linux/arch/sh/mm/cache.c
Geert Uytterhoeven fcd9a89248 sh: cache: Move forward declarations to <asm/cacheflush.h>
arch/sh/kernel/cpu/init.c:99:29: warning: no previous prototype for 'l2_cache_init' [-Wmissing-prototypes]
arch/sh/kernel/cpu/sh4a/setup-sh7723.c:422:6: warning: no previous prototype for 'l2_cache_init' [-Wmissing-prototypes]
arch/sh/kernel/cpu/sh4a/setup-sh7724.c:842:6: warning: no previous prototype for 'l2_cache_init' [-Wmissing-prototypes]
arch/sh/mm/cache-j2.c:48:13: warning: no previous prototype for 'j2_cache_init' [-Wmissing-prototypes]
arch/sh/mm/cache-sh2.c:85:13: warning: no previous prototype for 'sh2_cache_init' [-Wmissing-prototypes]
arch/sh/mm/cache-sh2a.c:181:13: warning: no previous prototype for 'sh2a_cache_init' [-Wmissing-prototypes]
arch/sh/mm/cache-sh3.c:90:13: warning: no previous prototype for 'sh3_cache_init' [-Wmissing-prototypes]
arch/sh/mm/cache-sh4.c:384:13: warning: no previous prototype for 'sh4_cache_init' [-Wmissing-prototypes]
arch/sh/mm/cache-shx3.c:18:13: warning: no previous prototype for 'shx3_cache_init' [-Wmissing-prototypes]
arch/sh/mm/flush-sh4.c:106:13: warning: no previous prototype for 'sh4__flush_region_init' [-Wmissing-prototypes]
arch/sh/mm/cache-sh7705.c:190:13: warning: no previous prototype for 'sh7705_cache_init' [-Wmissing-prototypes]

Fix this by moving all cache-related forward declarations to
<asm/cacheflush.h>, and by including the latter where needed.

Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Link: https://lore.kernel.org/r/f47ab87636d16db4c47bebe1bf62650045f61989.1709579038.git.geert+renesas@glider.be
Signed-off-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
2024-05-02 12:01:31 +02:00

355 lines
9.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* arch/sh/mm/cache.c
*
* Copyright (C) 1999, 2000, 2002 Niibe Yutaka
* Copyright (C) 2002 - 2010 Paul Mundt
*/
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/fs.h>
#include <linux/smp.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
void (*local_flush_cache_all)(void *args) = cache_noop;
void (*local_flush_cache_mm)(void *args) = cache_noop;
void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
void (*local_flush_cache_page)(void *args) = cache_noop;
void (*local_flush_cache_range)(void *args) = cache_noop;
void (*local_flush_dcache_folio)(void *args) = cache_noop;
void (*local_flush_icache_range)(void *args) = cache_noop;
void (*local_flush_icache_folio)(void *args) = cache_noop;
void (*local_flush_cache_sigtramp)(void *args) = cache_noop;
void (*__flush_wback_region)(void *start, int size);
EXPORT_SYMBOL(__flush_wback_region);
void (*__flush_purge_region)(void *start, int size);
EXPORT_SYMBOL(__flush_purge_region);
void (*__flush_invalidate_region)(void *start, int size);
EXPORT_SYMBOL(__flush_invalidate_region);
static inline void noop__flush_region(void *start, int size)
{
}
static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
int wait)
{
preempt_disable();
/* Needing IPI for cross-core flush is SHX3-specific. */
#ifdef CONFIG_CPU_SHX3
/*
* It's possible that this gets called early on when IRQs are
* still disabled due to ioremapping by the boot CPU, so don't
* even attempt IPIs unless there are other CPUs online.
*/
if (num_online_cpus() > 1)
smp_call_function(func, info, wait);
#endif
func(info);
preempt_enable();
}
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long vaddr, void *dst, const void *src,
unsigned long len)
{
struct folio *folio = page_folio(page);
if (boot_cpu_data.dcache.n_aliases && folio_mapped(folio) &&
test_bit(PG_dcache_clean, &folio->flags)) {
void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
memcpy(vto, src, len);
kunmap_coherent(vto);
} else {
memcpy(dst, src, len);
if (boot_cpu_data.dcache.n_aliases)
clear_bit(PG_dcache_clean, &folio->flags);
}
if (vma->vm_flags & VM_EXEC)
flush_cache_page(vma, vaddr, page_to_pfn(page));
}
void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long vaddr, void *dst, const void *src,
unsigned long len)
{
struct folio *folio = page_folio(page);
if (boot_cpu_data.dcache.n_aliases && page_mapcount(page) &&
test_bit(PG_dcache_clean, &folio->flags)) {
void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
memcpy(dst, vfrom, len);
kunmap_coherent(vfrom);
} else {
memcpy(dst, src, len);
if (boot_cpu_data.dcache.n_aliases)
clear_bit(PG_dcache_clean, &folio->flags);
}
}
void copy_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma)
{
struct folio *src = page_folio(from);
void *vfrom, *vto;
vto = kmap_atomic(to);
if (boot_cpu_data.dcache.n_aliases && folio_mapped(src) &&
test_bit(PG_dcache_clean, &src->flags)) {
vfrom = kmap_coherent(from, vaddr);
copy_page(vto, vfrom);
kunmap_coherent(vfrom);
} else {
vfrom = kmap_atomic(from);
copy_page(vto, vfrom);
kunmap_atomic(vfrom);
}
if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
(vma->vm_flags & VM_EXEC))
__flush_purge_region(vto, PAGE_SIZE);
kunmap_atomic(vto);
/* Make sure this page is cleared on other CPU's too before using it */
smp_wmb();
}
EXPORT_SYMBOL(copy_user_highpage);
void clear_user_highpage(struct page *page, unsigned long vaddr)
{
void *kaddr = kmap_atomic(page);
clear_page(kaddr);
if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
__flush_purge_region(kaddr, PAGE_SIZE);
kunmap_atomic(kaddr);
}
EXPORT_SYMBOL(clear_user_highpage);
void __update_cache(struct vm_area_struct *vma,
unsigned long address, pte_t pte)
{
unsigned long pfn = pte_pfn(pte);
if (!boot_cpu_data.dcache.n_aliases)
return;
if (pfn_valid(pfn)) {
struct folio *folio = page_folio(pfn_to_page(pfn));
int dirty = !test_and_set_bit(PG_dcache_clean, &folio->flags);
if (dirty)
__flush_purge_region(folio_address(folio),
folio_size(folio));
}
}
void __flush_anon_page(struct page *page, unsigned long vmaddr)
{
struct folio *folio = page_folio(page);
unsigned long addr = (unsigned long) page_address(page);
if (pages_do_alias(addr, vmaddr)) {
if (boot_cpu_data.dcache.n_aliases && folio_mapped(folio) &&
test_bit(PG_dcache_clean, &folio->flags)) {
void *kaddr;
kaddr = kmap_coherent(page, vmaddr);
/* XXX.. For now kunmap_coherent() does a purge */
/* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
kunmap_coherent(kaddr);
} else
__flush_purge_region(folio_address(folio),
folio_size(folio));
}
}
void flush_cache_all(void)
{
cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
}
EXPORT_SYMBOL(flush_cache_all);
void flush_cache_mm(struct mm_struct *mm)
{
if (boot_cpu_data.dcache.n_aliases == 0)
return;
cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
}
void flush_cache_dup_mm(struct mm_struct *mm)
{
if (boot_cpu_data.dcache.n_aliases == 0)
return;
cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
}
void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn)
{
struct flusher_data data;
data.vma = vma;
data.addr1 = addr;
data.addr2 = pfn;
cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
}
void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
struct flusher_data data;
data.vma = vma;
data.addr1 = start;
data.addr2 = end;
cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
}
EXPORT_SYMBOL(flush_cache_range);
void flush_dcache_folio(struct folio *folio)
{
cacheop_on_each_cpu(local_flush_dcache_folio, folio, 1);
}
EXPORT_SYMBOL(flush_dcache_folio);
void flush_icache_range(unsigned long start, unsigned long end)
{
struct flusher_data data;
data.vma = NULL;
data.addr1 = start;
data.addr2 = end;
cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
}
EXPORT_SYMBOL(flush_icache_range);
void flush_icache_pages(struct vm_area_struct *vma, struct page *page,
unsigned int nr)
{
/* Nothing uses the VMA, so just pass the folio along */
cacheop_on_each_cpu(local_flush_icache_folio, page_folio(page), 1);
}
void flush_cache_sigtramp(unsigned long address)
{
cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
}
static void compute_alias(struct cache_info *c)
{
#ifdef CONFIG_MMU
c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
#else
c->alias_mask = 0;
#endif
c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
}
static void __init emit_cache_params(void)
{
printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
boot_cpu_data.icache.ways,
boot_cpu_data.icache.sets,
boot_cpu_data.icache.way_incr);
printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
boot_cpu_data.icache.entry_mask,
boot_cpu_data.icache.alias_mask,
boot_cpu_data.icache.n_aliases);
printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
boot_cpu_data.dcache.ways,
boot_cpu_data.dcache.sets,
boot_cpu_data.dcache.way_incr);
printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
boot_cpu_data.dcache.entry_mask,
boot_cpu_data.dcache.alias_mask,
boot_cpu_data.dcache.n_aliases);
/*
* Emit Secondary Cache parameters if the CPU has a probed L2.
*/
if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
boot_cpu_data.scache.ways,
boot_cpu_data.scache.sets,
boot_cpu_data.scache.way_incr);
printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
boot_cpu_data.scache.entry_mask,
boot_cpu_data.scache.alias_mask,
boot_cpu_data.scache.n_aliases);
}
}
void __init cpu_cache_init(void)
{
unsigned int cache_disabled = 0;
#ifdef SH_CCR
cache_disabled = !(__raw_readl(SH_CCR) & CCR_CACHE_ENABLE);
#endif
compute_alias(&boot_cpu_data.icache);
compute_alias(&boot_cpu_data.dcache);
compute_alias(&boot_cpu_data.scache);
__flush_wback_region = noop__flush_region;
__flush_purge_region = noop__flush_region;
__flush_invalidate_region = noop__flush_region;
/*
* No flushing is necessary in the disabled cache case so we can
* just keep the noop functions in local_flush_..() and __flush_..()
*/
if (unlikely(cache_disabled))
goto skip;
if (boot_cpu_data.type == CPU_J2) {
j2_cache_init();
} else if (boot_cpu_data.family == CPU_FAMILY_SH2) {
sh2_cache_init();
}
if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
sh2a_cache_init();
}
if (boot_cpu_data.family == CPU_FAMILY_SH3) {
sh3_cache_init();
if ((boot_cpu_data.type == CPU_SH7705) &&
(boot_cpu_data.dcache.sets == 512)) {
sh7705_cache_init();
}
}
if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
(boot_cpu_data.family == CPU_FAMILY_SH4A) ||
(boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
sh4_cache_init();
if ((boot_cpu_data.type == CPU_SH7786) ||
(boot_cpu_data.type == CPU_SHX3)) {
shx3_cache_init();
}
}
skip:
emit_cache_params();
}