linux/net/mac80211/rx.c
Paul Gortmaker bc3b2d7fb9 net: Add export.h for EXPORT_SYMBOL/THIS_MODULE to non-modules
These files are non modular, but need to export symbols using
the macros now living in export.h -- call out the include so
that things won't break when we remove the implicit presence
of module.h from everywhere.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-10-31 19:30:30 -04:00

3059 lines
84 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/rcupdate.h>
#include <linux/export.h>
#include <net/mac80211.h>
#include <net/ieee80211_radiotap.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "led.h"
#include "mesh.h"
#include "wep.h"
#include "wpa.h"
#include "tkip.h"
#include "wme.h"
/*
* monitor mode reception
*
* This function cleans up the SKB, i.e. it removes all the stuff
* only useful for monitoring.
*/
static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
struct sk_buff *skb)
{
if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
if (likely(skb->len > FCS_LEN))
__pskb_trim(skb, skb->len - FCS_LEN);
else {
/* driver bug */
WARN_ON(1);
dev_kfree_skb(skb);
skb = NULL;
}
}
return skb;
}
static inline int should_drop_frame(struct sk_buff *skb,
int present_fcs_len)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
return 1;
if (unlikely(skb->len < 16 + present_fcs_len))
return 1;
if (ieee80211_is_ctl(hdr->frame_control) &&
!ieee80211_is_pspoll(hdr->frame_control) &&
!ieee80211_is_back_req(hdr->frame_control))
return 1;
return 0;
}
static int
ieee80211_rx_radiotap_len(struct ieee80211_local *local,
struct ieee80211_rx_status *status)
{
int len;
/* always present fields */
len = sizeof(struct ieee80211_radiotap_header) + 9;
if (status->flag & RX_FLAG_MACTIME_MPDU)
len += 8;
if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
len += 1;
if (len & 1) /* padding for RX_FLAGS if necessary */
len++;
if (status->flag & RX_FLAG_HT) /* HT info */
len += 3;
return len;
}
/*
* ieee80211_add_rx_radiotap_header - add radiotap header
*
* add a radiotap header containing all the fields which the hardware provided.
*/
static void
ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
struct sk_buff *skb,
struct ieee80211_rate *rate,
int rtap_len)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_header *rthdr;
unsigned char *pos;
u16 rx_flags = 0;
rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
memset(rthdr, 0, rtap_len);
/* radiotap header, set always present flags */
rthdr->it_present =
cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL) |
(1 << IEEE80211_RADIOTAP_ANTENNA) |
(1 << IEEE80211_RADIOTAP_RX_FLAGS));
rthdr->it_len = cpu_to_le16(rtap_len);
pos = (unsigned char *)(rthdr+1);
/* the order of the following fields is important */
/* IEEE80211_RADIOTAP_TSFT */
if (status->flag & RX_FLAG_MACTIME_MPDU) {
put_unaligned_le64(status->mactime, pos);
rthdr->it_present |=
cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
pos += 8;
}
/* IEEE80211_RADIOTAP_FLAGS */
if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
*pos |= IEEE80211_RADIOTAP_F_FCS;
if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
*pos |= IEEE80211_RADIOTAP_F_BADFCS;
if (status->flag & RX_FLAG_SHORTPRE)
*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
pos++;
/* IEEE80211_RADIOTAP_RATE */
if (status->flag & RX_FLAG_HT) {
/*
* MCS information is a separate field in radiotap,
* added below. The byte here is needed as padding
* for the channel though, so initialise it to 0.
*/
*pos = 0;
} else {
rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
*pos = rate->bitrate / 5;
}
pos++;
/* IEEE80211_RADIOTAP_CHANNEL */
put_unaligned_le16(status->freq, pos);
pos += 2;
if (status->band == IEEE80211_BAND_5GHZ)
put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
pos);
else if (status->flag & RX_FLAG_HT)
put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
pos);
else if (rate->flags & IEEE80211_RATE_ERP_G)
put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
pos);
else
put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
pos);
pos += 2;
/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
*pos = status->signal;
rthdr->it_present |=
cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
pos++;
}
/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
/* IEEE80211_RADIOTAP_ANTENNA */
*pos = status->antenna;
pos++;
/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
/* IEEE80211_RADIOTAP_RX_FLAGS */
/* ensure 2 byte alignment for the 2 byte field as required */
if ((pos - (u8 *)rthdr) & 1)
pos++;
if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
put_unaligned_le16(rx_flags, pos);
pos += 2;
if (status->flag & RX_FLAG_HT) {
rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
*pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
IEEE80211_RADIOTAP_MCS_HAVE_GI |
IEEE80211_RADIOTAP_MCS_HAVE_BW;
*pos = 0;
if (status->flag & RX_FLAG_SHORT_GI)
*pos |= IEEE80211_RADIOTAP_MCS_SGI;
if (status->flag & RX_FLAG_40MHZ)
*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
pos++;
*pos++ = status->rate_idx;
}
}
/*
* This function copies a received frame to all monitor interfaces and
* returns a cleaned-up SKB that no longer includes the FCS nor the
* radiotap header the driver might have added.
*/
static struct sk_buff *
ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
struct ieee80211_rate *rate)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
struct ieee80211_sub_if_data *sdata;
int needed_headroom = 0;
struct sk_buff *skb, *skb2;
struct net_device *prev_dev = NULL;
int present_fcs_len = 0;
/*
* First, we may need to make a copy of the skb because
* (1) we need to modify it for radiotap (if not present), and
* (2) the other RX handlers will modify the skb we got.
*
* We don't need to, of course, if we aren't going to return
* the SKB because it has a bad FCS/PLCP checksum.
*/
/* room for the radiotap header based on driver features */
needed_headroom = ieee80211_rx_radiotap_len(local, status);
if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
present_fcs_len = FCS_LEN;
/* make sure hdr->frame_control is on the linear part */
if (!pskb_may_pull(origskb, 2)) {
dev_kfree_skb(origskb);
return NULL;
}
if (!local->monitors) {
if (should_drop_frame(origskb, present_fcs_len)) {
dev_kfree_skb(origskb);
return NULL;
}
return remove_monitor_info(local, origskb);
}
if (should_drop_frame(origskb, present_fcs_len)) {
/* only need to expand headroom if necessary */
skb = origskb;
origskb = NULL;
/*
* This shouldn't trigger often because most devices have an
* RX header they pull before we get here, and that should
* be big enough for our radiotap information. We should
* probably export the length to drivers so that we can have
* them allocate enough headroom to start with.
*/
if (skb_headroom(skb) < needed_headroom &&
pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return NULL;
}
} else {
/*
* Need to make a copy and possibly remove radiotap header
* and FCS from the original.
*/
skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
origskb = remove_monitor_info(local, origskb);
if (!skb)
return origskb;
}
/* prepend radiotap information */
ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
skb_reset_mac_header(skb);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
continue;
if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
continue;
if (!ieee80211_sdata_running(sdata))
continue;
if (prev_dev) {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2) {
skb2->dev = prev_dev;
netif_receive_skb(skb2);
}
}
prev_dev = sdata->dev;
sdata->dev->stats.rx_packets++;
sdata->dev->stats.rx_bytes += skb->len;
}
if (prev_dev) {
skb->dev = prev_dev;
netif_receive_skb(skb);
} else
dev_kfree_skb(skb);
return origskb;
}
static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int tid, seqno_idx, security_idx;
/* does the frame have a qos control field? */
if (ieee80211_is_data_qos(hdr->frame_control)) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
/* frame has qos control */
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
status->rx_flags |= IEEE80211_RX_AMSDU;
seqno_idx = tid;
security_idx = tid;
} else {
/*
* IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
*
* Sequence numbers for management frames, QoS data
* frames with a broadcast/multicast address in the
* Address 1 field, and all non-QoS data frames sent
* by QoS STAs are assigned using an additional single
* modulo-4096 counter, [...]
*
* We also use that counter for non-QoS STAs.
*/
seqno_idx = NUM_RX_DATA_QUEUES;
security_idx = 0;
if (ieee80211_is_mgmt(hdr->frame_control))
security_idx = NUM_RX_DATA_QUEUES;
tid = 0;
}
rx->seqno_idx = seqno_idx;
rx->security_idx = security_idx;
/* Set skb->priority to 1d tag if highest order bit of TID is not set.
* For now, set skb->priority to 0 for other cases. */
rx->skb->priority = (tid > 7) ? 0 : tid;
}
/**
* DOC: Packet alignment
*
* Drivers always need to pass packets that are aligned to two-byte boundaries
* to the stack.
*
* Additionally, should, if possible, align the payload data in a way that
* guarantees that the contained IP header is aligned to a four-byte
* boundary. In the case of regular frames, this simply means aligning the
* payload to a four-byte boundary (because either the IP header is directly
* contained, or IV/RFC1042 headers that have a length divisible by four are
* in front of it). If the payload data is not properly aligned and the
* architecture doesn't support efficient unaligned operations, mac80211
* will align the data.
*
* With A-MSDU frames, however, the payload data address must yield two modulo
* four because there are 14-byte 802.3 headers within the A-MSDU frames that
* push the IP header further back to a multiple of four again. Thankfully, the
* specs were sane enough this time around to require padding each A-MSDU
* subframe to a length that is a multiple of four.
*
* Padding like Atheros hardware adds which is between the 802.11 header and
* the payload is not supported, the driver is required to move the 802.11
* header to be directly in front of the payload in that case.
*/
static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
{
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
WARN_ONCE((unsigned long)rx->skb->data & 1,
"unaligned packet at 0x%p\n", rx->skb->data);
#endif
}
/* rx handlers */
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
struct sk_buff *skb = rx->skb;
if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
!local->sched_scanning))
return RX_CONTINUE;
if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
test_bit(SCAN_SW_SCANNING, &local->scanning) ||
local->sched_scanning)
return ieee80211_scan_rx(rx->sdata, skb);
/* scanning finished during invoking of handlers */
I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
return RX_DROP_UNUSABLE;
}
static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
return 0;
return ieee80211_is_robust_mgmt_frame(hdr);
}
static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
return 0;
return ieee80211_is_robust_mgmt_frame(hdr);
}
/* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
{
struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
struct ieee80211_mmie *mmie;
if (skb->len < 24 + sizeof(*mmie) ||
!is_multicast_ether_addr(hdr->da))
return -1;
if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
return -1; /* not a robust management frame */
mmie = (struct ieee80211_mmie *)
(skb->data + skb->len - sizeof(*mmie));
if (mmie->element_id != WLAN_EID_MMIE ||
mmie->length != sizeof(*mmie) - 2)
return -1;
return le16_to_cpu(mmie->key_id);
}
static ieee80211_rx_result
ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
char *dev_addr = rx->sdata->vif.addr;
if (ieee80211_is_data(hdr->frame_control)) {
if (is_multicast_ether_addr(hdr->addr1)) {
if (ieee80211_has_tods(hdr->frame_control) ||
!ieee80211_has_fromds(hdr->frame_control))
return RX_DROP_MONITOR;
if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
return RX_DROP_MONITOR;
} else {
if (!ieee80211_has_a4(hdr->frame_control))
return RX_DROP_MONITOR;
if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
return RX_DROP_MONITOR;
}
}
/* If there is not an established peer link and this is not a peer link
* establisment frame, beacon or probe, drop the frame.
*/
if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
struct ieee80211_mgmt *mgmt;
if (!ieee80211_is_mgmt(hdr->frame_control))
return RX_DROP_MONITOR;
if (ieee80211_is_action(hdr->frame_control)) {
u8 category;
mgmt = (struct ieee80211_mgmt *)hdr;
category = mgmt->u.action.category;
if (category != WLAN_CATEGORY_MESH_ACTION &&
category != WLAN_CATEGORY_SELF_PROTECTED)
return RX_DROP_MONITOR;
return RX_CONTINUE;
}
if (ieee80211_is_probe_req(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control) ||
ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_auth(hdr->frame_control))
return RX_CONTINUE;
return RX_DROP_MONITOR;
}
return RX_CONTINUE;
}
#define SEQ_MODULO 0x1000
#define SEQ_MASK 0xfff
static inline int seq_less(u16 sq1, u16 sq2)
{
return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
}
static inline u16 seq_inc(u16 sq)
{
return (sq + 1) & SEQ_MASK;
}
static inline u16 seq_sub(u16 sq1, u16 sq2)
{
return (sq1 - sq2) & SEQ_MASK;
}
static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
struct tid_ampdu_rx *tid_agg_rx,
int index)
{
struct ieee80211_local *local = hw_to_local(hw);
struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
struct ieee80211_rx_status *status;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
if (!skb)
goto no_frame;
/* release the frame from the reorder ring buffer */
tid_agg_rx->stored_mpdu_num--;
tid_agg_rx->reorder_buf[index] = NULL;
status = IEEE80211_SKB_RXCB(skb);
status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
skb_queue_tail(&local->rx_skb_queue, skb);
no_frame:
tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
}
static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
struct tid_ampdu_rx *tid_agg_rx,
u16 head_seq_num)
{
int index;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
tid_agg_rx->buf_size;
ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
}
}
/*
* Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
* the skb was added to the buffer longer than this time ago, the earlier
* frames that have not yet been received are assumed to be lost and the skb
* can be released for processing. This may also release other skb's from the
* reorder buffer if there are no additional gaps between the frames.
*
* Callers must hold tid_agg_rx->reorder_lock.
*/
#define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
struct tid_ampdu_rx *tid_agg_rx)
{
int index, j;
lockdep_assert_held(&tid_agg_rx->reorder_lock);
/* release the buffer until next missing frame */
index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
tid_agg_rx->buf_size;
if (!tid_agg_rx->reorder_buf[index] &&
tid_agg_rx->stored_mpdu_num > 1) {
/*
* No buffers ready to be released, but check whether any
* frames in the reorder buffer have timed out.
*/
int skipped = 1;
for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
j = (j + 1) % tid_agg_rx->buf_size) {
if (!tid_agg_rx->reorder_buf[j]) {
skipped++;
continue;
}
if (skipped &&
!time_after(jiffies, tid_agg_rx->reorder_time[j] +
HT_RX_REORDER_BUF_TIMEOUT))
goto set_release_timer;
#ifdef CONFIG_MAC80211_HT_DEBUG
if (net_ratelimit())
wiphy_debug(hw->wiphy,
"release an RX reorder frame due to timeout on earlier frames\n");
#endif
ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
/*
* Increment the head seq# also for the skipped slots.
*/
tid_agg_rx->head_seq_num =
(tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
skipped = 0;
}
} else while (tid_agg_rx->reorder_buf[index]) {
ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
tid_agg_rx->buf_size;
}
if (tid_agg_rx->stored_mpdu_num) {
j = index = seq_sub(tid_agg_rx->head_seq_num,
tid_agg_rx->ssn) % tid_agg_rx->buf_size;
for (; j != (index - 1) % tid_agg_rx->buf_size;
j = (j + 1) % tid_agg_rx->buf_size) {
if (tid_agg_rx->reorder_buf[j])
break;
}
set_release_timer:
mod_timer(&tid_agg_rx->reorder_timer,
tid_agg_rx->reorder_time[j] + 1 +
HT_RX_REORDER_BUF_TIMEOUT);
} else {
del_timer(&tid_agg_rx->reorder_timer);
}
}
/*
* As this function belongs to the RX path it must be under
* rcu_read_lock protection. It returns false if the frame
* can be processed immediately, true if it was consumed.
*/
static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
struct tid_ampdu_rx *tid_agg_rx,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
u16 sc = le16_to_cpu(hdr->seq_ctrl);
u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
u16 head_seq_num, buf_size;
int index;
bool ret = true;
spin_lock(&tid_agg_rx->reorder_lock);
buf_size = tid_agg_rx->buf_size;
head_seq_num = tid_agg_rx->head_seq_num;
/* frame with out of date sequence number */
if (seq_less(mpdu_seq_num, head_seq_num)) {
dev_kfree_skb(skb);
goto out;
}
/*
* If frame the sequence number exceeds our buffering window
* size release some previous frames to make room for this one.
*/
if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
/* release stored frames up to new head to stack */
ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
}
/* Now the new frame is always in the range of the reordering buffer */
index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
/* check if we already stored this frame */
if (tid_agg_rx->reorder_buf[index]) {
dev_kfree_skb(skb);
goto out;
}
/*
* If the current MPDU is in the right order and nothing else
* is stored we can process it directly, no need to buffer it.
* If it is first but there's something stored, we may be able
* to release frames after this one.
*/
if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
tid_agg_rx->stored_mpdu_num == 0) {
tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
ret = false;
goto out;
}
/* put the frame in the reordering buffer */
tid_agg_rx->reorder_buf[index] = skb;
tid_agg_rx->reorder_time[index] = jiffies;
tid_agg_rx->stored_mpdu_num++;
ieee80211_sta_reorder_release(hw, tid_agg_rx);
out:
spin_unlock(&tid_agg_rx->reorder_lock);
return ret;
}
/*
* Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
* true if the MPDU was buffered, false if it should be processed.
*/
static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_local *local = rx->local;
struct ieee80211_hw *hw = &local->hw;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
struct sta_info *sta = rx->sta;
struct tid_ampdu_rx *tid_agg_rx;
u16 sc;
int tid;
if (!ieee80211_is_data_qos(hdr->frame_control))
goto dont_reorder;
/*
* filter the QoS data rx stream according to
* STA/TID and check if this STA/TID is on aggregation
*/
if (!sta)
goto dont_reorder;
tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
goto dont_reorder;
/* qos null data frames are excluded */
if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
goto dont_reorder;
/* new, potentially un-ordered, ampdu frame - process it */
/* reset session timer */
if (tid_agg_rx->timeout)
mod_timer(&tid_agg_rx->session_timer,
TU_TO_EXP_TIME(tid_agg_rx->timeout));
/* if this mpdu is fragmented - terminate rx aggregation session */
sc = le16_to_cpu(hdr->seq_ctrl);
if (sc & IEEE80211_SCTL_FRAG) {
skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
skb_queue_tail(&rx->sdata->skb_queue, skb);
ieee80211_queue_work(&local->hw, &rx->sdata->work);
return;
}
/*
* No locking needed -- we will only ever process one
* RX packet at a time, and thus own tid_agg_rx. All
* other code manipulating it needs to (and does) make
* sure that we cannot get to it any more before doing
* anything with it.
*/
if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
return;
dont_reorder:
skb_queue_tail(&local->rx_skb_queue, skb);
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
rx->sta->last_seq_ctrl[rx->seqno_idx] ==
hdr->seq_ctrl)) {
if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
rx->local->dot11FrameDuplicateCount++;
rx->sta->num_duplicates++;
}
return RX_DROP_UNUSABLE;
} else
rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
}
if (unlikely(rx->skb->len < 16)) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
return RX_DROP_MONITOR;
}
/* Drop disallowed frame classes based on STA auth/assoc state;
* IEEE 802.11, Chap 5.5.
*
* mac80211 filters only based on association state, i.e. it drops
* Class 3 frames from not associated stations. hostapd sends
* deauth/disassoc frames when needed. In addition, hostapd is
* responsible for filtering on both auth and assoc states.
*/
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
return ieee80211_rx_mesh_check(rx);
if (unlikely((ieee80211_is_data(hdr->frame_control) ||
ieee80211_is_pspoll(hdr->frame_control)) &&
rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
if (rx->sta && rx->sta->dummy &&
ieee80211_is_data_present(hdr->frame_control)) {
u16 ethertype;
u8 *payload;
payload = rx->skb->data +
ieee80211_hdrlen(hdr->frame_control);
ethertype = (payload[6] << 8) | payload[7];
if (cpu_to_be16(ethertype) ==
rx->sdata->control_port_protocol)
return RX_CONTINUE;
}
return RX_DROP_MONITOR;
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
int keyidx;
int hdrlen;
ieee80211_rx_result result = RX_DROP_UNUSABLE;
struct ieee80211_key *sta_ptk = NULL;
int mmie_keyidx = -1;
__le16 fc;
/*
* Key selection 101
*
* There are four types of keys:
* - GTK (group keys)
* - IGTK (group keys for management frames)
* - PTK (pairwise keys)
* - STK (station-to-station pairwise keys)
*
* When selecting a key, we have to distinguish between multicast
* (including broadcast) and unicast frames, the latter can only
* use PTKs and STKs while the former always use GTKs and IGTKs.
* Unless, of course, actual WEP keys ("pre-RSNA") are used, then
* unicast frames can also use key indices like GTKs. Hence, if we
* don't have a PTK/STK we check the key index for a WEP key.
*
* Note that in a regular BSS, multicast frames are sent by the
* AP only, associated stations unicast the frame to the AP first
* which then multicasts it on their behalf.
*
* There is also a slight problem in IBSS mode: GTKs are negotiated
* with each station, that is something we don't currently handle.
* The spec seems to expect that one negotiates the same key with
* every station but there's no such requirement; VLANs could be
* possible.
*/
/*
* No point in finding a key and decrypting if the frame is neither
* addressed to us nor a multicast frame.
*/
if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
return RX_CONTINUE;
/* start without a key */
rx->key = NULL;
if (rx->sta)
sta_ptk = rcu_dereference(rx->sta->ptk);
fc = hdr->frame_control;
if (!ieee80211_has_protected(fc))
mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
rx->key = sta_ptk;
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
/* Skip decryption if the frame is not protected. */
if (!ieee80211_has_protected(fc))
return RX_CONTINUE;
} else if (mmie_keyidx >= 0) {
/* Broadcast/multicast robust management frame / BIP */
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
if (mmie_keyidx < NUM_DEFAULT_KEYS ||
mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
return RX_DROP_MONITOR; /* unexpected BIP keyidx */
if (rx->sta)
rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
if (!rx->key)
rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
} else if (!ieee80211_has_protected(fc)) {
/*
* The frame was not protected, so skip decryption. However, we
* need to set rx->key if there is a key that could have been
* used so that the frame may be dropped if encryption would
* have been expected.
*/
struct ieee80211_key *key = NULL;
struct ieee80211_sub_if_data *sdata = rx->sdata;
int i;
if (ieee80211_is_mgmt(fc) &&
is_multicast_ether_addr(hdr->addr1) &&
(key = rcu_dereference(rx->sdata->default_mgmt_key)))
rx->key = key;
else {
if (rx->sta) {
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
key = rcu_dereference(rx->sta->gtk[i]);
if (key)
break;
}
}
if (!key) {
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
key = rcu_dereference(sdata->keys[i]);
if (key)
break;
}
}
if (key)
rx->key = key;
}
return RX_CONTINUE;
} else {
u8 keyid;
/*
* The device doesn't give us the IV so we won't be
* able to look up the key. That's ok though, we
* don't need to decrypt the frame, we just won't
* be able to keep statistics accurate.
* Except for key threshold notifications, should
* we somehow allow the driver to tell us which key
* the hardware used if this flag is set?
*/
if ((status->flag & RX_FLAG_DECRYPTED) &&
(status->flag & RX_FLAG_IV_STRIPPED))
return RX_CONTINUE;
hdrlen = ieee80211_hdrlen(fc);
if (rx->skb->len < 8 + hdrlen)
return RX_DROP_UNUSABLE; /* TODO: count this? */
/*
* no need to call ieee80211_wep_get_keyidx,
* it verifies a bunch of things we've done already
*/
skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
keyidx = keyid >> 6;
/* check per-station GTK first, if multicast packet */
if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
/* if not found, try default key */
if (!rx->key) {
rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
/*
* RSNA-protected unicast frames should always be
* sent with pairwise or station-to-station keys,
* but for WEP we allow using a key index as well.
*/
if (rx->key &&
rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
!is_multicast_ether_addr(hdr->addr1))
rx->key = NULL;
}
}
if (rx->key) {
if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
return RX_DROP_MONITOR;
rx->key->tx_rx_count++;
/* TODO: add threshold stuff again */
} else {
return RX_DROP_MONITOR;
}
if (skb_linearize(rx->skb))
return RX_DROP_UNUSABLE;
/* the hdr variable is invalid now! */
switch (rx->key->conf.cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
/* Check for weak IVs if possible */
if (rx->sta && ieee80211_is_data(fc) &&
(!(status->flag & RX_FLAG_IV_STRIPPED) ||
!(status->flag & RX_FLAG_DECRYPTED)) &&
ieee80211_wep_is_weak_iv(rx->skb, rx->key))
rx->sta->wep_weak_iv_count++;
result = ieee80211_crypto_wep_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_TKIP:
result = ieee80211_crypto_tkip_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_CCMP:
result = ieee80211_crypto_ccmp_decrypt(rx);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
result = ieee80211_crypto_aes_cmac_decrypt(rx);
break;
default:
/*
* We can reach here only with HW-only algorithms
* but why didn't it decrypt the frame?!
*/
return RX_DROP_UNUSABLE;
}
/* either the frame has been decrypted or will be dropped */
status->flag |= RX_FLAG_DECRYPTED;
return result;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local;
struct ieee80211_hdr *hdr;
struct sk_buff *skb;
local = rx->local;
skb = rx->skb;
hdr = (struct ieee80211_hdr *) skb->data;
if (!local->pspolling)
return RX_CONTINUE;
if (!ieee80211_has_fromds(hdr->frame_control))
/* this is not from AP */
return RX_CONTINUE;
if (!ieee80211_is_data(hdr->frame_control))
return RX_CONTINUE;
if (!ieee80211_has_moredata(hdr->frame_control)) {
/* AP has no more frames buffered for us */
local->pspolling = false;
return RX_CONTINUE;
}
/* more data bit is set, let's request a new frame from the AP */
ieee80211_send_pspoll(local, rx->sdata);
return RX_CONTINUE;
}
static void ap_sta_ps_start(struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
struct ieee80211_local *local = sdata->local;
atomic_inc(&sdata->bss->num_sta_ps);
set_sta_flag(sta, WLAN_STA_PS_STA);
if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
sdata->name, sta->sta.addr, sta->sta.aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
}
static void ap_sta_ps_end(struct sta_info *sta)
{
struct ieee80211_sub_if_data *sdata = sta->sdata;
atomic_dec(&sdata->bss->num_sta_ps);
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
sdata->name, sta->sta.addr, sta->sta.aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
sdata->name, sta->sta.addr, sta->sta.aid);
#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
return;
}
ieee80211_sta_ps_deliver_wakeup(sta);
}
int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
{
struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
bool in_ps;
WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
/* Don't let the same PS state be set twice */
in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
if ((start && in_ps) || (!start && !in_ps))
return -EINVAL;
if (start)
ap_sta_ps_start(sta_inf);
else
ap_sta_ps_end(sta_inf);
return 0;
}
EXPORT_SYMBOL(ieee80211_sta_ps_transition);
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_hdr *hdr = (void *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int tid, ac;
if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
return RX_CONTINUE;
if (sdata->vif.type != NL80211_IFTYPE_AP &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
return RX_CONTINUE;
/*
* The device handles station powersave, so don't do anything about
* uAPSD and PS-Poll frames (the latter shouldn't even come up from
* it to mac80211 since they're handled.)
*/
if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
return RX_CONTINUE;
/*
* Don't do anything if the station isn't already asleep. In
* the uAPSD case, the station will probably be marked asleep,
* in the PS-Poll case the station must be confused ...
*/
if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
return RX_CONTINUE;
if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
ieee80211_sta_ps_deliver_poll_response(rx->sta);
else
set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
}
/* Free PS Poll skb here instead of returning RX_DROP that would
* count as an dropped frame. */
dev_kfree_skb(rx->skb);
return RX_QUEUED;
} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
!(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
ieee80211_has_pm(hdr->frame_control) &&
(ieee80211_is_data_qos(hdr->frame_control) ||
ieee80211_is_qos_nullfunc(hdr->frame_control))) {
tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
ac = ieee802_1d_to_ac[tid & 7];
/*
* If this AC is not trigger-enabled do nothing.
*
* NB: This could/should check a separate bitmap of trigger-
* enabled queues, but for now we only implement uAPSD w/o
* TSPEC changes to the ACs, so they're always the same.
*/
if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
return RX_CONTINUE;
/* if we are in a service period, do nothing */
if (test_sta_flag(rx->sta, WLAN_STA_SP))
return RX_CONTINUE;
if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
ieee80211_sta_ps_deliver_uapsd(rx->sta);
else
set_sta_flag(rx->sta, WLAN_STA_UAPSD);
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
{
struct sta_info *sta = rx->sta;
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
if (!sta)
return RX_CONTINUE;
/*
* Update last_rx only for IBSS packets which are for the current
* BSSID to avoid keeping the current IBSS network alive in cases
* where other STAs start using different BSSID.
*/
if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
NL80211_IFTYPE_ADHOC);
if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
sta->last_rx = jiffies;
if (ieee80211_is_data(hdr->frame_control)) {
sta->last_rx_rate_idx = status->rate_idx;
sta->last_rx_rate_flag = status->flag;
}
}
} else if (!is_multicast_ether_addr(hdr->addr1)) {
/*
* Mesh beacons will update last_rx when if they are found to
* match the current local configuration when processed.
*/
sta->last_rx = jiffies;
if (ieee80211_is_data(hdr->frame_control)) {
sta->last_rx_rate_idx = status->rate_idx;
sta->last_rx_rate_flag = status->flag;
}
}
if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
return RX_CONTINUE;
if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
ieee80211_sta_rx_notify(rx->sdata, hdr);
sta->rx_fragments++;
sta->rx_bytes += rx->skb->len;
sta->last_signal = status->signal;
ewma_add(&sta->avg_signal, -status->signal);
/*
* Change STA power saving mode only at the end of a frame
* exchange sequence.
*/
if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
!ieee80211_has_morefrags(hdr->frame_control) &&
!(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
(rx->sdata->vif.type == NL80211_IFTYPE_AP ||
rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
/*
* Ignore doze->wake transitions that are
* indicated by non-data frames, the standard
* is unclear here, but for example going to
* PS mode and then scanning would cause a
* doze->wake transition for the probe request,
* and that is clearly undesirable.
*/
if (ieee80211_is_data(hdr->frame_control) &&
!ieee80211_has_pm(hdr->frame_control))
ap_sta_ps_end(sta);
} else {
if (ieee80211_has_pm(hdr->frame_control))
ap_sta_ps_start(sta);
}
}
/*
* Drop (qos-)data::nullfunc frames silently, since they
* are used only to control station power saving mode.
*/
if (ieee80211_is_nullfunc(hdr->frame_control) ||
ieee80211_is_qos_nullfunc(hdr->frame_control)) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
/*
* If we receive a 4-addr nullfunc frame from a STA
* that was not moved to a 4-addr STA vlan yet, drop
* the frame to the monitor interface, to make sure
* that hostapd sees it
*/
if (ieee80211_has_a4(hdr->frame_control) &&
(rx->sdata->vif.type == NL80211_IFTYPE_AP ||
(rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
!rx->sdata->u.vlan.sta)))
return RX_DROP_MONITOR;
/*
* Update counter and free packet here to avoid
* counting this as a dropped packed.
*/
sta->rx_packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
return RX_CONTINUE;
} /* ieee80211_rx_h_sta_process */
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
unsigned int frag, unsigned int seq, int rx_queue,
struct sk_buff **skb)
{
struct ieee80211_fragment_entry *entry;
int idx;
idx = sdata->fragment_next;
entry = &sdata->fragments[sdata->fragment_next++];
if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
sdata->fragment_next = 0;
if (!skb_queue_empty(&entry->skb_list)) {
#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
struct ieee80211_hdr *hdr =
(struct ieee80211_hdr *) entry->skb_list.next->data;
printk(KERN_DEBUG "%s: RX reassembly removed oldest "
"fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
"addr1=%pM addr2=%pM\n",
sdata->name, idx,
jiffies - entry->first_frag_time, entry->seq,
entry->last_frag, hdr->addr1, hdr->addr2);
#endif
__skb_queue_purge(&entry->skb_list);
}
__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
*skb = NULL;
entry->first_frag_time = jiffies;
entry->seq = seq;
entry->rx_queue = rx_queue;
entry->last_frag = frag;
entry->ccmp = 0;
entry->extra_len = 0;
return entry;
}
static inline struct ieee80211_fragment_entry *
ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
unsigned int frag, unsigned int seq,
int rx_queue, struct ieee80211_hdr *hdr)
{
struct ieee80211_fragment_entry *entry;
int i, idx;
idx = sdata->fragment_next;
for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
struct ieee80211_hdr *f_hdr;
idx--;
if (idx < 0)
idx = IEEE80211_FRAGMENT_MAX - 1;
entry = &sdata->fragments[idx];
if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
entry->rx_queue != rx_queue ||
entry->last_frag + 1 != frag)
continue;
f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
/*
* Check ftype and addresses are equal, else check next fragment
*/
if (((hdr->frame_control ^ f_hdr->frame_control) &
cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
continue;
if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
__skb_queue_purge(&entry->skb_list);
continue;
}
return entry;
}
return NULL;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr;
u16 sc;
__le16 fc;
unsigned int frag, seq;
struct ieee80211_fragment_entry *entry;
struct sk_buff *skb;
struct ieee80211_rx_status *status;
hdr = (struct ieee80211_hdr *)rx->skb->data;
fc = hdr->frame_control;
sc = le16_to_cpu(hdr->seq_ctrl);
frag = sc & IEEE80211_SCTL_FRAG;
if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
(rx->skb)->len < 24 ||
is_multicast_ether_addr(hdr->addr1))) {
/* not fragmented */
goto out;
}
I802_DEBUG_INC(rx->local->rx_handlers_fragments);
if (skb_linearize(rx->skb))
return RX_DROP_UNUSABLE;
/*
* skb_linearize() might change the skb->data and
* previously cached variables (in this case, hdr) need to
* be refreshed with the new data.
*/
hdr = (struct ieee80211_hdr *)rx->skb->data;
seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
if (frag == 0) {
/* This is the first fragment of a new frame. */
entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
rx->seqno_idx, &(rx->skb));
if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
ieee80211_has_protected(fc)) {
int queue = rx->security_idx;
/* Store CCMP PN so that we can verify that the next
* fragment has a sequential PN value. */
entry->ccmp = 1;
memcpy(entry->last_pn,
rx->key->u.ccmp.rx_pn[queue],
CCMP_PN_LEN);
}
return RX_QUEUED;
}
/* This is a fragment for a frame that should already be pending in
* fragment cache. Add this fragment to the end of the pending entry.
*/
entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
rx->seqno_idx, hdr);
if (!entry) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
return RX_DROP_MONITOR;
}
/* Verify that MPDUs within one MSDU have sequential PN values.
* (IEEE 802.11i, 8.3.3.4.5) */
if (entry->ccmp) {
int i;
u8 pn[CCMP_PN_LEN], *rpn;
int queue;
if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
return RX_DROP_UNUSABLE;
memcpy(pn, entry->last_pn, CCMP_PN_LEN);
for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
pn[i]++;
if (pn[i])
break;
}
queue = rx->security_idx;
rpn = rx->key->u.ccmp.rx_pn[queue];
if (memcmp(pn, rpn, CCMP_PN_LEN))
return RX_DROP_UNUSABLE;
memcpy(entry->last_pn, pn, CCMP_PN_LEN);
}
skb_pull(rx->skb, ieee80211_hdrlen(fc));
__skb_queue_tail(&entry->skb_list, rx->skb);
entry->last_frag = frag;
entry->extra_len += rx->skb->len;
if (ieee80211_has_morefrags(fc)) {
rx->skb = NULL;
return RX_QUEUED;
}
rx->skb = __skb_dequeue(&entry->skb_list);
if (skb_tailroom(rx->skb) < entry->extra_len) {
I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
GFP_ATOMIC))) {
I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
__skb_queue_purge(&entry->skb_list);
return RX_DROP_UNUSABLE;
}
}
while ((skb = __skb_dequeue(&entry->skb_list))) {
memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
dev_kfree_skb(skb);
}
/* Complete frame has been reassembled - process it now */
status = IEEE80211_SKB_RXCB(rx->skb);
status->rx_flags |= IEEE80211_RX_FRAGMENTED;
out:
if (rx->sta)
rx->sta->rx_packets++;
if (is_multicast_ether_addr(hdr->addr1))
rx->local->dot11MulticastReceivedFrameCount++;
else
ieee80211_led_rx(rx->local);
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
{
u8 *data = rx->skb->data;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
if (!ieee80211_is_data_qos(hdr->frame_control))
return RX_CONTINUE;
/* remove the qos control field, update frame type and meta-data */
memmove(data + IEEE80211_QOS_CTL_LEN, data,
ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
/* change frame type to non QOS */
hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
return RX_CONTINUE;
}
static int
ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
{
if (unlikely(!rx->sta ||
!test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
return -EACCES;
return 0;
}
static int
ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
{
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
/*
* Pass through unencrypted frames if the hardware has
* decrypted them already.
*/
if (status->flag & RX_FLAG_DECRYPTED)
return 0;
/* Drop unencrypted frames if key is set. */
if (unlikely(!ieee80211_has_protected(fc) &&
!ieee80211_is_nullfunc(fc) &&
ieee80211_is_data(fc) &&
(rx->key || rx->sdata->drop_unencrypted)))
return -EACCES;
return 0;
}
static int
ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
__le16 fc = hdr->frame_control;
/*
* Pass through unencrypted frames if the hardware has
* decrypted them already.
*/
if (status->flag & RX_FLAG_DECRYPTED)
return 0;
if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
if (unlikely(!ieee80211_has_protected(fc) &&
ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
rx->key)) {
if (ieee80211_is_deauth(fc))
cfg80211_send_unprot_deauth(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
else if (ieee80211_is_disassoc(fc))
cfg80211_send_unprot_disassoc(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
return -EACCES;
}
/* BIP does not use Protected field, so need to check MMIE */
if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
if (ieee80211_is_deauth(fc))
cfg80211_send_unprot_deauth(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
else if (ieee80211_is_disassoc(fc))
cfg80211_send_unprot_disassoc(rx->sdata->dev,
rx->skb->data,
rx->skb->len);
return -EACCES;
}
/*
* When using MFP, Action frames are not allowed prior to
* having configured keys.
*/
if (unlikely(ieee80211_is_action(fc) && !rx->key &&
ieee80211_is_robust_mgmt_frame(
(struct ieee80211_hdr *) rx->skb->data)))
return -EACCES;
}
return 0;
}
static int
__ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
bool check_port_control = false;
struct ethhdr *ehdr;
int ret;
*port_control = false;
if (ieee80211_has_a4(hdr->frame_control) &&
sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
return -1;
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
!!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
if (!sdata->u.mgd.use_4addr)
return -1;
else
check_port_control = true;
}
if (is_multicast_ether_addr(hdr->addr1) &&
sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
return -1;
ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
if (ret < 0)
return ret;
ehdr = (struct ethhdr *) rx->skb->data;
if (ehdr->h_proto == rx->sdata->control_port_protocol)
*port_control = true;
else if (check_port_control)
return -1;
return 0;
}
/*
* requires that rx->skb is a frame with ethernet header
*/
static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
{
static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
/*
* Allow EAPOL frames to us/the PAE group address regardless
* of whether the frame was encrypted or not.
*/
if (ehdr->h_proto == rx->sdata->control_port_protocol &&
(compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
return true;
if (ieee80211_802_1x_port_control(rx) ||
ieee80211_drop_unencrypted(rx, fc))
return false;
return true;
}
/*
* requires that rx->skb is a frame with ethernet header
*/
static void
ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct net_device *dev = sdata->dev;
struct sk_buff *skb, *xmit_skb;
struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
struct sta_info *dsta;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
skb = rx->skb;
xmit_skb = NULL;
if ((sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
!(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
(status->rx_flags & IEEE80211_RX_RA_MATCH) &&
(sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
if (is_multicast_ether_addr(ehdr->h_dest)) {
/*
* send multicast frames both to higher layers in
* local net stack and back to the wireless medium
*/
xmit_skb = skb_copy(skb, GFP_ATOMIC);
if (!xmit_skb && net_ratelimit())
printk(KERN_DEBUG "%s: failed to clone "
"multicast frame\n", dev->name);
} else {
dsta = sta_info_get(sdata, skb->data);
if (dsta) {
/*
* The destination station is associated to
* this AP (in this VLAN), so send the frame
* directly to it and do not pass it to local
* net stack.
*/
xmit_skb = skb;
skb = NULL;
}
}
}
if (skb) {
int align __maybe_unused;
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
/*
* 'align' will only take the values 0 or 2 here
* since all frames are required to be aligned
* to 2-byte boundaries when being passed to
* mac80211. That also explains the __skb_push()
* below.
*/
align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
if (align) {
if (WARN_ON(skb_headroom(skb) < 3)) {
dev_kfree_skb(skb);
skb = NULL;
} else {
u8 *data = skb->data;
size_t len = skb_headlen(skb);
skb->data -= align;
memmove(skb->data, data, len);
skb_set_tail_pointer(skb, len);
}
}
#endif
if (skb) {
/* deliver to local stack */
skb->protocol = eth_type_trans(skb, dev);
memset(skb->cb, 0, sizeof(skb->cb));
netif_receive_skb(skb);
}
}
if (xmit_skb) {
/* send to wireless media */
xmit_skb->protocol = htons(ETH_P_802_3);
skb_reset_network_header(xmit_skb);
skb_reset_mac_header(xmit_skb);
dev_queue_xmit(xmit_skb);
}
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
{
struct net_device *dev = rx->sdata->dev;
struct sk_buff *skb = rx->skb;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 fc = hdr->frame_control;
struct sk_buff_head frame_list;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
if (unlikely(!ieee80211_is_data(fc)))
return RX_CONTINUE;
if (unlikely(!ieee80211_is_data_present(fc)))
return RX_DROP_MONITOR;
if (!(status->rx_flags & IEEE80211_RX_AMSDU))
return RX_CONTINUE;
if (ieee80211_has_a4(hdr->frame_control) &&
rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
!rx->sdata->u.vlan.sta)
return RX_DROP_UNUSABLE;
if (is_multicast_ether_addr(hdr->addr1) &&
((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
rx->sdata->u.vlan.sta) ||
(rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
rx->sdata->u.mgd.use_4addr)))
return RX_DROP_UNUSABLE;
skb->dev = dev;
__skb_queue_head_init(&frame_list);
if (skb_linearize(skb))
return RX_DROP_UNUSABLE;
ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
rx->sdata->vif.type,
rx->local->hw.extra_tx_headroom, true);
while (!skb_queue_empty(&frame_list)) {
rx->skb = __skb_dequeue(&frame_list);
if (!ieee80211_frame_allowed(rx, fc)) {
dev_kfree_skb(rx->skb);
continue;
}
dev->stats.rx_packets++;
dev->stats.rx_bytes += rx->skb->len;
ieee80211_deliver_skb(rx);
}
return RX_QUEUED;
}
#ifdef CONFIG_MAC80211_MESH
static ieee80211_rx_result
ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
{
struct ieee80211_hdr *hdr;
struct ieee80211s_hdr *mesh_hdr;
unsigned int hdrlen;
struct sk_buff *skb = rx->skb, *fwd_skb;
struct ieee80211_local *local = rx->local;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
hdr = (struct ieee80211_hdr *) skb->data;
hdrlen = ieee80211_hdrlen(hdr->frame_control);
mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
/* frame is in RMC, don't forward */
if (ieee80211_is_data(hdr->frame_control) &&
is_multicast_ether_addr(hdr->addr1) &&
mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
return RX_DROP_MONITOR;
if (!ieee80211_is_data(hdr->frame_control))
return RX_CONTINUE;
if (!mesh_hdr->ttl)
/* illegal frame */
return RX_DROP_MONITOR;
if (ieee80211_queue_stopped(&local->hw, skb_get_queue_mapping(skb))) {
IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
dropped_frames_congestion);
return RX_DROP_MONITOR;
}
if (mesh_hdr->flags & MESH_FLAGS_AE) {
struct mesh_path *mppath;
char *proxied_addr;
char *mpp_addr;
if (is_multicast_ether_addr(hdr->addr1)) {
mpp_addr = hdr->addr3;
proxied_addr = mesh_hdr->eaddr1;
} else {
mpp_addr = hdr->addr4;
proxied_addr = mesh_hdr->eaddr2;
}
rcu_read_lock();
mppath = mpp_path_lookup(proxied_addr, sdata);
if (!mppath) {
mpp_path_add(proxied_addr, mpp_addr, sdata);
} else {
spin_lock_bh(&mppath->state_lock);
if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
spin_unlock_bh(&mppath->state_lock);
}
rcu_read_unlock();
}
/* Frame has reached destination. Don't forward */
if (!is_multicast_ether_addr(hdr->addr1) &&
compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
return RX_CONTINUE;
mesh_hdr->ttl--;
if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
if (!mesh_hdr->ttl)
IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
dropped_frames_ttl);
else {
struct ieee80211_hdr *fwd_hdr;
struct ieee80211_tx_info *info;
fwd_skb = skb_copy(skb, GFP_ATOMIC);
if (!fwd_skb && net_ratelimit())
printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
sdata->name);
if (!fwd_skb)
goto out;
fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
info = IEEE80211_SKB_CB(fwd_skb);
memset(info, 0, sizeof(*info));
info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
info->control.vif = &rx->sdata->vif;
if (is_multicast_ether_addr(fwd_hdr->addr1)) {
IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
fwded_mcast);
skb_set_queue_mapping(fwd_skb,
ieee80211_select_queue(sdata, fwd_skb));
ieee80211_set_qos_hdr(sdata, fwd_skb);
} else {
int err;
/*
* Save TA to addr1 to send TA a path error if a
* suitable next hop is not found
*/
memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
ETH_ALEN);
err = mesh_nexthop_lookup(fwd_skb, sdata);
/* Failed to immediately resolve next hop:
* fwded frame was dropped or will be added
* later to the pending skb queue. */
if (err)
return RX_DROP_MONITOR;
IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
fwded_unicast);
}
IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
fwded_frames);
ieee80211_add_pending_skb(local, fwd_skb);
}
}
out:
if (is_multicast_ether_addr(hdr->addr1) ||
sdata->dev->flags & IFF_PROMISC)
return RX_CONTINUE;
else
return RX_DROP_MONITOR;
}
#endif
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_local *local = rx->local;
struct net_device *dev = sdata->dev;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
__le16 fc = hdr->frame_control;
bool port_control;
int err;
if (unlikely(!ieee80211_is_data(hdr->frame_control)))
return RX_CONTINUE;
if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
return RX_DROP_MONITOR;
/*
* Allow the cooked monitor interface of an AP to see 4-addr frames so
* that a 4-addr station can be detected and moved into a separate VLAN
*/
if (ieee80211_has_a4(hdr->frame_control) &&
sdata->vif.type == NL80211_IFTYPE_AP)
return RX_DROP_MONITOR;
err = __ieee80211_data_to_8023(rx, &port_control);
if (unlikely(err))
return RX_DROP_UNUSABLE;
if (!ieee80211_frame_allowed(rx, fc))
return RX_DROP_MONITOR;
if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
unlikely(port_control) && sdata->bss) {
sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
u.ap);
dev = sdata->dev;
rx->sdata = sdata;
}
rx->skb->dev = dev;
dev->stats.rx_packets++;
dev->stats.rx_bytes += rx->skb->len;
if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
!is_multicast_ether_addr(
((struct ethhdr *)rx->skb->data)->h_dest) &&
(!local->scanning &&
!test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
mod_timer(&local->dynamic_ps_timer, jiffies +
msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
}
ieee80211_deliver_skb(rx);
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_hw *hw = &local->hw;
struct sk_buff *skb = rx->skb;
struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
struct tid_ampdu_rx *tid_agg_rx;
u16 start_seq_num;
u16 tid;
if (likely(!ieee80211_is_ctl(bar->frame_control)))
return RX_CONTINUE;
if (ieee80211_is_back_req(bar->frame_control)) {
struct {
__le16 control, start_seq_num;
} __packed bar_data;
if (!rx->sta)
return RX_DROP_MONITOR;
if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
&bar_data, sizeof(bar_data)))
return RX_DROP_MONITOR;
tid = le16_to_cpu(bar_data.control) >> 12;
tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
return RX_DROP_MONITOR;
start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
/* reset session timer */
if (tid_agg_rx->timeout)
mod_timer(&tid_agg_rx->session_timer,
TU_TO_EXP_TIME(tid_agg_rx->timeout));
spin_lock(&tid_agg_rx->reorder_lock);
/* release stored frames up to start of BAR */
ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
spin_unlock(&tid_agg_rx->reorder_lock);
kfree_skb(skb);
return RX_QUEUED;
}
/*
* After this point, we only want management frames,
* so we can drop all remaining control frames to
* cooked monitor interfaces.
*/
return RX_DROP_MONITOR;
}
static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_local *local = sdata->local;
struct sk_buff *skb;
struct ieee80211_mgmt *resp;
if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
/* Not to own unicast address */
return;
}
if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
/* Not from the current AP or not associated yet. */
return;
}
if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
/* Too short SA Query request frame */
return;
}
skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
if (skb == NULL)
return;
skb_reserve(skb, local->hw.extra_tx_headroom);
resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(resp, 0, 24);
memcpy(resp->da, mgmt->sa, ETH_ALEN);
memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_ACTION);
skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
memcpy(resp->u.action.u.sa_query.trans_id,
mgmt->u.action.u.sa_query.trans_id,
WLAN_SA_QUERY_TR_ID_LEN);
ieee80211_tx_skb(sdata, skb);
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
{
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
/*
* From here on, look only at management frames.
* Data and control frames are already handled,
* and unknown (reserved) frames are useless.
*/
if (rx->skb->len < 24)
return RX_DROP_MONITOR;
if (!ieee80211_is_mgmt(mgmt->frame_control))
return RX_DROP_MONITOR;
if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
return RX_DROP_MONITOR;
if (ieee80211_drop_unencrypted_mgmt(rx))
return RX_DROP_UNUSABLE;
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
int len = rx->skb->len;
if (!ieee80211_is_action(mgmt->frame_control))
return RX_CONTINUE;
/* drop too small frames */
if (len < IEEE80211_MIN_ACTION_SIZE)
return RX_DROP_UNUSABLE;
if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
return RX_DROP_UNUSABLE;
if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
return RX_DROP_UNUSABLE;
switch (mgmt->u.action.category) {
case WLAN_CATEGORY_BACK:
/*
* The aggregation code is not prepared to handle
* anything but STA/AP due to the BSSID handling;
* IBSS could work in the code but isn't supported
* by drivers or the standard.
*/
if (sdata->vif.type != NL80211_IFTYPE_STATION &&
sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
sdata->vif.type != NL80211_IFTYPE_AP)
break;
/* verify action_code is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
break;
switch (mgmt->u.action.u.addba_req.action_code) {
case WLAN_ACTION_ADDBA_REQ:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_req)))
goto invalid;
break;
case WLAN_ACTION_ADDBA_RESP:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.addba_resp)))
goto invalid;
break;
case WLAN_ACTION_DELBA:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.delba)))
goto invalid;
break;
default:
goto invalid;
}
goto queue;
case WLAN_CATEGORY_SPECTRUM_MGMT:
if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
break;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
/* verify action_code is present */
if (len < IEEE80211_MIN_ACTION_SIZE + 1)
break;
switch (mgmt->u.action.u.measurement.action_code) {
case WLAN_ACTION_SPCT_MSR_REQ:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.measurement)))
break;
ieee80211_process_measurement_req(sdata, mgmt, len);
goto handled;
case WLAN_ACTION_SPCT_CHL_SWITCH:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.chan_switch)))
break;
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
break;
goto queue;
}
break;
case WLAN_CATEGORY_SA_QUERY:
if (len < (IEEE80211_MIN_ACTION_SIZE +
sizeof(mgmt->u.action.u.sa_query)))
break;
switch (mgmt->u.action.u.sa_query.action) {
case WLAN_ACTION_SA_QUERY_REQUEST:
if (sdata->vif.type != NL80211_IFTYPE_STATION)
break;
ieee80211_process_sa_query_req(sdata, mgmt, len);
goto handled;
}
break;
case WLAN_CATEGORY_SELF_PROTECTED:
switch (mgmt->u.action.u.self_prot.action_code) {
case WLAN_SP_MESH_PEERING_OPEN:
case WLAN_SP_MESH_PEERING_CLOSE:
case WLAN_SP_MESH_PEERING_CONFIRM:
if (!ieee80211_vif_is_mesh(&sdata->vif))
goto invalid;
if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
/* userspace handles this frame */
break;
goto queue;
case WLAN_SP_MGK_INFORM:
case WLAN_SP_MGK_ACK:
if (!ieee80211_vif_is_mesh(&sdata->vif))
goto invalid;
break;
}
break;
case WLAN_CATEGORY_MESH_ACTION:
if (!ieee80211_vif_is_mesh(&sdata->vif))
break;
if (mesh_action_is_path_sel(mgmt) &&
(!mesh_path_sel_is_hwmp(sdata)))
break;
goto queue;
}
return RX_CONTINUE;
invalid:
status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
/* will return in the next handlers */
return RX_CONTINUE;
handled:
if (rx->sta)
rx->sta->rx_packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
queue:
rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
skb_queue_tail(&sdata->skb_queue, rx->skb);
ieee80211_queue_work(&local->hw, &sdata->work);
if (rx->sta)
rx->sta->rx_packets++;
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
/* skip known-bad action frames and return them in the next handler */
if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
return RX_CONTINUE;
/*
* Getting here means the kernel doesn't know how to handle
* it, but maybe userspace does ... include returned frames
* so userspace can register for those to know whether ones
* it transmitted were processed or returned.
*/
if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
rx->skb->data, rx->skb->len,
GFP_ATOMIC)) {
if (rx->sta)
rx->sta->rx_packets++;
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
return RX_CONTINUE;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
struct sk_buff *nskb;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
if (!ieee80211_is_action(mgmt->frame_control))
return RX_CONTINUE;
/*
* For AP mode, hostapd is responsible for handling any action
* frames that we didn't handle, including returning unknown
* ones. For all other modes we will return them to the sender,
* setting the 0x80 bit in the action category, as required by
* 802.11-2007 7.3.1.11.
* Newer versions of hostapd shall also use the management frame
* registration mechanisms, but older ones still use cooked
* monitor interfaces so push all frames there.
*/
if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
(sdata->vif.type == NL80211_IFTYPE_AP ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
return RX_DROP_MONITOR;
/* do not return rejected action frames */
if (mgmt->u.action.category & 0x80)
return RX_DROP_UNUSABLE;
nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
GFP_ATOMIC);
if (nskb) {
struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
nmgmt->u.action.category |= 0x80;
memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
memset(nskb->cb, 0, sizeof(nskb->cb));
ieee80211_tx_skb(rx->sdata, nskb);
}
dev_kfree_skb(rx->skb);
return RX_QUEUED;
}
static ieee80211_rx_result debug_noinline
ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
ieee80211_rx_result rxs;
struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
__le16 stype;
rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
if (rxs != RX_CONTINUE)
return rxs;
stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
if (!ieee80211_vif_is_mesh(&sdata->vif) &&
sdata->vif.type != NL80211_IFTYPE_ADHOC &&
sdata->vif.type != NL80211_IFTYPE_STATION)
return RX_DROP_MONITOR;
switch (stype) {
case cpu_to_le16(IEEE80211_STYPE_BEACON):
case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
/* process for all: mesh, mlme, ibss */
break;
case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
if (is_multicast_ether_addr(mgmt->da) &&
!is_broadcast_ether_addr(mgmt->da))
return RX_DROP_MONITOR;
/* process only for station */
if (sdata->vif.type != NL80211_IFTYPE_STATION)
return RX_DROP_MONITOR;
break;
case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
case cpu_to_le16(IEEE80211_STYPE_AUTH):
/* process only for ibss */
if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
return RX_DROP_MONITOR;
break;
default:
return RX_DROP_MONITOR;
}
/* queue up frame and kick off work to process it */
rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
skb_queue_tail(&sdata->skb_queue, rx->skb);
ieee80211_queue_work(&rx->local->hw, &sdata->work);
if (rx->sta)
rx->sta->rx_packets++;
return RX_QUEUED;
}
/* TODO: use IEEE80211_RX_FRAGMENTED */
static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
struct ieee80211_rate *rate)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_local *local = rx->local;
struct ieee80211_rtap_hdr {
struct ieee80211_radiotap_header hdr;
u8 flags;
u8 rate_or_pad;
__le16 chan_freq;
__le16 chan_flags;
} __packed *rthdr;
struct sk_buff *skb = rx->skb, *skb2;
struct net_device *prev_dev = NULL;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
/*
* If cooked monitor has been processed already, then
* don't do it again. If not, set the flag.
*/
if (rx->flags & IEEE80211_RX_CMNTR)
goto out_free_skb;
rx->flags |= IEEE80211_RX_CMNTR;
if (skb_headroom(skb) < sizeof(*rthdr) &&
pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
goto out_free_skb;
rthdr = (void *)skb_push(skb, sizeof(*rthdr));
memset(rthdr, 0, sizeof(*rthdr));
rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
rthdr->hdr.it_present =
cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
(1 << IEEE80211_RADIOTAP_CHANNEL));
if (rate) {
rthdr->rate_or_pad = rate->bitrate / 5;
rthdr->hdr.it_present |=
cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
}
rthdr->chan_freq = cpu_to_le16(status->freq);
if (status->band == IEEE80211_BAND_5GHZ)
rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_5GHZ);
else
rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
IEEE80211_CHAN_2GHZ);
skb_set_mac_header(skb, 0);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->pkt_type = PACKET_OTHERHOST;
skb->protocol = htons(ETH_P_802_2);
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
!(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
continue;
if (prev_dev) {
skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2) {
skb2->dev = prev_dev;
netif_receive_skb(skb2);
}
}
prev_dev = sdata->dev;
sdata->dev->stats.rx_packets++;
sdata->dev->stats.rx_bytes += skb->len;
}
if (prev_dev) {
skb->dev = prev_dev;
netif_receive_skb(skb);
return;
}
out_free_skb:
dev_kfree_skb(skb);
}
static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
ieee80211_rx_result res)
{
switch (res) {
case RX_DROP_MONITOR:
I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
if (rx->sta)
rx->sta->rx_dropped++;
/* fall through */
case RX_CONTINUE: {
struct ieee80211_rate *rate = NULL;
struct ieee80211_supported_band *sband;
struct ieee80211_rx_status *status;
status = IEEE80211_SKB_RXCB((rx->skb));
sband = rx->local->hw.wiphy->bands[status->band];
if (!(status->flag & RX_FLAG_HT))
rate = &sband->bitrates[status->rate_idx];
ieee80211_rx_cooked_monitor(rx, rate);
break;
}
case RX_DROP_UNUSABLE:
I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
if (rx->sta)
rx->sta->rx_dropped++;
dev_kfree_skb(rx->skb);
break;
case RX_QUEUED:
I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
break;
}
}
static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
{
ieee80211_rx_result res = RX_DROP_MONITOR;
struct sk_buff *skb;
#define CALL_RXH(rxh) \
do { \
res = rxh(rx); \
if (res != RX_CONTINUE) \
goto rxh_next; \
} while (0);
spin_lock(&rx->local->rx_skb_queue.lock);
if (rx->local->running_rx_handler)
goto unlock;
rx->local->running_rx_handler = true;
while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
spin_unlock(&rx->local->rx_skb_queue.lock);
/*
* all the other fields are valid across frames
* that belong to an aMPDU since they are on the
* same TID from the same station
*/
rx->skb = skb;
CALL_RXH(ieee80211_rx_h_decrypt)
CALL_RXH(ieee80211_rx_h_check_more_data)
CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
CALL_RXH(ieee80211_rx_h_sta_process)
CALL_RXH(ieee80211_rx_h_defragment)
CALL_RXH(ieee80211_rx_h_michael_mic_verify)
/* must be after MMIC verify so header is counted in MPDU mic */
#ifdef CONFIG_MAC80211_MESH
if (ieee80211_vif_is_mesh(&rx->sdata->vif))
CALL_RXH(ieee80211_rx_h_mesh_fwding);
#endif
CALL_RXH(ieee80211_rx_h_remove_qos_control)
CALL_RXH(ieee80211_rx_h_amsdu)
CALL_RXH(ieee80211_rx_h_data)
CALL_RXH(ieee80211_rx_h_ctrl);
CALL_RXH(ieee80211_rx_h_mgmt_check)
CALL_RXH(ieee80211_rx_h_action)
CALL_RXH(ieee80211_rx_h_userspace_mgmt)
CALL_RXH(ieee80211_rx_h_action_return)
CALL_RXH(ieee80211_rx_h_mgmt)
rxh_next:
ieee80211_rx_handlers_result(rx, res);
spin_lock(&rx->local->rx_skb_queue.lock);
#undef CALL_RXH
}
rx->local->running_rx_handler = false;
unlock:
spin_unlock(&rx->local->rx_skb_queue.lock);
}
static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
{
ieee80211_rx_result res = RX_DROP_MONITOR;
#define CALL_RXH(rxh) \
do { \
res = rxh(rx); \
if (res != RX_CONTINUE) \
goto rxh_next; \
} while (0);
CALL_RXH(ieee80211_rx_h_passive_scan)
CALL_RXH(ieee80211_rx_h_check)
ieee80211_rx_reorder_ampdu(rx);
ieee80211_rx_handlers(rx);
return;
rxh_next:
ieee80211_rx_handlers_result(rx, res);
#undef CALL_RXH
}
/*
* This function makes calls into the RX path, therefore
* it has to be invoked under RCU read lock.
*/
void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
{
struct ieee80211_rx_data rx = {
.sta = sta,
.sdata = sta->sdata,
.local = sta->local,
/* This is OK -- must be QoS data frame */
.security_idx = tid,
.seqno_idx = tid,
.flags = 0,
};
struct tid_ampdu_rx *tid_agg_rx;
tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
if (!tid_agg_rx)
return;
spin_lock(&tid_agg_rx->reorder_lock);
ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
spin_unlock(&tid_agg_rx->reorder_lock);
ieee80211_rx_handlers(&rx);
}
/* main receive path */
static int prepare_for_handlers(struct ieee80211_rx_data *rx,
struct ieee80211_hdr *hdr)
{
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct sk_buff *skb = rx->skb;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
int multicast = is_multicast_ether_addr(hdr->addr1);
switch (sdata->vif.type) {
case NL80211_IFTYPE_STATION:
if (!bssid && !sdata->u.mgd.use_4addr)
return 0;
if (!multicast &&
compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
if (!(sdata->dev->flags & IFF_PROMISC) ||
sdata->u.mgd.use_4addr)
return 0;
status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
}
break;
case NL80211_IFTYPE_ADHOC:
if (!bssid)
return 0;
if (ieee80211_is_beacon(hdr->frame_control)) {
return 1;
}
else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
return 0;
status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
} else if (!multicast &&
compare_ether_addr(sdata->vif.addr,
hdr->addr1) != 0) {
if (!(sdata->dev->flags & IFF_PROMISC))
return 0;
status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
} else if (!rx->sta) {
int rate_idx;
if (status->flag & RX_FLAG_HT)
rate_idx = 0; /* TODO: HT rates */
else
rate_idx = status->rate_idx;
rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
}
break;
case NL80211_IFTYPE_MESH_POINT:
if (!multicast &&
compare_ether_addr(sdata->vif.addr,
hdr->addr1) != 0) {
if (!(sdata->dev->flags & IFF_PROMISC))
return 0;
status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
}
break;
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_AP:
if (!bssid) {
if (compare_ether_addr(sdata->vif.addr,
hdr->addr1))
return 0;
} else if (!ieee80211_bssid_match(bssid,
sdata->vif.addr)) {
if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
!ieee80211_is_beacon(hdr->frame_control) &&
!(ieee80211_is_action(hdr->frame_control) &&
sdata->vif.p2p))
return 0;
status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
}
break;
case NL80211_IFTYPE_WDS:
if (bssid || !ieee80211_is_data(hdr->frame_control))
return 0;
if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
return 0;
break;
default:
/* should never get here */
WARN_ON(1);
break;
}
return 1;
}
/*
* This function returns whether or not the SKB
* was destined for RX processing or not, which,
* if consume is true, is equivalent to whether
* or not the skb was consumed.
*/
static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
struct sk_buff *skb, bool consume)
{
struct ieee80211_local *local = rx->local;
struct ieee80211_sub_if_data *sdata = rx->sdata;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_hdr *hdr = (void *)skb->data;
int prepares;
rx->skb = skb;
status->rx_flags |= IEEE80211_RX_RA_MATCH;
prepares = prepare_for_handlers(rx, hdr);
if (!prepares)
return false;
if (!consume) {
skb = skb_copy(skb, GFP_ATOMIC);
if (!skb) {
if (net_ratelimit())
wiphy_debug(local->hw.wiphy,
"failed to copy skb for %s\n",
sdata->name);
return true;
}
rx->skb = skb;
}
ieee80211_invoke_rx_handlers(rx);
return true;
}
/*
* This is the actual Rx frames handler. as it blongs to Rx path it must
* be called with rcu_read_lock protection.
*/
static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_sub_if_data *sdata;
struct ieee80211_hdr *hdr;
__le16 fc;
struct ieee80211_rx_data rx;
struct ieee80211_sub_if_data *prev;
struct sta_info *sta, *tmp, *prev_sta;
int err = 0;
fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
memset(&rx, 0, sizeof(rx));
rx.skb = skb;
rx.local = local;
if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
local->dot11ReceivedFragmentCount++;
if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
test_bit(SCAN_SW_SCANNING, &local->scanning)))
status->rx_flags |= IEEE80211_RX_IN_SCAN;
if (ieee80211_is_mgmt(fc))
err = skb_linearize(skb);
else
err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
if (err) {
dev_kfree_skb(skb);
return;
}
hdr = (struct ieee80211_hdr *)skb->data;
ieee80211_parse_qos(&rx);
ieee80211_verify_alignment(&rx);
if (ieee80211_is_data(fc)) {
prev_sta = NULL;
for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
if (!prev_sta) {
prev_sta = sta;
continue;
}
rx.sta = prev_sta;
rx.sdata = prev_sta->sdata;
ieee80211_prepare_and_rx_handle(&rx, skb, false);
prev_sta = sta;
}
if (prev_sta) {
rx.sta = prev_sta;
rx.sdata = prev_sta->sdata;
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
return;
goto out;
}
}
prev = NULL;
list_for_each_entry_rcu(sdata, &local->interfaces, list) {
if (!ieee80211_sdata_running(sdata))
continue;
if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
continue;
/*
* frame is destined for this interface, but if it's
* not also for the previous one we handle that after
* the loop to avoid copying the SKB once too much
*/
if (!prev) {
prev = sdata;
continue;
}
rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
rx.sdata = prev;
ieee80211_prepare_and_rx_handle(&rx, skb, false);
prev = sdata;
}
if (prev) {
rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
rx.sdata = prev;
if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
return;
}
out:
dev_kfree_skb(skb);
}
/*
* This is the receive path handler. It is called by a low level driver when an
* 802.11 MPDU is received from the hardware.
*/
void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_rate *rate = NULL;
struct ieee80211_supported_band *sband;
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
WARN_ON_ONCE(softirq_count() == 0);
if (WARN_ON(status->band < 0 ||
status->band >= IEEE80211_NUM_BANDS))
goto drop;
sband = local->hw.wiphy->bands[status->band];
if (WARN_ON(!sband))
goto drop;
/*
* If we're suspending, it is possible although not too likely
* that we'd be receiving frames after having already partially
* quiesced the stack. We can't process such frames then since
* that might, for example, cause stations to be added or other
* driver callbacks be invoked.
*/
if (unlikely(local->quiescing || local->suspended))
goto drop;
/*
* The same happens when we're not even started,
* but that's worth a warning.
*/
if (WARN_ON(!local->started))
goto drop;
if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
/*
* Validate the rate, unless a PLCP error means that
* we probably can't have a valid rate here anyway.
*/
if (status->flag & RX_FLAG_HT) {
/*
* rate_idx is MCS index, which can be [0-76]
* as documented on:
*
* http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
*
* Anything else would be some sort of driver or
* hardware error. The driver should catch hardware
* errors.
*/
if (WARN((status->rate_idx < 0 ||
status->rate_idx > 76),
"Rate marked as an HT rate but passed "
"status->rate_idx is not "
"an MCS index [0-76]: %d (0x%02x)\n",
status->rate_idx,
status->rate_idx))
goto drop;
} else {
if (WARN_ON(status->rate_idx < 0 ||
status->rate_idx >= sband->n_bitrates))
goto drop;
rate = &sband->bitrates[status->rate_idx];
}
}
status->rx_flags = 0;
/*
* key references and virtual interfaces are protected using RCU
* and this requires that we are in a read-side RCU section during
* receive processing
*/
rcu_read_lock();
/*
* Frames with failed FCS/PLCP checksum are not returned,
* all other frames are returned without radiotap header
* if it was previously present.
* Also, frames with less than 16 bytes are dropped.
*/
skb = ieee80211_rx_monitor(local, skb, rate);
if (!skb) {
rcu_read_unlock();
return;
}
ieee80211_tpt_led_trig_rx(local,
((struct ieee80211_hdr *)skb->data)->frame_control,
skb->len);
__ieee80211_rx_handle_packet(hw, skb);
rcu_read_unlock();
return;
drop:
kfree_skb(skb);
}
EXPORT_SYMBOL(ieee80211_rx);
/* This is a version of the rx handler that can be called from hard irq
* context. Post the skb on the queue and schedule the tasklet */
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct ieee80211_local *local = hw_to_local(hw);
BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
skb->pkt_type = IEEE80211_RX_MSG;
skb_queue_tail(&local->skb_queue, skb);
tasklet_schedule(&local->tasklet);
}
EXPORT_SYMBOL(ieee80211_rx_irqsafe);