mirror of
https://github.com/torvalds/linux.git
synced 2024-12-02 09:01:34 +00:00
5c338112e4
This updates message bound test making it more complex. Instead of sending 1 bytes messages with one MSG_EOR bit, it sends messages of random length(one half of messages are smaller than page size, second half are bigger) with random number of MSG_EOR bits set. Receiver also don't know total number of messages. Signed-off-by: Arseniy Krasnov <AVKrasnov@sberdevices.ru> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
411 lines
8.2 KiB
C
411 lines
8.2 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* vsock test utilities
|
|
*
|
|
* Copyright (C) 2017 Red Hat, Inc.
|
|
*
|
|
* Author: Stefan Hajnoczi <stefanha@redhat.com>
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#include <assert.h>
|
|
#include <sys/epoll.h>
|
|
|
|
#include "timeout.h"
|
|
#include "control.h"
|
|
#include "util.h"
|
|
|
|
/* Install signal handlers */
|
|
void init_signals(void)
|
|
{
|
|
struct sigaction act = {
|
|
.sa_handler = sigalrm,
|
|
};
|
|
|
|
sigaction(SIGALRM, &act, NULL);
|
|
signal(SIGPIPE, SIG_IGN);
|
|
}
|
|
|
|
/* Parse a CID in string representation */
|
|
unsigned int parse_cid(const char *str)
|
|
{
|
|
char *endptr = NULL;
|
|
unsigned long n;
|
|
|
|
errno = 0;
|
|
n = strtoul(str, &endptr, 10);
|
|
if (errno || *endptr != '\0') {
|
|
fprintf(stderr, "malformed CID \"%s\"\n", str);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/* Wait for the remote to close the connection */
|
|
void vsock_wait_remote_close(int fd)
|
|
{
|
|
struct epoll_event ev;
|
|
int epollfd, nfds;
|
|
|
|
epollfd = epoll_create1(0);
|
|
if (epollfd == -1) {
|
|
perror("epoll_create1");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
ev.events = EPOLLRDHUP | EPOLLHUP;
|
|
ev.data.fd = fd;
|
|
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
|
|
perror("epoll_ctl");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
nfds = epoll_wait(epollfd, &ev, 1, TIMEOUT * 1000);
|
|
if (nfds == -1) {
|
|
perror("epoll_wait");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (nfds == 0) {
|
|
fprintf(stderr, "epoll_wait timed out\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
assert(nfds == 1);
|
|
assert(ev.events & (EPOLLRDHUP | EPOLLHUP));
|
|
assert(ev.data.fd == fd);
|
|
|
|
close(epollfd);
|
|
}
|
|
|
|
/* Connect to <cid, port> and return the file descriptor. */
|
|
static int vsock_connect(unsigned int cid, unsigned int port, int type)
|
|
{
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_vm svm;
|
|
} addr = {
|
|
.svm = {
|
|
.svm_family = AF_VSOCK,
|
|
.svm_port = port,
|
|
.svm_cid = cid,
|
|
},
|
|
};
|
|
int ret;
|
|
int fd;
|
|
|
|
control_expectln("LISTENING");
|
|
|
|
fd = socket(AF_VSOCK, type, 0);
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
ret = connect(fd, &addr.sa, sizeof(addr.svm));
|
|
timeout_check("connect");
|
|
} while (ret < 0 && errno == EINTR);
|
|
timeout_end();
|
|
|
|
if (ret < 0) {
|
|
int old_errno = errno;
|
|
|
|
close(fd);
|
|
fd = -1;
|
|
errno = old_errno;
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
int vsock_stream_connect(unsigned int cid, unsigned int port)
|
|
{
|
|
return vsock_connect(cid, port, SOCK_STREAM);
|
|
}
|
|
|
|
int vsock_seqpacket_connect(unsigned int cid, unsigned int port)
|
|
{
|
|
return vsock_connect(cid, port, SOCK_SEQPACKET);
|
|
}
|
|
|
|
/* Listen on <cid, port> and return the first incoming connection. The remote
|
|
* address is stored to clientaddrp. clientaddrp may be NULL.
|
|
*/
|
|
static int vsock_accept(unsigned int cid, unsigned int port,
|
|
struct sockaddr_vm *clientaddrp, int type)
|
|
{
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_vm svm;
|
|
} addr = {
|
|
.svm = {
|
|
.svm_family = AF_VSOCK,
|
|
.svm_port = port,
|
|
.svm_cid = cid,
|
|
},
|
|
};
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_vm svm;
|
|
} clientaddr;
|
|
socklen_t clientaddr_len = sizeof(clientaddr.svm);
|
|
int fd;
|
|
int client_fd;
|
|
int old_errno;
|
|
|
|
fd = socket(AF_VSOCK, type, 0);
|
|
|
|
if (bind(fd, &addr.sa, sizeof(addr.svm)) < 0) {
|
|
perror("bind");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (listen(fd, 1) < 0) {
|
|
perror("listen");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
control_writeln("LISTENING");
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
client_fd = accept(fd, &clientaddr.sa, &clientaddr_len);
|
|
timeout_check("accept");
|
|
} while (client_fd < 0 && errno == EINTR);
|
|
timeout_end();
|
|
|
|
old_errno = errno;
|
|
close(fd);
|
|
errno = old_errno;
|
|
|
|
if (client_fd < 0)
|
|
return client_fd;
|
|
|
|
if (clientaddr_len != sizeof(clientaddr.svm)) {
|
|
fprintf(stderr, "unexpected addrlen from accept(2), %zu\n",
|
|
(size_t)clientaddr_len);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (clientaddr.sa.sa_family != AF_VSOCK) {
|
|
fprintf(stderr, "expected AF_VSOCK from accept(2), got %d\n",
|
|
clientaddr.sa.sa_family);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (clientaddrp)
|
|
*clientaddrp = clientaddr.svm;
|
|
return client_fd;
|
|
}
|
|
|
|
int vsock_stream_accept(unsigned int cid, unsigned int port,
|
|
struct sockaddr_vm *clientaddrp)
|
|
{
|
|
return vsock_accept(cid, port, clientaddrp, SOCK_STREAM);
|
|
}
|
|
|
|
int vsock_seqpacket_accept(unsigned int cid, unsigned int port,
|
|
struct sockaddr_vm *clientaddrp)
|
|
{
|
|
return vsock_accept(cid, port, clientaddrp, SOCK_SEQPACKET);
|
|
}
|
|
|
|
/* Transmit one byte and check the return value.
|
|
*
|
|
* expected_ret:
|
|
* <0 Negative errno (for testing errors)
|
|
* 0 End-of-file
|
|
* 1 Success
|
|
*/
|
|
void send_byte(int fd, int expected_ret, int flags)
|
|
{
|
|
const uint8_t byte = 'A';
|
|
ssize_t nwritten;
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
nwritten = send(fd, &byte, sizeof(byte), flags);
|
|
timeout_check("write");
|
|
} while (nwritten < 0 && errno == EINTR);
|
|
timeout_end();
|
|
|
|
if (expected_ret < 0) {
|
|
if (nwritten != -1) {
|
|
fprintf(stderr, "bogus send(2) return value %zd\n",
|
|
nwritten);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (errno != -expected_ret) {
|
|
perror("write");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (nwritten < 0) {
|
|
perror("write");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (nwritten == 0) {
|
|
if (expected_ret == 0)
|
|
return;
|
|
|
|
fprintf(stderr, "unexpected EOF while sending byte\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (nwritten != sizeof(byte)) {
|
|
fprintf(stderr, "bogus send(2) return value %zd\n", nwritten);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/* Receive one byte and check the return value.
|
|
*
|
|
* expected_ret:
|
|
* <0 Negative errno (for testing errors)
|
|
* 0 End-of-file
|
|
* 1 Success
|
|
*/
|
|
void recv_byte(int fd, int expected_ret, int flags)
|
|
{
|
|
uint8_t byte;
|
|
ssize_t nread;
|
|
|
|
timeout_begin(TIMEOUT);
|
|
do {
|
|
nread = recv(fd, &byte, sizeof(byte), flags);
|
|
timeout_check("read");
|
|
} while (nread < 0 && errno == EINTR);
|
|
timeout_end();
|
|
|
|
if (expected_ret < 0) {
|
|
if (nread != -1) {
|
|
fprintf(stderr, "bogus recv(2) return value %zd\n",
|
|
nread);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (errno != -expected_ret) {
|
|
perror("read");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (nread < 0) {
|
|
perror("read");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (nread == 0) {
|
|
if (expected_ret == 0)
|
|
return;
|
|
|
|
fprintf(stderr, "unexpected EOF while receiving byte\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (nread != sizeof(byte)) {
|
|
fprintf(stderr, "bogus recv(2) return value %zd\n", nread);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (byte != 'A') {
|
|
fprintf(stderr, "unexpected byte read %c\n", byte);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/* Run test cases. The program terminates if a failure occurs. */
|
|
void run_tests(const struct test_case *test_cases,
|
|
const struct test_opts *opts)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; test_cases[i].name; i++) {
|
|
void (*run)(const struct test_opts *opts);
|
|
char *line;
|
|
|
|
printf("%d - %s...", i, test_cases[i].name);
|
|
fflush(stdout);
|
|
|
|
/* Full barrier before executing the next test. This
|
|
* ensures that client and server are executing the
|
|
* same test case. In particular, it means whoever is
|
|
* faster will not see the peer still executing the
|
|
* last test. This is important because port numbers
|
|
* can be used by multiple test cases.
|
|
*/
|
|
if (test_cases[i].skip)
|
|
control_writeln("SKIP");
|
|
else
|
|
control_writeln("NEXT");
|
|
|
|
line = control_readln();
|
|
if (control_cmpln(line, "SKIP", false) || test_cases[i].skip) {
|
|
|
|
printf("skipped\n");
|
|
|
|
free(line);
|
|
continue;
|
|
}
|
|
|
|
control_cmpln(line, "NEXT", true);
|
|
free(line);
|
|
|
|
if (opts->mode == TEST_MODE_CLIENT)
|
|
run = test_cases[i].run_client;
|
|
else
|
|
run = test_cases[i].run_server;
|
|
|
|
if (run)
|
|
run(opts);
|
|
|
|
printf("ok\n");
|
|
}
|
|
}
|
|
|
|
void list_tests(const struct test_case *test_cases)
|
|
{
|
|
int i;
|
|
|
|
printf("ID\tTest name\n");
|
|
|
|
for (i = 0; test_cases[i].name; i++)
|
|
printf("%d\t%s\n", i, test_cases[i].name);
|
|
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
void skip_test(struct test_case *test_cases, size_t test_cases_len,
|
|
const char *test_id_str)
|
|
{
|
|
unsigned long test_id;
|
|
char *endptr = NULL;
|
|
|
|
errno = 0;
|
|
test_id = strtoul(test_id_str, &endptr, 10);
|
|
if (errno || *endptr != '\0') {
|
|
fprintf(stderr, "malformed test ID \"%s\"\n", test_id_str);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (test_id >= test_cases_len) {
|
|
fprintf(stderr, "test ID (%lu) larger than the max allowed (%lu)\n",
|
|
test_id, test_cases_len - 1);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
test_cases[test_id].skip = true;
|
|
}
|
|
|
|
unsigned long hash_djb2(const void *data, size_t len)
|
|
{
|
|
unsigned long hash = 5381;
|
|
int i = 0;
|
|
|
|
while (i < len) {
|
|
hash = ((hash << 5) + hash) + ((unsigned char *)data)[i];
|
|
i++;
|
|
}
|
|
|
|
return hash;
|
|
}
|