants,
&update_cache_variants),
0,
SPINAND_ECCINFO(&f50l1g41lb_ooblayout, NULL)),
};
static const struct spinand_manufacturer_ops esmt_spinand_manuf_ops = {
};
const struct spinand_manufacturer esmt_c8_spinand_manufacturer = {
.id = SPINAND_MFR_ESMT_C8,
.name = "ESMT",
.chips = esmt_c8_spinand_table,
.nchips = ARRAY_SIZE(esmt_c8_spinand_table),
.ops = &esmt_spinand_manuf_ops,
};