linux/drivers/thermal/hisi_thermal.c
Uwe Kleine-König 6abe2f00d2 thermal: hisi: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is ignored (apart
from emitting a warning) and this typically results in resource leaks.

To improve here there is a quest to make the remove callback return
void. In the first step of this quest all drivers are converted to
.remove_new(), which already returns void. Eventually after all drivers
are converted, .remove_new() will be renamed to .remove().

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2023-09-29 12:34:16 +02:00

654 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* HiSilicon thermal sensor driver
*
* Copyright (c) 2014-2015 HiSilicon Limited.
* Copyright (c) 2014-2015 Linaro Limited.
*
* Xinwei Kong <kong.kongxinwei@hisilicon.com>
* Leo Yan <leo.yan@linaro.org>
*/
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/thermal.h>
#define HI6220_TEMP0_LAG (0x0)
#define HI6220_TEMP0_TH (0x4)
#define HI6220_TEMP0_RST_TH (0x8)
#define HI6220_TEMP0_CFG (0xC)
#define HI6220_TEMP0_CFG_SS_MSK (0xF000)
#define HI6220_TEMP0_CFG_HDAK_MSK (0x30)
#define HI6220_TEMP0_EN (0x10)
#define HI6220_TEMP0_INT_EN (0x14)
#define HI6220_TEMP0_INT_CLR (0x18)
#define HI6220_TEMP0_RST_MSK (0x1C)
#define HI6220_TEMP0_VALUE (0x28)
#define HI3660_OFFSET(chan) ((chan) * 0x40)
#define HI3660_TEMP(chan) (HI3660_OFFSET(chan) + 0x1C)
#define HI3660_TH(chan) (HI3660_OFFSET(chan) + 0x20)
#define HI3660_LAG(chan) (HI3660_OFFSET(chan) + 0x28)
#define HI3660_INT_EN(chan) (HI3660_OFFSET(chan) + 0x2C)
#define HI3660_INT_CLR(chan) (HI3660_OFFSET(chan) + 0x30)
#define HI6220_TEMP_BASE (-60000)
#define HI6220_TEMP_RESET (100000)
#define HI6220_TEMP_STEP (785)
#define HI6220_TEMP_LAG (3500)
#define HI3660_TEMP_BASE (-63780)
#define HI3660_TEMP_STEP (205)
#define HI3660_TEMP_LAG (4000)
#define HI6220_CLUSTER0_SENSOR 2
#define HI6220_CLUSTER1_SENSOR 1
#define HI3660_LITTLE_SENSOR 0
#define HI3660_BIG_SENSOR 1
#define HI3660_G3D_SENSOR 2
#define HI3660_MODEM_SENSOR 3
struct hisi_thermal_data;
struct hisi_thermal_sensor {
struct hisi_thermal_data *data;
struct thermal_zone_device *tzd;
const char *irq_name;
uint32_t id;
uint32_t thres_temp;
};
struct hisi_thermal_ops {
int (*get_temp)(struct hisi_thermal_sensor *sensor);
int (*enable_sensor)(struct hisi_thermal_sensor *sensor);
int (*disable_sensor)(struct hisi_thermal_sensor *sensor);
int (*irq_handler)(struct hisi_thermal_sensor *sensor);
int (*probe)(struct hisi_thermal_data *data);
};
struct hisi_thermal_data {
const struct hisi_thermal_ops *ops;
struct hisi_thermal_sensor *sensor;
struct platform_device *pdev;
struct clk *clk;
void __iomem *regs;
int nr_sensors;
};
/*
* The temperature computation on the tsensor is as follow:
* Unit: millidegree Celsius
* Step: 200/255 (0.7843)
* Temperature base: -60°C
*
* The register is programmed in temperature steps, every step is 785
* millidegree and begins at -60 000 m°C
*
* The temperature from the steps:
*
* Temp = TempBase + (steps x 785)
*
* and the steps from the temperature:
*
* steps = (Temp - TempBase) / 785
*
*/
static inline int hi6220_thermal_step_to_temp(int step)
{
return HI6220_TEMP_BASE + (step * HI6220_TEMP_STEP);
}
static inline int hi6220_thermal_temp_to_step(int temp)
{
return DIV_ROUND_UP(temp - HI6220_TEMP_BASE, HI6220_TEMP_STEP);
}
/*
* for Hi3660,
* Step: 189/922 (0.205)
* Temperature base: -63.780°C
*
* The register is programmed in temperature steps, every step is 205
* millidegree and begins at -63 780 m°C
*/
static inline int hi3660_thermal_step_to_temp(int step)
{
return HI3660_TEMP_BASE + step * HI3660_TEMP_STEP;
}
static inline int hi3660_thermal_temp_to_step(int temp)
{
return DIV_ROUND_UP(temp - HI3660_TEMP_BASE, HI3660_TEMP_STEP);
}
/*
* The lag register contains 5 bits encoding the temperature in steps.
*
* Each time the temperature crosses the threshold boundary, an
* interrupt is raised. It could be when the temperature is going
* above the threshold or below. However, if the temperature is
* fluctuating around this value due to the load, we can receive
* several interrupts which may not desired.
*
* We can setup a temperature representing the delta between the
* threshold and the current temperature when the temperature is
* decreasing.
*
* For instance: the lag register is 5°C, the threshold is 65°C, when
* the temperature reaches 65°C an interrupt is raised and when the
* temperature decrease to 65°C - 5°C another interrupt is raised.
*
* A very short lag can lead to an interrupt storm, a long lag
* increase the latency to react to the temperature changes. In our
* case, that is not really a problem as we are polling the
* temperature.
*
* [0:4] : lag register
*
* The temperature is coded in steps, cf. HI6220_TEMP_STEP.
*
* Min : 0x00 : 0.0 °C
* Max : 0x1F : 24.3 °C
*
* The 'value' parameter is in milliCelsius.
*/
static inline void hi6220_thermal_set_lag(void __iomem *addr, int value)
{
writel(DIV_ROUND_UP(value, HI6220_TEMP_STEP) & 0x1F,
addr + HI6220_TEMP0_LAG);
}
static inline void hi6220_thermal_alarm_clear(void __iomem *addr, int value)
{
writel(value, addr + HI6220_TEMP0_INT_CLR);
}
static inline void hi6220_thermal_alarm_enable(void __iomem *addr, int value)
{
writel(value, addr + HI6220_TEMP0_INT_EN);
}
static inline void hi6220_thermal_alarm_set(void __iomem *addr, int temp)
{
writel(hi6220_thermal_temp_to_step(temp) | 0x0FFFFFF00,
addr + HI6220_TEMP0_TH);
}
static inline void hi6220_thermal_reset_set(void __iomem *addr, int temp)
{
writel(hi6220_thermal_temp_to_step(temp), addr + HI6220_TEMP0_RST_TH);
}
static inline void hi6220_thermal_reset_enable(void __iomem *addr, int value)
{
writel(value, addr + HI6220_TEMP0_RST_MSK);
}
static inline void hi6220_thermal_enable(void __iomem *addr, int value)
{
writel(value, addr + HI6220_TEMP0_EN);
}
static inline int hi6220_thermal_get_temperature(void __iomem *addr)
{
return hi6220_thermal_step_to_temp(readl(addr + HI6220_TEMP0_VALUE));
}
/*
* [0:6] lag register
*
* The temperature is coded in steps, cf. HI3660_TEMP_STEP.
*
* Min : 0x00 : 0.0 °C
* Max : 0x7F : 26.0 °C
*
*/
static inline void hi3660_thermal_set_lag(void __iomem *addr,
int id, int value)
{
writel(DIV_ROUND_UP(value, HI3660_TEMP_STEP) & 0x7F,
addr + HI3660_LAG(id));
}
static inline void hi3660_thermal_alarm_clear(void __iomem *addr,
int id, int value)
{
writel(value, addr + HI3660_INT_CLR(id));
}
static inline void hi3660_thermal_alarm_enable(void __iomem *addr,
int id, int value)
{
writel(value, addr + HI3660_INT_EN(id));
}
static inline void hi3660_thermal_alarm_set(void __iomem *addr,
int id, int value)
{
writel(value, addr + HI3660_TH(id));
}
static inline int hi3660_thermal_get_temperature(void __iomem *addr, int id)
{
return hi3660_thermal_step_to_temp(readl(addr + HI3660_TEMP(id)));
}
/*
* Temperature configuration register - Sensor selection
*
* Bits [19:12]
*
* 0x0: local sensor (default)
* 0x1: remote sensor 1 (ACPU cluster 1)
* 0x2: remote sensor 2 (ACPU cluster 0)
* 0x3: remote sensor 3 (G3D)
*/
static inline void hi6220_thermal_sensor_select(void __iomem *addr, int sensor)
{
writel((readl(addr + HI6220_TEMP0_CFG) & ~HI6220_TEMP0_CFG_SS_MSK) |
(sensor << 12), addr + HI6220_TEMP0_CFG);
}
/*
* Temperature configuration register - Hdak conversion polling interval
*
* Bits [5:4]
*
* 0x0 : 0.768 ms
* 0x1 : 6.144 ms
* 0x2 : 49.152 ms
* 0x3 : 393.216 ms
*/
static inline void hi6220_thermal_hdak_set(void __iomem *addr, int value)
{
writel((readl(addr + HI6220_TEMP0_CFG) & ~HI6220_TEMP0_CFG_HDAK_MSK) |
(value << 4), addr + HI6220_TEMP0_CFG);
}
static int hi6220_thermal_irq_handler(struct hisi_thermal_sensor *sensor)
{
struct hisi_thermal_data *data = sensor->data;
hi6220_thermal_alarm_clear(data->regs, 1);
return 0;
}
static int hi3660_thermal_irq_handler(struct hisi_thermal_sensor *sensor)
{
struct hisi_thermal_data *data = sensor->data;
hi3660_thermal_alarm_clear(data->regs, sensor->id, 1);
return 0;
}
static int hi6220_thermal_get_temp(struct hisi_thermal_sensor *sensor)
{
struct hisi_thermal_data *data = sensor->data;
return hi6220_thermal_get_temperature(data->regs);
}
static int hi3660_thermal_get_temp(struct hisi_thermal_sensor *sensor)
{
struct hisi_thermal_data *data = sensor->data;
return hi3660_thermal_get_temperature(data->regs, sensor->id);
}
static int hi6220_thermal_disable_sensor(struct hisi_thermal_sensor *sensor)
{
struct hisi_thermal_data *data = sensor->data;
/* disable sensor module */
hi6220_thermal_enable(data->regs, 0);
hi6220_thermal_alarm_enable(data->regs, 0);
hi6220_thermal_reset_enable(data->regs, 0);
clk_disable_unprepare(data->clk);
return 0;
}
static int hi3660_thermal_disable_sensor(struct hisi_thermal_sensor *sensor)
{
struct hisi_thermal_data *data = sensor->data;
/* disable sensor module */
hi3660_thermal_alarm_enable(data->regs, sensor->id, 0);
return 0;
}
static int hi6220_thermal_enable_sensor(struct hisi_thermal_sensor *sensor)
{
struct hisi_thermal_data *data = sensor->data;
int ret;
/* enable clock for tsensor */
ret = clk_prepare_enable(data->clk);
if (ret)
return ret;
/* disable module firstly */
hi6220_thermal_reset_enable(data->regs, 0);
hi6220_thermal_enable(data->regs, 0);
/* select sensor id */
hi6220_thermal_sensor_select(data->regs, sensor->id);
/* setting the hdak time */
hi6220_thermal_hdak_set(data->regs, 0);
/* setting lag value between current temp and the threshold */
hi6220_thermal_set_lag(data->regs, HI6220_TEMP_LAG);
/* enable for interrupt */
hi6220_thermal_alarm_set(data->regs, sensor->thres_temp);
hi6220_thermal_reset_set(data->regs, HI6220_TEMP_RESET);
/* enable module */
hi6220_thermal_reset_enable(data->regs, 1);
hi6220_thermal_enable(data->regs, 1);
hi6220_thermal_alarm_clear(data->regs, 0);
hi6220_thermal_alarm_enable(data->regs, 1);
return 0;
}
static int hi3660_thermal_enable_sensor(struct hisi_thermal_sensor *sensor)
{
unsigned int value;
struct hisi_thermal_data *data = sensor->data;
/* disable interrupt */
hi3660_thermal_alarm_enable(data->regs, sensor->id, 0);
/* setting lag value between current temp and the threshold */
hi3660_thermal_set_lag(data->regs, sensor->id, HI3660_TEMP_LAG);
/* set interrupt threshold */
value = hi3660_thermal_temp_to_step(sensor->thres_temp);
hi3660_thermal_alarm_set(data->regs, sensor->id, value);
/* enable interrupt */
hi3660_thermal_alarm_clear(data->regs, sensor->id, 1);
hi3660_thermal_alarm_enable(data->regs, sensor->id, 1);
return 0;
}
static int hi6220_thermal_probe(struct hisi_thermal_data *data)
{
struct platform_device *pdev = data->pdev;
struct device *dev = &pdev->dev;
int ret;
data->clk = devm_clk_get(dev, "thermal_clk");
if (IS_ERR(data->clk)) {
ret = PTR_ERR(data->clk);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to get thermal clk: %d\n", ret);
return ret;
}
data->sensor = devm_kzalloc(dev, sizeof(*data->sensor), GFP_KERNEL);
if (!data->sensor)
return -ENOMEM;
data->sensor[0].id = HI6220_CLUSTER0_SENSOR;
data->sensor[0].irq_name = "tsensor_intr";
data->sensor[0].data = data;
data->nr_sensors = 1;
return 0;
}
static int hi3660_thermal_probe(struct hisi_thermal_data *data)
{
struct platform_device *pdev = data->pdev;
struct device *dev = &pdev->dev;
data->nr_sensors = 1;
data->sensor = devm_kzalloc(dev, sizeof(*data->sensor) *
data->nr_sensors, GFP_KERNEL);
if (!data->sensor)
return -ENOMEM;
data->sensor[0].id = HI3660_BIG_SENSOR;
data->sensor[0].irq_name = "tsensor_a73";
data->sensor[0].data = data;
return 0;
}
static int hisi_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct hisi_thermal_sensor *sensor = thermal_zone_device_priv(tz);
struct hisi_thermal_data *data = sensor->data;
*temp = data->ops->get_temp(sensor);
return 0;
}
static const struct thermal_zone_device_ops hisi_of_thermal_ops = {
.get_temp = hisi_thermal_get_temp,
};
static irqreturn_t hisi_thermal_alarm_irq_thread(int irq, void *dev)
{
struct hisi_thermal_sensor *sensor = dev;
struct hisi_thermal_data *data = sensor->data;
int temp = 0;
data->ops->irq_handler(sensor);
temp = data->ops->get_temp(sensor);
if (temp >= sensor->thres_temp) {
dev_crit(&data->pdev->dev,
"sensor <%d> THERMAL ALARM: %d > %d\n",
sensor->id, temp, sensor->thres_temp);
thermal_zone_device_update(sensor->tzd,
THERMAL_EVENT_UNSPECIFIED);
} else {
dev_crit(&data->pdev->dev,
"sensor <%d> THERMAL ALARM stopped: %d < %d\n",
sensor->id, temp, sensor->thres_temp);
}
return IRQ_HANDLED;
}
static int hisi_thermal_register_sensor(struct platform_device *pdev,
struct hisi_thermal_sensor *sensor)
{
int ret, i;
struct thermal_trip trip;
sensor->tzd = devm_thermal_of_zone_register(&pdev->dev,
sensor->id, sensor,
&hisi_of_thermal_ops);
if (IS_ERR(sensor->tzd)) {
ret = PTR_ERR(sensor->tzd);
sensor->tzd = NULL;
dev_err(&pdev->dev, "failed to register sensor id %d: %d\n",
sensor->id, ret);
return ret;
}
for (i = 0; i < thermal_zone_get_num_trips(sensor->tzd); i++) {
thermal_zone_get_trip(sensor->tzd, i, &trip);
if (trip.type == THERMAL_TRIP_PASSIVE) {
sensor->thres_temp = trip.temperature;
break;
}
}
return 0;
}
static const struct hisi_thermal_ops hi6220_ops = {
.get_temp = hi6220_thermal_get_temp,
.enable_sensor = hi6220_thermal_enable_sensor,
.disable_sensor = hi6220_thermal_disable_sensor,
.irq_handler = hi6220_thermal_irq_handler,
.probe = hi6220_thermal_probe,
};
static const struct hisi_thermal_ops hi3660_ops = {
.get_temp = hi3660_thermal_get_temp,
.enable_sensor = hi3660_thermal_enable_sensor,
.disable_sensor = hi3660_thermal_disable_sensor,
.irq_handler = hi3660_thermal_irq_handler,
.probe = hi3660_thermal_probe,
};
static const struct of_device_id of_hisi_thermal_match[] = {
{
.compatible = "hisilicon,tsensor",
.data = &hi6220_ops,
},
{
.compatible = "hisilicon,hi3660-tsensor",
.data = &hi3660_ops,
},
{ /* end */ }
};
MODULE_DEVICE_TABLE(of, of_hisi_thermal_match);
static void hisi_thermal_toggle_sensor(struct hisi_thermal_sensor *sensor,
bool on)
{
struct thermal_zone_device *tzd = sensor->tzd;
if (on)
thermal_zone_device_enable(tzd);
else
thermal_zone_device_disable(tzd);
}
static int hisi_thermal_probe(struct platform_device *pdev)
{
struct hisi_thermal_data *data;
struct device *dev = &pdev->dev;
int i, ret;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->pdev = pdev;
platform_set_drvdata(pdev, data);
data->ops = of_device_get_match_data(dev);
data->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(data->regs))
return PTR_ERR(data->regs);
ret = data->ops->probe(data);
if (ret)
return ret;
for (i = 0; i < data->nr_sensors; i++) {
struct hisi_thermal_sensor *sensor = &data->sensor[i];
ret = hisi_thermal_register_sensor(pdev, sensor);
if (ret) {
dev_err(dev, "failed to register thermal sensor: %d\n",
ret);
return ret;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0)
return ret;
ret = devm_request_threaded_irq(dev, ret, NULL,
hisi_thermal_alarm_irq_thread,
IRQF_ONESHOT, sensor->irq_name,
sensor);
if (ret < 0) {
dev_err(dev, "Failed to request alarm irq: %d\n", ret);
return ret;
}
ret = data->ops->enable_sensor(sensor);
if (ret) {
dev_err(dev, "Failed to setup the sensor: %d\n", ret);
return ret;
}
hisi_thermal_toggle_sensor(sensor, true);
}
return 0;
}
static void hisi_thermal_remove(struct platform_device *pdev)
{
struct hisi_thermal_data *data = platform_get_drvdata(pdev);
int i;
for (i = 0; i < data->nr_sensors; i++) {
struct hisi_thermal_sensor *sensor = &data->sensor[i];
hisi_thermal_toggle_sensor(sensor, false);
data->ops->disable_sensor(sensor);
}
}
static int hisi_thermal_suspend(struct device *dev)
{
struct hisi_thermal_data *data = dev_get_drvdata(dev);
int i;
for (i = 0; i < data->nr_sensors; i++)
data->ops->disable_sensor(&data->sensor[i]);
return 0;
}
static int hisi_thermal_resume(struct device *dev)
{
struct hisi_thermal_data *data = dev_get_drvdata(dev);
int i, ret = 0;
for (i = 0; i < data->nr_sensors; i++)
ret |= data->ops->enable_sensor(&data->sensor[i]);
return ret;
}
static DEFINE_SIMPLE_DEV_PM_OPS(hisi_thermal_pm_ops,
hisi_thermal_suspend, hisi_thermal_resume);
static struct platform_driver hisi_thermal_driver = {
.driver = {
.name = "hisi_thermal",
.pm = pm_sleep_ptr(&hisi_thermal_pm_ops),
.of_match_table = of_hisi_thermal_match,
},
.probe = hisi_thermal_probe,
.remove_new = hisi_thermal_remove,
};
module_platform_driver(hisi_thermal_driver);
MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>");
MODULE_AUTHOR("Leo Yan <leo.yan@linaro.org>");
MODULE_DESCRIPTION("HiSilicon thermal driver");
MODULE_LICENSE("GPL v2");