linux/drivers/scsi/hisi_sas/hisi_sas_v3_hw.c
Xiang Chen f1c8821145 scsi: hisi_sas: add some print to enhance debugging
Add some print at some places such as error info and cq of exception IO,
device found etc, and also adjust some log levels.

All this to assist debugging ability.

Signed-off-by: Xiang Chen <chenxiang66@hisilicon.com>
Signed-off-by: John Garry <john.garry@huawei.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-12-14 21:25:02 -05:00

2306 lines
67 KiB
C

/*
* Copyright (c) 2017 Hisilicon Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include "hisi_sas.h"
#define DRV_NAME "hisi_sas_v3_hw"
/* global registers need init*/
#define DLVRY_QUEUE_ENABLE 0x0
#define IOST_BASE_ADDR_LO 0x8
#define IOST_BASE_ADDR_HI 0xc
#define ITCT_BASE_ADDR_LO 0x10
#define ITCT_BASE_ADDR_HI 0x14
#define IO_BROKEN_MSG_ADDR_LO 0x18
#define IO_BROKEN_MSG_ADDR_HI 0x1c
#define PHY_CONTEXT 0x20
#define PHY_STATE 0x24
#define PHY_PORT_NUM_MA 0x28
#define PHY_CONN_RATE 0x30
#define ITCT_CLR 0x44
#define ITCT_CLR_EN_OFF 16
#define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF)
#define ITCT_DEV_OFF 0
#define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF)
#define IO_SATA_BROKEN_MSG_ADDR_LO 0x58
#define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c
#define SATA_INITI_D2H_STORE_ADDR_LO 0x60
#define SATA_INITI_D2H_STORE_ADDR_HI 0x64
#define CFG_MAX_TAG 0x68
#define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84
#define HGC_SAS_TXFAIL_RETRY_CTRL 0x88
#define HGC_GET_ITV_TIME 0x90
#define DEVICE_MSG_WORK_MODE 0x94
#define OPENA_WT_CONTI_TIME 0x9c
#define I_T_NEXUS_LOSS_TIME 0xa0
#define MAX_CON_TIME_LIMIT_TIME 0xa4
#define BUS_INACTIVE_LIMIT_TIME 0xa8
#define REJECT_TO_OPEN_LIMIT_TIME 0xac
#define CFG_AGING_TIME 0xbc
#define HGC_DFX_CFG2 0xc0
#define CFG_ABT_SET_QUERY_IPTT 0xd4
#define CFG_SET_ABORTED_IPTT_OFF 0
#define CFG_SET_ABORTED_IPTT_MSK (0xfff << CFG_SET_ABORTED_IPTT_OFF)
#define CFG_SET_ABORTED_EN_OFF 12
#define CFG_ABT_SET_IPTT_DONE 0xd8
#define CFG_ABT_SET_IPTT_DONE_OFF 0
#define HGC_IOMB_PROC1_STATUS 0x104
#define CFG_1US_TIMER_TRSH 0xcc
#define CHNL_INT_STATUS 0x148
#define HGC_AXI_FIFO_ERR_INFO 0x154
#define AXI_ERR_INFO_OFF 0
#define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF)
#define FIFO_ERR_INFO_OFF 8
#define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF)
#define INT_COAL_EN 0x19c
#define OQ_INT_COAL_TIME 0x1a0
#define OQ_INT_COAL_CNT 0x1a4
#define ENT_INT_COAL_TIME 0x1a8
#define ENT_INT_COAL_CNT 0x1ac
#define OQ_INT_SRC 0x1b0
#define OQ_INT_SRC_MSK 0x1b4
#define ENT_INT_SRC1 0x1b8
#define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0
#define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF)
#define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8
#define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF)
#define ENT_INT_SRC2 0x1bc
#define ENT_INT_SRC3 0x1c0
#define ENT_INT_SRC3_WP_DEPTH_OFF 8
#define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9
#define ENT_INT_SRC3_RP_DEPTH_OFF 10
#define ENT_INT_SRC3_AXI_OFF 11
#define ENT_INT_SRC3_FIFO_OFF 12
#define ENT_INT_SRC3_LM_OFF 14
#define ENT_INT_SRC3_ITC_INT_OFF 15
#define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF)
#define ENT_INT_SRC3_ABT_OFF 16
#define ENT_INT_SRC_MSK1 0x1c4
#define ENT_INT_SRC_MSK2 0x1c8
#define ENT_INT_SRC_MSK3 0x1cc
#define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31
#define CHNL_PHYUPDOWN_INT_MSK 0x1d0
#define CHNL_ENT_INT_MSK 0x1d4
#define HGC_COM_INT_MSK 0x1d8
#define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF)
#define SAS_ECC_INTR 0x1e8
#define SAS_ECC_INTR_MSK 0x1ec
#define HGC_ERR_STAT_EN 0x238
#define DLVRY_Q_0_BASE_ADDR_LO 0x260
#define DLVRY_Q_0_BASE_ADDR_HI 0x264
#define DLVRY_Q_0_DEPTH 0x268
#define DLVRY_Q_0_WR_PTR 0x26c
#define DLVRY_Q_0_RD_PTR 0x270
#define HYPER_STREAM_ID_EN_CFG 0xc80
#define OQ0_INT_SRC_MSK 0xc90
#define COMPL_Q_0_BASE_ADDR_LO 0x4e0
#define COMPL_Q_0_BASE_ADDR_HI 0x4e4
#define COMPL_Q_0_DEPTH 0x4e8
#define COMPL_Q_0_WR_PTR 0x4ec
#define COMPL_Q_0_RD_PTR 0x4f0
#define AWQOS_AWCACHE_CFG 0xc84
#define ARQOS_ARCACHE_CFG 0xc88
/* phy registers requiring init */
#define PORT_BASE (0x2000)
#define PHY_CFG (PORT_BASE + 0x0)
#define HARD_PHY_LINKRATE (PORT_BASE + 0x4)
#define PHY_CFG_ENA_OFF 0
#define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF)
#define PHY_CFG_DC_OPT_OFF 2
#define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF)
#define PROG_PHY_LINK_RATE (PORT_BASE + 0x8)
#define PHY_CTRL (PORT_BASE + 0x14)
#define PHY_CTRL_RESET_OFF 0
#define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF)
#define SL_CFG (PORT_BASE + 0x84)
#define SL_CONTROL (PORT_BASE + 0x94)
#define SL_CONTROL_NOTIFY_EN_OFF 0
#define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF)
#define SL_CTA_OFF 17
#define SL_CTA_MSK (0x1 << SL_CTA_OFF)
#define TX_ID_DWORD0 (PORT_BASE + 0x9c)
#define TX_ID_DWORD1 (PORT_BASE + 0xa0)
#define TX_ID_DWORD2 (PORT_BASE + 0xa4)
#define TX_ID_DWORD3 (PORT_BASE + 0xa8)
#define TX_ID_DWORD4 (PORT_BASE + 0xaC)
#define TX_ID_DWORD5 (PORT_BASE + 0xb0)
#define TX_ID_DWORD6 (PORT_BASE + 0xb4)
#define TXID_AUTO (PORT_BASE + 0xb8)
#define CT3_OFF 1
#define CT3_MSK (0x1 << CT3_OFF)
#define TX_HARDRST_OFF 2
#define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF)
#define RX_IDAF_DWORD0 (PORT_BASE + 0xc4)
#define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc)
#define STP_LINK_TIMER (PORT_BASE + 0x120)
#define CON_CFG_DRIVER (PORT_BASE + 0x130)
#define SAS_SSP_CON_TIMER_CFG (PORT_BASE + 0x134)
#define SAS_SMP_CON_TIMER_CFG (PORT_BASE + 0x138)
#define SAS_STP_CON_TIMER_CFG (PORT_BASE + 0x13c)
#define CHL_INT0 (PORT_BASE + 0x1b4)
#define CHL_INT0_HOTPLUG_TOUT_OFF 0
#define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF)
#define CHL_INT0_SL_RX_BCST_ACK_OFF 1
#define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF)
#define CHL_INT0_SL_PHY_ENABLE_OFF 2
#define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF)
#define CHL_INT0_NOT_RDY_OFF 4
#define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF)
#define CHL_INT0_PHY_RDY_OFF 5
#define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF)
#define CHL_INT1 (PORT_BASE + 0x1b8)
#define CHL_INT1_DMAC_TX_ECC_ERR_OFF 15
#define CHL_INT1_DMAC_TX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_TX_ECC_ERR_OFF)
#define CHL_INT1_DMAC_RX_ECC_ERR_OFF 17
#define CHL_INT1_DMAC_RX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_RX_ECC_ERR_OFF)
#define CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF 19
#define CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF 20
#define CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF 21
#define CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF 22
#define CHL_INT2 (PORT_BASE + 0x1bc)
#define CHL_INT0_MSK (PORT_BASE + 0x1c0)
#define CHL_INT1_MSK (PORT_BASE + 0x1c4)
#define CHL_INT2_MSK (PORT_BASE + 0x1c8)
#define CHL_INT_COAL_EN (PORT_BASE + 0x1d0)
#define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0)
#define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4)
#define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8)
#define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc)
#define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0)
#define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4)
#define DMA_TX_STATUS (PORT_BASE + 0x2d0)
#define DMA_TX_STATUS_BUSY_OFF 0
#define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF)
#define DMA_RX_STATUS (PORT_BASE + 0x2e8)
#define DMA_RX_STATUS_BUSY_OFF 0
#define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF)
#define ERR_CNT_DWS_LOST (PORT_BASE + 0x380)
#define ERR_CNT_RESET_PROB (PORT_BASE + 0x384)
#define ERR_CNT_INVLD_DW (PORT_BASE + 0x390)
#define ERR_CNT_DISP_ERR (PORT_BASE + 0x398)
#define DEFAULT_ITCT_HW 2048 /* reset value, not reprogrammed */
#if (HISI_SAS_MAX_DEVICES > DEFAULT_ITCT_HW)
#error Max ITCT exceeded
#endif
#define AXI_MASTER_CFG_BASE (0x5000)
#define AM_CTRL_GLOBAL (0x0)
#define AM_CURR_TRANS_RETURN (0x150)
#define AM_CFG_MAX_TRANS (0x5010)
#define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014)
#define AXI_CFG (0x5100)
#define AM_ROB_ECC_ERR_ADDR (0x510c)
#define AM_ROB_ECC_ONEBIT_ERR_ADDR_OFF 0
#define AM_ROB_ECC_ONEBIT_ERR_ADDR_MSK (0xff << AM_ROB_ECC_ONEBIT_ERR_ADDR_OFF)
#define AM_ROB_ECC_MULBIT_ERR_ADDR_OFF 8
#define AM_ROB_ECC_MULBIT_ERR_ADDR_MSK (0xff << AM_ROB_ECC_MULBIT_ERR_ADDR_OFF)
/* RAS registers need init */
#define RAS_BASE (0x6000)
#define SAS_RAS_INTR0 (RAS_BASE)
#define SAS_RAS_INTR1 (RAS_BASE + 0x04)
#define SAS_RAS_INTR0_MASK (RAS_BASE + 0x08)
#define SAS_RAS_INTR1_MASK (RAS_BASE + 0x0c)
/* HW dma structures */
/* Delivery queue header */
/* dw0 */
#define CMD_HDR_ABORT_FLAG_OFF 0
#define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF)
#define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2
#define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF)
#define CMD_HDR_RESP_REPORT_OFF 5
#define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF)
#define CMD_HDR_TLR_CTRL_OFF 6
#define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF)
#define CMD_HDR_PORT_OFF 18
#define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF)
#define CMD_HDR_PRIORITY_OFF 27
#define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF)
#define CMD_HDR_CMD_OFF 29
#define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF)
/* dw1 */
#define CMD_HDR_UNCON_CMD_OFF 3
#define CMD_HDR_DIR_OFF 5
#define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF)
#define CMD_HDR_RESET_OFF 7
#define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF)
#define CMD_HDR_VDTL_OFF 10
#define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF)
#define CMD_HDR_FRAME_TYPE_OFF 11
#define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF)
#define CMD_HDR_DEV_ID_OFF 16
#define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF)
/* dw2 */
#define CMD_HDR_CFL_OFF 0
#define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF)
#define CMD_HDR_NCQ_TAG_OFF 10
#define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF)
#define CMD_HDR_MRFL_OFF 15
#define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF)
#define CMD_HDR_SG_MOD_OFF 24
#define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF)
/* dw3 */
#define CMD_HDR_IPTT_OFF 0
#define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF)
/* dw6 */
#define CMD_HDR_DIF_SGL_LEN_OFF 0
#define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF)
#define CMD_HDR_DATA_SGL_LEN_OFF 16
#define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF)
/* dw7 */
#define CMD_HDR_ADDR_MODE_SEL_OFF 15
#define CMD_HDR_ADDR_MODE_SEL_MSK (1 << CMD_HDR_ADDR_MODE_SEL_OFF)
#define CMD_HDR_ABORT_IPTT_OFF 16
#define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF)
/* Completion header */
/* dw0 */
#define CMPLT_HDR_CMPLT_OFF 0
#define CMPLT_HDR_CMPLT_MSK (0x3 << CMPLT_HDR_CMPLT_OFF)
#define CMPLT_HDR_ERROR_PHASE_OFF 2
#define CMPLT_HDR_ERROR_PHASE_MSK (0xff << CMPLT_HDR_ERROR_PHASE_OFF)
#define CMPLT_HDR_RSPNS_XFRD_OFF 10
#define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF)
#define CMPLT_HDR_ERX_OFF 12
#define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF)
#define CMPLT_HDR_ABORT_STAT_OFF 13
#define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF)
/* abort_stat */
#define STAT_IO_NOT_VALID 0x1
#define STAT_IO_NO_DEVICE 0x2
#define STAT_IO_COMPLETE 0x3
#define STAT_IO_ABORTED 0x4
/* dw1 */
#define CMPLT_HDR_IPTT_OFF 0
#define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF)
#define CMPLT_HDR_DEV_ID_OFF 16
#define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF)
/* dw3 */
#define CMPLT_HDR_IO_IN_TARGET_OFF 17
#define CMPLT_HDR_IO_IN_TARGET_MSK (0x1 << CMPLT_HDR_IO_IN_TARGET_OFF)
/* ITCT header */
/* qw0 */
#define ITCT_HDR_DEV_TYPE_OFF 0
#define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF)
#define ITCT_HDR_VALID_OFF 2
#define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF)
#define ITCT_HDR_MCR_OFF 5
#define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF)
#define ITCT_HDR_VLN_OFF 9
#define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF)
#define ITCT_HDR_SMP_TIMEOUT_OFF 16
#define ITCT_HDR_AWT_CONTINUE_OFF 25
#define ITCT_HDR_PORT_ID_OFF 28
#define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF)
/* qw2 */
#define ITCT_HDR_INLT_OFF 0
#define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF)
#define ITCT_HDR_RTOLT_OFF 48
#define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF)
struct hisi_sas_complete_v3_hdr {
__le32 dw0;
__le32 dw1;
__le32 act;
__le32 dw3;
};
struct hisi_sas_err_record_v3 {
/* dw0 */
__le32 trans_tx_fail_type;
/* dw1 */
__le32 trans_rx_fail_type;
/* dw2 */
__le16 dma_tx_err_type;
__le16 sipc_rx_err_type;
/* dw3 */
__le32 dma_rx_err_type;
};
#define RX_DATA_LEN_UNDERFLOW_OFF 6
#define RX_DATA_LEN_UNDERFLOW_MSK (1 << RX_DATA_LEN_UNDERFLOW_OFF)
#define HISI_SAS_COMMAND_ENTRIES_V3_HW 4096
#define HISI_SAS_MSI_COUNT_V3_HW 32
enum {
HISI_SAS_PHY_PHY_UPDOWN,
HISI_SAS_PHY_CHNL_INT,
HISI_SAS_PHY_INT_NR
};
#define DIR_NO_DATA 0
#define DIR_TO_INI 1
#define DIR_TO_DEVICE 2
#define DIR_RESERVED 3
#define CMD_IS_UNCONSTRAINT(cmd) \
((cmd == ATA_CMD_READ_LOG_EXT) || \
(cmd == ATA_CMD_READ_LOG_DMA_EXT) || \
(cmd == ATA_CMD_DEV_RESET))
static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off)
{
void __iomem *regs = hisi_hba->regs + off;
return readl(regs);
}
static u32 hisi_sas_read32_relaxed(struct hisi_hba *hisi_hba, u32 off)
{
void __iomem *regs = hisi_hba->regs + off;
return readl_relaxed(regs);
}
static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + off;
writel(val, regs);
}
static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no,
u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
writel(val, regs);
}
static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba,
int phy_no, u32 off)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
return readl(regs);
}
static void init_reg_v3_hw(struct hisi_hba *hisi_hba)
{
int i;
/* Global registers init */
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE,
(u32)((1ULL << hisi_hba->queue_count) - 1));
hisi_sas_write32(hisi_hba, CFG_MAX_TAG, 0xfff0400);
hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x108);
hisi_sas_write32(hisi_hba, CFG_1US_TIMER_TRSH, 0xd);
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0xffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xfefefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xfefefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xfffe20ff);
hisi_sas_write32(hisi_hba, CHNL_PHYUPDOWN_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, CHNL_ENT_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, HGC_COM_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0x0);
hisi_sas_write32(hisi_hba, AWQOS_AWCACHE_CFG, 0xf0f0);
hisi_sas_write32(hisi_hba, ARQOS_ARCACHE_CFG, 0xf0f0);
for (i = 0; i < hisi_hba->queue_count; i++)
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK+0x4*i, 0);
hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1);
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE, 0x30000);
for (i = 0; i < hisi_hba->n_phy; i++) {
hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE, 0x801);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xff87ffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x8ffffbff);
hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL, 0x199b4fa);
hisi_sas_phy_write32(hisi_hba, i, SAS_SSP_CON_TIMER_CFG,
0xa03e8);
hisi_sas_phy_write32(hisi_hba, i, SAS_STP_CON_TIMER_CFG,
0xa03e8);
hisi_sas_phy_write32(hisi_hba, i, STP_LINK_TIMER,
0x7f7a120);
hisi_sas_phy_write32(hisi_hba, i, CON_CFG_DRIVER,
0x2a0a80);
}
for (i = 0; i < hisi_hba->queue_count; i++) {
/* Delivery queue */
hisi_sas_write32(hisi_hba,
DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
/* Completion queue */
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
}
/* itct */
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO,
lower_32_bits(hisi_hba->itct_dma));
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI,
upper_32_bits(hisi_hba->itct_dma));
/* iost */
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO,
lower_32_bits(hisi_hba->iost_dma));
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI,
upper_32_bits(hisi_hba->iost_dma));
/* breakpoint */
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->breakpoint_dma));
/* SATA broken msg */
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->sata_breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->sata_breakpoint_dma));
/* SATA initial fis */
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO,
lower_32_bits(hisi_hba->initial_fis_dma));
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI,
upper_32_bits(hisi_hba->initial_fis_dma));
/* RAS registers init */
hisi_sas_write32(hisi_hba, SAS_RAS_INTR0_MASK, 0x0);
hisi_sas_write32(hisi_hba, SAS_RAS_INTR1_MASK, 0x0);
}
static void config_phy_opt_mode_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg &= ~PHY_CFG_DC_OPT_MSK;
cfg |= 1 << PHY_CFG_DC_OPT_OFF;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void config_id_frame_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct sas_identify_frame identify_frame;
u32 *identify_buffer;
memset(&identify_frame, 0, sizeof(identify_frame));
identify_frame.dev_type = SAS_END_DEVICE;
identify_frame.frame_type = 0;
identify_frame._un1 = 1;
identify_frame.initiator_bits = SAS_PROTOCOL_ALL;
identify_frame.target_bits = SAS_PROTOCOL_NONE;
memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
identify_frame.phy_id = phy_no;
identify_buffer = (u32 *)(&identify_frame);
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0,
__swab32(identify_buffer[0]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1,
__swab32(identify_buffer[1]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2,
__swab32(identify_buffer[2]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3,
__swab32(identify_buffer[3]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4,
__swab32(identify_buffer[4]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5,
__swab32(identify_buffer[5]));
}
static void setup_itct_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
struct domain_device *device = sas_dev->sas_device;
struct device *dev = hisi_hba->dev;
u64 qw0, device_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[device_id];
struct domain_device *parent_dev = device->parent;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
memset(itct, 0, sizeof(*itct));
/* qw0 */
qw0 = 0;
switch (sas_dev->dev_type) {
case SAS_END_DEVICE:
case SAS_EDGE_EXPANDER_DEVICE:
case SAS_FANOUT_EXPANDER_DEVICE:
qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF;
break;
case SAS_SATA_DEV:
case SAS_SATA_PENDING:
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF;
else
qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF;
break;
default:
dev_warn(dev, "setup itct: unsupported dev type (%d)\n",
sas_dev->dev_type);
}
qw0 |= ((1 << ITCT_HDR_VALID_OFF) |
(device->linkrate << ITCT_HDR_MCR_OFF) |
(1 << ITCT_HDR_VLN_OFF) |
(0xfa << ITCT_HDR_SMP_TIMEOUT_OFF) |
(1 << ITCT_HDR_AWT_CONTINUE_OFF) |
(port->id << ITCT_HDR_PORT_ID_OFF));
itct->qw0 = cpu_to_le64(qw0);
/* qw1 */
memcpy(&itct->sas_addr, device->sas_addr, SAS_ADDR_SIZE);
itct->sas_addr = __swab64(itct->sas_addr);
/* qw2 */
if (!dev_is_sata(device))
itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) |
(0x1ULL << ITCT_HDR_RTOLT_OFF));
}
static void clear_itct_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
DECLARE_COMPLETION_ONSTACK(completion);
u64 dev_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id];
u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
sas_dev->completion = &completion;
/* clear the itct interrupt state */
if (ENT_INT_SRC3_ITC_INT_MSK & reg_val)
hisi_sas_write32(hisi_hba, ENT_INT_SRC3,
ENT_INT_SRC3_ITC_INT_MSK);
/* clear the itct table*/
reg_val = ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK);
hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val);
wait_for_completion(sas_dev->completion);
memset(itct, 0, sizeof(struct hisi_sas_itct));
}
static void dereg_device_v3_hw(struct hisi_hba *hisi_hba,
struct domain_device *device)
{
struct hisi_sas_slot *slot, *slot2;
struct hisi_sas_device *sas_dev = device->lldd_dev;
u32 cfg_abt_set_query_iptt;
cfg_abt_set_query_iptt = hisi_sas_read32(hisi_hba,
CFG_ABT_SET_QUERY_IPTT);
list_for_each_entry_safe(slot, slot2, &sas_dev->list, entry) {
cfg_abt_set_query_iptt &= ~CFG_SET_ABORTED_IPTT_MSK;
cfg_abt_set_query_iptt |= (1 << CFG_SET_ABORTED_EN_OFF) |
(slot->idx << CFG_SET_ABORTED_IPTT_OFF);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_QUERY_IPTT,
cfg_abt_set_query_iptt);
}
cfg_abt_set_query_iptt &= ~(1 << CFG_SET_ABORTED_EN_OFF);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_QUERY_IPTT,
cfg_abt_set_query_iptt);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_IPTT_DONE,
1 << CFG_ABT_SET_IPTT_DONE_OFF);
}
static int reset_hw_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int ret;
u32 val;
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0);
/* Disable all of the PHYs */
hisi_sas_stop_phys(hisi_hba);
udelay(50);
/* Ensure axi bus idle */
ret = readl_poll_timeout(hisi_hba->regs + AXI_CFG, val, !val,
20000, 1000000);
if (ret) {
dev_err(dev, "axi bus is not idle, ret = %d!\n", ret);
return -EIO;
}
if (ACPI_HANDLE(dev)) {
acpi_status s;
s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL);
if (ACPI_FAILURE(s)) {
dev_err(dev, "Reset failed\n");
return -EIO;
}
} else
dev_err(dev, "no reset method!\n");
return 0;
}
static int hw_init_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int rc;
rc = reset_hw_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc);
return rc;
}
msleep(100);
init_reg_v3_hw(hisi_hba);
return 0;
}
static void enable_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg |= PHY_CFG_ENA_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void disable_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg &= ~PHY_CFG_ENA_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void start_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
config_id_frame_v3_hw(hisi_hba, phy_no);
config_phy_opt_mode_v3_hw(hisi_hba, phy_no);
enable_phy_v3_hw(hisi_hba, phy_no);
}
static void phy_hard_reset_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
u32 txid_auto;
disable_phy_v3_hw(hisi_hba, phy_no);
if (phy->identify.device_type == SAS_END_DEVICE) {
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | TX_HARDRST_MSK);
}
msleep(100);
start_phy_v3_hw(hisi_hba, phy_no);
}
enum sas_linkrate phy_get_max_linkrate_v3_hw(void)
{
return SAS_LINK_RATE_12_0_GBPS;
}
static void phys_init_v3_hw(struct hisi_hba *hisi_hba)
{
int i;
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
if (!sas_phy->phy->enabled)
continue;
start_phy_v3_hw(hisi_hba, i);
}
}
static void sl_notify_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 sl_control;
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control |= SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
msleep(1);
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
}
static int get_wideport_bitmap_v3_hw(struct hisi_hba *hisi_hba, int port_id)
{
int i, bitmap = 0;
u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
for (i = 0; i < hisi_hba->n_phy; i++)
if (phy_state & BIT(i))
if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id)
bitmap |= BIT(i);
return bitmap;
}
/**
* The callpath to this function and upto writing the write
* queue pointer should be safe from interruption.
*/
static int
get_free_slot_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_dq *dq)
{
struct device *dev = hisi_hba->dev;
int queue = dq->id;
u32 r, w;
w = dq->wr_point;
r = hisi_sas_read32_relaxed(hisi_hba,
DLVRY_Q_0_RD_PTR + (queue * 0x14));
if (r == (w+1) % HISI_SAS_QUEUE_SLOTS) {
dev_warn(dev, "full queue=%d r=%d w=%d\n\n",
queue, r, w);
return -EAGAIN;
}
return 0;
}
static void start_delivery_v3_hw(struct hisi_sas_dq *dq)
{
struct hisi_hba *hisi_hba = dq->hisi_hba;
int dlvry_queue = dq->slot_prep->dlvry_queue;
int dlvry_queue_slot = dq->slot_prep->dlvry_queue_slot;
dq->wr_point = ++dlvry_queue_slot % HISI_SAS_QUEUE_SLOTS;
hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14),
dq->wr_point);
}
static int prep_prd_sge_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
struct hisi_sas_cmd_hdr *hdr,
struct scatterlist *scatter,
int n_elem)
{
struct hisi_sas_sge_page *sge_page = hisi_sas_sge_addr_mem(slot);
struct device *dev = hisi_hba->dev;
struct scatterlist *sg;
int i;
if (n_elem > HISI_SAS_SGE_PAGE_CNT) {
dev_err(dev, "prd err: n_elem(%d) > HISI_SAS_SGE_PAGE_CNT",
n_elem);
return -EINVAL;
}
for_each_sg(scatter, sg, n_elem, i) {
struct hisi_sas_sge *entry = &sge_page->sge[i];
entry->addr = cpu_to_le64(sg_dma_address(sg));
entry->page_ctrl_0 = entry->page_ctrl_1 = 0;
entry->data_len = cpu_to_le32(sg_dma_len(sg));
entry->data_off = 0;
}
hdr->prd_table_addr = cpu_to_le64(hisi_sas_sge_addr_dma(slot));
hdr->sg_len = cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF);
return 0;
}
static int prep_ssp_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot, int is_tmf,
struct hisi_sas_tmf_task *tmf)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_port *port = slot->port;
struct sas_ssp_task *ssp_task = &task->ssp_task;
struct scsi_cmnd *scsi_cmnd = ssp_task->cmd;
int has_data = 0, rc, priority = is_tmf;
u8 *buf_cmd;
u32 dw1 = 0, dw2 = 0;
hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) |
(2 << CMD_HDR_TLR_CTRL_OFF) |
(port->id << CMD_HDR_PORT_OFF) |
(priority << CMD_HDR_PRIORITY_OFF) |
(1 << CMD_HDR_CMD_OFF)); /* ssp */
dw1 = 1 << CMD_HDR_VDTL_OFF;
if (is_tmf) {
dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF;
dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF;
} else {
dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF;
switch (scsi_cmnd->sc_data_direction) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
}
/* map itct entry */
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
hdr->dw1 = cpu_to_le32(dw1);
dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr)
+ 3) / 4) << CMD_HDR_CFL_OFF) |
((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) |
(2 << CMD_HDR_SG_MOD_OFF);
hdr->dw2 = cpu_to_le32(dw2);
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data) {
rc = prep_prd_sge_v3_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
if (rc)
return rc;
}
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len);
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot) +
sizeof(struct ssp_frame_hdr);
memcpy(buf_cmd, &task->ssp_task.LUN, 8);
if (!is_tmf) {
buf_cmd[9] = ssp_task->task_attr | (ssp_task->task_prio << 3);
memcpy(buf_cmd + 12, scsi_cmnd->cmnd, scsi_cmnd->cmd_len);
} else {
buf_cmd[10] = tmf->tmf;
switch (tmf->tmf) {
case TMF_ABORT_TASK:
case TMF_QUERY_TASK:
buf_cmd[12] =
(tmf->tag_of_task_to_be_managed >> 8) & 0xff;
buf_cmd[13] =
tmf->tag_of_task_to_be_managed & 0xff;
break;
default:
break;
}
}
return 0;
}
static int prep_smp_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct device *dev = hisi_hba->dev;
struct hisi_sas_port *port = slot->port;
struct scatterlist *sg_req, *sg_resp;
struct hisi_sas_device *sas_dev = device->lldd_dev;
dma_addr_t req_dma_addr;
unsigned int req_len, resp_len;
int elem, rc;
/*
* DMA-map SMP request, response buffers
*/
/* req */
sg_req = &task->smp_task.smp_req;
elem = dma_map_sg(dev, sg_req, 1, DMA_TO_DEVICE);
if (!elem)
return -ENOMEM;
req_len = sg_dma_len(sg_req);
req_dma_addr = sg_dma_address(sg_req);
/* resp */
sg_resp = &task->smp_task.smp_resp;
elem = dma_map_sg(dev, sg_resp, 1, DMA_FROM_DEVICE);
if (!elem) {
rc = -ENOMEM;
goto err_out_req;
}
resp_len = sg_dma_len(sg_resp);
if ((req_len & 0x3) || (resp_len & 0x3)) {
rc = -EINVAL;
goto err_out_resp;
}
/* create header */
/* dw0 */
hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) |
(1 << CMD_HDR_PRIORITY_OFF) | /* high pri */
(2 << CMD_HDR_CMD_OFF)); /* smp */
/* map itct entry */
hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) |
(1 << CMD_HDR_FRAME_TYPE_OFF) |
(DIR_NO_DATA << CMD_HDR_DIR_OFF));
/* dw2 */
hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) |
(HISI_SAS_MAX_SMP_RESP_SZ / 4 <<
CMD_HDR_MRFL_OFF));
hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF);
hdr->cmd_table_addr = cpu_to_le64(req_dma_addr);
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
return 0;
err_out_resp:
dma_unmap_sg(dev, &slot->task->smp_task.smp_resp, 1,
DMA_FROM_DEVICE);
err_out_req:
dma_unmap_sg(dev, &slot->task->smp_task.smp_req, 1,
DMA_TO_DEVICE);
return rc;
}
static int prep_ata_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct domain_device *device = task->dev;
struct domain_device *parent_dev = device->parent;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
u8 *buf_cmd;
int has_data = 0, rc = 0, hdr_tag = 0;
u32 dw1 = 0, dw2 = 0;
hdr->dw0 = cpu_to_le32(port->id << CMD_HDR_PORT_OFF);
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
hdr->dw0 |= cpu_to_le32(3 << CMD_HDR_CMD_OFF);
else
hdr->dw0 |= cpu_to_le32(4 << CMD_HDR_CMD_OFF);
switch (task->data_dir) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
if ((task->ata_task.fis.command == ATA_CMD_DEV_RESET) &&
(task->ata_task.fis.control & ATA_SRST))
dw1 |= 1 << CMD_HDR_RESET_OFF;
dw1 |= (hisi_sas_get_ata_protocol(
task->ata_task.fis.command, task->data_dir))
<< CMD_HDR_FRAME_TYPE_OFF;
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
if (CMD_IS_UNCONSTRAINT(task->ata_task.fis.command))
dw1 |= 1 << CMD_HDR_UNCON_CMD_OFF;
hdr->dw1 = cpu_to_le32(dw1);
/* dw2 */
if (task->ata_task.use_ncq && hisi_sas_get_ncq_tag(task, &hdr_tag)) {
task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF;
}
dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF |
2 << CMD_HDR_SG_MOD_OFF;
hdr->dw2 = cpu_to_le32(dw2);
/* dw3 */
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data) {
rc = prep_prd_sge_v3_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
if (rc)
return rc;
}
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len);
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot);
if (likely(!task->ata_task.device_control_reg_update))
task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
/* fill in command FIS */
memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
return 0;
}
static int prep_abort_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
int device_id, int abort_flag, int tag_to_abort)
{
struct sas_task *task = slot->task;
struct domain_device *dev = task->dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct hisi_sas_port *port = slot->port;
/* dw0 */
hdr->dw0 = cpu_to_le32((5 << CMD_HDR_CMD_OFF) | /*abort*/
(port->id << CMD_HDR_PORT_OFF) |
((dev_is_sata(dev) ? 1:0)
<< CMD_HDR_ABORT_DEVICE_TYPE_OFF) |
(abort_flag
<< CMD_HDR_ABORT_FLAG_OFF));
/* dw1 */
hdr->dw1 = cpu_to_le32(device_id
<< CMD_HDR_DEV_ID_OFF);
/* dw7 */
hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF);
hdr->transfer_tags = cpu_to_le32(slot->idx);
return 0;
}
static int phy_up_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
int i, res = 0;
u32 context, port_id, link_rate, hard_phy_linkrate;
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct device *dev = hisi_hba->dev;
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1);
port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
port_id = (port_id >> (4 * phy_no)) & 0xf;
link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE);
link_rate = (link_rate >> (phy_no * 4)) & 0xf;
if (port_id == 0xf) {
dev_err(dev, "phyup: phy%d invalid portid\n", phy_no);
res = IRQ_NONE;
goto end;
}
sas_phy->linkrate = link_rate;
hard_phy_linkrate = hisi_sas_phy_read32(hisi_hba, phy_no,
HARD_PHY_LINKRATE);
phy->maximum_linkrate = hard_phy_linkrate & 0xf;
phy->minimum_linkrate = (hard_phy_linkrate >> 4) & 0xf;
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
/* Check for SATA dev */
context = hisi_sas_read32(hisi_hba, PHY_CONTEXT);
if (context & (1 << phy_no)) {
struct hisi_sas_initial_fis *initial_fis;
struct dev_to_host_fis *fis;
u8 attached_sas_addr[SAS_ADDR_SIZE] = {0};
dev_info(dev, "phyup: phy%d link_rate=%d(sata)\n", phy_no, link_rate);
initial_fis = &hisi_hba->initial_fis[phy_no];
fis = &initial_fis->fis;
sas_phy->oob_mode = SATA_OOB_MODE;
attached_sas_addr[0] = 0x50;
attached_sas_addr[7] = phy_no;
memcpy(sas_phy->attached_sas_addr,
attached_sas_addr,
SAS_ADDR_SIZE);
memcpy(sas_phy->frame_rcvd, fis,
sizeof(struct dev_to_host_fis));
phy->phy_type |= PORT_TYPE_SATA;
phy->identify.device_type = SAS_SATA_DEV;
phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
} else {
u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd;
struct sas_identify_frame *id =
(struct sas_identify_frame *)frame_rcvd;
dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate);
for (i = 0; i < 6; i++) {
u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no,
RX_IDAF_DWORD0 + (i * 4));
frame_rcvd[i] = __swab32(idaf);
}
sas_phy->oob_mode = SAS_OOB_MODE;
memcpy(sas_phy->attached_sas_addr,
&id->sas_addr,
SAS_ADDR_SIZE);
phy->phy_type |= PORT_TYPE_SAS;
phy->identify.device_type = id->dev_type;
phy->frame_rcvd_size = sizeof(struct sas_identify_frame);
if (phy->identify.device_type == SAS_END_DEVICE)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SSP;
else if (phy->identify.device_type != SAS_PHY_UNUSED)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SMP;
}
phy->port_id = port_id;
phy->phy_attached = 1;
queue_work(hisi_hba->wq, &phy->phyup_ws);
end:
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_PHY_ENABLE_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0);
return res;
}
static int phy_down_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
u32 phy_state, sl_ctrl, txid_auto;
struct device *dev = hisi_hba->dev;
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1);
phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
dev_info(dev, "phydown: phy%d phy_state=0x%x\n", phy_no, phy_state);
hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0);
sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL,
sl_ctrl&(~SL_CTA_MSK));
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | CT3_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0);
return 0;
}
static void phy_bcast_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_ha_struct *sas_ha = &hisi_hba->sha;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1);
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_RX_BCST_ACK_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0);
}
static irqreturn_t int_phy_up_down_bcast_v3_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_msk;
int phy_no = 0;
irqreturn_t res = IRQ_NONE;
irq_msk = hisi_sas_read32(hisi_hba, CHNL_INT_STATUS)
& 0x11111111;
while (irq_msk) {
if (irq_msk & 1) {
u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT0);
u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
int rdy = phy_state & (1 << phy_no);
if (rdy) {
if (irq_value & CHL_INT0_SL_PHY_ENABLE_MSK)
/* phy up */
if (phy_up_v3_hw(phy_no, hisi_hba)
== IRQ_HANDLED)
res = IRQ_HANDLED;
if (irq_value & CHL_INT0_SL_RX_BCST_ACK_MSK)
/* phy bcast */
phy_bcast_v3_hw(phy_no, hisi_hba);
} else {
if (irq_value & CHL_INT0_NOT_RDY_MSK)
/* phy down */
if (phy_down_v3_hw(phy_no, hisi_hba)
== IRQ_HANDLED)
res = IRQ_HANDLED;
}
}
irq_msk >>= 4;
phy_no++;
}
return res;
}
static const struct hisi_sas_hw_error port_axi_error[] = {
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF),
.msg = "dma_tx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF),
.msg = "dma_tx_axi_rd_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF),
.msg = "dma_rx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF),
.msg = "dma_rx_axi_rd_err",
},
};
static irqreturn_t int_chnl_int_v3_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
struct device *dev = hisi_hba->dev;
u32 ent_msk, ent_tmp, irq_msk;
int phy_no = 0;
ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3);
ent_tmp = ent_msk;
ent_msk |= ENT_INT_SRC_MSK3_ENT95_MSK_MSK;
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_msk);
irq_msk = hisi_sas_read32(hisi_hba, CHNL_INT_STATUS)
& 0xeeeeeeee;
while (irq_msk) {
u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT0);
u32 irq_value1 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT1);
u32 irq_value2 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT2);
if ((irq_msk & (4 << (phy_no * 4))) &&
irq_value1) {
int i;
for (i = 0; i < ARRAY_SIZE(port_axi_error); i++) {
const struct hisi_sas_hw_error *error =
&port_axi_error[i];
if (!(irq_value1 & error->irq_msk))
continue;
dev_err(dev, "%s error (phy%d 0x%x) found!\n",
error->msg, phy_no, irq_value1);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT1, irq_value1);
}
if (irq_msk & (8 << (phy_no * 4)) && irq_value2)
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT2, irq_value2);
if (irq_msk & (2 << (phy_no * 4)) && irq_value0) {
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT0, irq_value0
& (~CHL_INT0_SL_RX_BCST_ACK_MSK)
& (~CHL_INT0_SL_PHY_ENABLE_MSK)
& (~CHL_INT0_NOT_RDY_MSK));
}
irq_msk &= ~(0xe << (phy_no * 4));
phy_no++;
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_tmp);
return IRQ_HANDLED;
}
static const struct hisi_sas_hw_error axi_error[] = {
{ .msk = BIT(0), .msg = "IOST_AXI_W_ERR" },
{ .msk = BIT(1), .msg = "IOST_AXI_R_ERR" },
{ .msk = BIT(2), .msg = "ITCT_AXI_W_ERR" },
{ .msk = BIT(3), .msg = "ITCT_AXI_R_ERR" },
{ .msk = BIT(4), .msg = "SATA_AXI_W_ERR" },
{ .msk = BIT(5), .msg = "SATA_AXI_R_ERR" },
{ .msk = BIT(6), .msg = "DQE_AXI_R_ERR" },
{ .msk = BIT(7), .msg = "CQE_AXI_W_ERR" },
{},
};
static const struct hisi_sas_hw_error fifo_error[] = {
{ .msk = BIT(8), .msg = "CQE_WINFO_FIFO" },
{ .msk = BIT(9), .msg = "CQE_MSG_FIFIO" },
{ .msk = BIT(10), .msg = "GETDQE_FIFO" },
{ .msk = BIT(11), .msg = "CMDP_FIFO" },
{ .msk = BIT(12), .msg = "AWTCTRL_FIFO" },
{},
};
static const struct hisi_sas_hw_error fatal_axi_error[] = {
{
.irq_msk = BIT(ENT_INT_SRC3_WP_DEPTH_OFF),
.msg = "write pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF),
.msg = "iptt no match slot",
},
{
.irq_msk = BIT(ENT_INT_SRC3_RP_DEPTH_OFF),
.msg = "read pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_AXI_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = axi_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_FIFO_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = fifo_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_LM_OFF),
.msg = "LM add/fetch list",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ABT_OFF),
.msg = "SAS_HGC_ABT fetch LM list",
},
};
static irqreturn_t fatal_axi_int_v3_hw(int irq_no, void *p)
{
u32 irq_value, irq_msk;
struct hisi_hba *hisi_hba = p;
struct device *dev = hisi_hba->dev;
int i;
irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0x1df00);
irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
for (i = 0; i < ARRAY_SIZE(fatal_axi_error); i++) {
const struct hisi_sas_hw_error *error = &fatal_axi_error[i];
if (!(irq_value & error->irq_msk))
continue;
if (error->sub) {
const struct hisi_sas_hw_error *sub = error->sub;
u32 err_value = hisi_sas_read32(hisi_hba, error->reg);
for (; sub->msk || sub->msg; sub++) {
if (!(err_value & sub->msk))
continue;
dev_err(dev, "%s error (0x%x) found!\n",
sub->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
} else {
dev_err(dev, "%s error (0x%x) found!\n",
error->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
}
if (irq_value & BIT(ENT_INT_SRC3_ITC_INT_OFF)) {
u32 reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR);
u32 dev_id = reg_val & ITCT_DEV_MSK;
struct hisi_sas_device *sas_dev =
&hisi_hba->devices[dev_id];
hisi_sas_write32(hisi_hba, ITCT_CLR, 0);
dev_dbg(dev, "clear ITCT ok\n");
complete(sas_dev->completion);
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, irq_value & 0x1df00);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk);
return IRQ_HANDLED;
}
static void
slot_err_v3_hw(struct hisi_hba *hisi_hba, struct sas_task *task,
struct hisi_sas_slot *slot)
{
struct task_status_struct *ts = &task->task_status;
struct hisi_sas_complete_v3_hdr *complete_queue =
hisi_hba->complete_hdr[slot->cmplt_queue];
struct hisi_sas_complete_v3_hdr *complete_hdr =
&complete_queue[slot->cmplt_queue_slot];
struct hisi_sas_err_record_v3 *record =
hisi_sas_status_buf_addr_mem(slot);
u32 dma_rx_err_type = record->dma_rx_err_type;
u32 trans_tx_fail_type = record->trans_tx_fail_type;
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
if (dma_rx_err_type & RX_DATA_LEN_UNDERFLOW_MSK) {
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
} else if (complete_hdr->dw3 & CMPLT_HDR_IO_IN_TARGET_MSK) {
ts->stat = SAS_QUEUE_FULL;
slot->abort = 1;
} else {
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
}
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
if (dma_rx_err_type & RX_DATA_LEN_UNDERFLOW_MSK) {
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
} else if (complete_hdr->dw3 & CMPLT_HDR_IO_IN_TARGET_MSK) {
ts->stat = SAS_PHY_DOWN;
slot->abort = 1;
} else {
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
}
hisi_sas_sata_done(task, slot);
break;
case SAS_PROTOCOL_SMP:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
default:
break;
}
}
static int
slot_complete_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_device *sas_dev;
struct device *dev = hisi_hba->dev;
struct task_status_struct *ts;
struct domain_device *device;
enum exec_status sts;
struct hisi_sas_complete_v3_hdr *complete_queue =
hisi_hba->complete_hdr[slot->cmplt_queue];
struct hisi_sas_complete_v3_hdr *complete_hdr =
&complete_queue[slot->cmplt_queue_slot];
int aborted;
unsigned long flags;
if (unlikely(!task || !task->lldd_task || !task->dev))
return -EINVAL;
ts = &task->task_status;
device = task->dev;
sas_dev = device->lldd_dev;
spin_lock_irqsave(&task->task_state_lock, flags);
aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED;
task->task_state_flags &=
~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
spin_unlock_irqrestore(&task->task_state_lock, flags);
memset(ts, 0, sizeof(*ts));
ts->resp = SAS_TASK_COMPLETE;
if (unlikely(aborted)) {
dev_dbg(dev, "slot complete: task(%p) aborted\n", task);
ts->stat = SAS_ABORTED_TASK;
spin_lock_irqsave(&hisi_hba->lock, flags);
hisi_sas_slot_task_free(hisi_hba, task, slot);
spin_unlock_irqrestore(&hisi_hba->lock, flags);
return -1;
}
if (unlikely(!sas_dev)) {
dev_dbg(dev, "slot complete: port has not device\n");
ts->stat = SAS_PHY_DOWN;
goto out;
}
/*
* Use SAS+TMF status codes
*/
switch ((complete_hdr->dw0 & CMPLT_HDR_ABORT_STAT_MSK)
>> CMPLT_HDR_ABORT_STAT_OFF) {
case STAT_IO_ABORTED:
/* this IO has been aborted by abort command */
ts->stat = SAS_ABORTED_TASK;
goto out;
case STAT_IO_COMPLETE:
/* internal abort command complete */
ts->stat = TMF_RESP_FUNC_SUCC;
goto out;
case STAT_IO_NO_DEVICE:
ts->stat = TMF_RESP_FUNC_COMPLETE;
goto out;
case STAT_IO_NOT_VALID:
/*
* abort single IO, the controller can't find the IO
*/
ts->stat = TMF_RESP_FUNC_FAILED;
goto out;
default:
break;
}
/* check for erroneous completion */
if ((complete_hdr->dw0 & CMPLT_HDR_CMPLT_MSK) == 0x3) {
u32 *error_info = hisi_sas_status_buf_addr_mem(slot);
slot_err_v3_hw(hisi_hba, task, slot);
if (ts->stat != SAS_DATA_UNDERRUN)
dev_info(dev, "erroneous completion iptt=%d task=%p "
"CQ hdr: 0x%x 0x%x 0x%x 0x%x "
"Error info: 0x%x 0x%x 0x%x 0x%x\n",
slot->idx, task,
complete_hdr->dw0, complete_hdr->dw1,
complete_hdr->act, complete_hdr->dw3,
error_info[0], error_info[1],
error_info[2], error_info[3]);
if (unlikely(slot->abort))
return ts->stat;
goto out;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP: {
struct ssp_response_iu *iu =
hisi_sas_status_buf_addr_mem(slot) +
sizeof(struct hisi_sas_err_record);
sas_ssp_task_response(dev, task, iu);
break;
}
case SAS_PROTOCOL_SMP: {
struct scatterlist *sg_resp = &task->smp_task.smp_resp;
void *to;
ts->stat = SAM_STAT_GOOD;
to = kmap_atomic(sg_page(sg_resp));
dma_unmap_sg(dev, &task->smp_task.smp_resp, 1,
DMA_FROM_DEVICE);
dma_unmap_sg(dev, &task->smp_task.smp_req, 1,
DMA_TO_DEVICE);
memcpy(to + sg_resp->offset,
hisi_sas_status_buf_addr_mem(slot) +
sizeof(struct hisi_sas_err_record),
sg_dma_len(sg_resp));
kunmap_atomic(to);
break;
}
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
ts->stat = SAM_STAT_GOOD;
hisi_sas_sata_done(task, slot);
break;
default:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
}
if (!slot->port->port_attached) {
dev_warn(dev, "slot complete: port %d has removed\n",
slot->port->sas_port.id);
ts->stat = SAS_PHY_DOWN;
}
out:
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags |= SAS_TASK_STATE_DONE;
spin_unlock_irqrestore(&task->task_state_lock, flags);
spin_lock_irqsave(&hisi_hba->lock, flags);
hisi_sas_slot_task_free(hisi_hba, task, slot);
spin_unlock_irqrestore(&hisi_hba->lock, flags);
sts = ts->stat;
if (task->task_done)
task->task_done(task);
return sts;
}
static void cq_tasklet_v3_hw(unsigned long val)
{
struct hisi_sas_cq *cq = (struct hisi_sas_cq *)val;
struct hisi_hba *hisi_hba = cq->hisi_hba;
struct hisi_sas_slot *slot;
struct hisi_sas_complete_v3_hdr *complete_queue;
u32 rd_point = cq->rd_point, wr_point;
int queue = cq->id;
struct hisi_sas_dq *dq = &hisi_hba->dq[queue];
complete_queue = hisi_hba->complete_hdr[queue];
spin_lock(&dq->lock);
wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR +
(0x14 * queue));
while (rd_point != wr_point) {
struct hisi_sas_complete_v3_hdr *complete_hdr;
int iptt;
complete_hdr = &complete_queue[rd_point];
iptt = (complete_hdr->dw1) & CMPLT_HDR_IPTT_MSK;
slot = &hisi_hba->slot_info[iptt];
slot->cmplt_queue_slot = rd_point;
slot->cmplt_queue = queue;
slot_complete_v3_hw(hisi_hba, slot);
if (++rd_point >= HISI_SAS_QUEUE_SLOTS)
rd_point = 0;
}
/* update rd_point */
cq->rd_point = rd_point;
hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point);
spin_unlock(&dq->lock);
}
static irqreturn_t cq_interrupt_v3_hw(int irq_no, void *p)
{
struct hisi_sas_cq *cq = p;
struct hisi_hba *hisi_hba = cq->hisi_hba;
int queue = cq->id;
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue);
tasklet_schedule(&cq->tasklet);
return IRQ_HANDLED;
}
static int interrupt_init_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
struct pci_dev *pdev = hisi_hba->pci_dev;
int vectors, rc;
int i, k;
int max_msi = HISI_SAS_MSI_COUNT_V3_HW;
vectors = pci_alloc_irq_vectors(hisi_hba->pci_dev, 1,
max_msi, PCI_IRQ_MSI);
if (vectors < max_msi) {
dev_err(dev, "could not allocate all msi (%d)\n", vectors);
return -ENOENT;
}
rc = devm_request_irq(dev, pci_irq_vector(pdev, 1),
int_phy_up_down_bcast_v3_hw, 0,
DRV_NAME " phy", hisi_hba);
if (rc) {
dev_err(dev, "could not request phy interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_irq_vectors;
}
rc = devm_request_irq(dev, pci_irq_vector(pdev, 2),
int_chnl_int_v3_hw, 0,
DRV_NAME " channel", hisi_hba);
if (rc) {
dev_err(dev, "could not request chnl interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_phy_irq;
}
rc = devm_request_irq(dev, pci_irq_vector(pdev, 11),
fatal_axi_int_v3_hw, 0,
DRV_NAME " fatal", hisi_hba);
if (rc) {
dev_err(dev, "could not request fatal interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_chnl_interrupt;
}
/* Init tasklets for cq only */
for (i = 0; i < hisi_hba->queue_count; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
struct tasklet_struct *t = &cq->tasklet;
rc = devm_request_irq(dev, pci_irq_vector(pdev, i+16),
cq_interrupt_v3_hw, 0,
DRV_NAME " cq", cq);
if (rc) {
dev_err(dev,
"could not request cq%d interrupt, rc=%d\n",
i, rc);
rc = -ENOENT;
goto free_cq_irqs;
}
tasklet_init(t, cq_tasklet_v3_hw, (unsigned long)cq);
}
return 0;
free_cq_irqs:
for (k = 0; k < i; k++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[k];
free_irq(pci_irq_vector(pdev, k+16), cq);
}
free_irq(pci_irq_vector(pdev, 11), hisi_hba);
free_chnl_interrupt:
free_irq(pci_irq_vector(pdev, 2), hisi_hba);
free_phy_irq:
free_irq(pci_irq_vector(pdev, 1), hisi_hba);
free_irq_vectors:
pci_free_irq_vectors(pdev);
return rc;
}
static int hisi_sas_v3_init(struct hisi_hba *hisi_hba)
{
int rc;
rc = hw_init_v3_hw(hisi_hba);
if (rc)
return rc;
rc = interrupt_init_v3_hw(hisi_hba);
if (rc)
return rc;
return 0;
}
static void phy_set_linkrate_v3_hw(struct hisi_hba *hisi_hba, int phy_no,
struct sas_phy_linkrates *r)
{
u32 prog_phy_link_rate =
hisi_sas_phy_read32(hisi_hba, phy_no, PROG_PHY_LINK_RATE);
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
int i;
enum sas_linkrate min, max;
u32 rate_mask = 0;
if (r->maximum_linkrate == SAS_LINK_RATE_UNKNOWN) {
max = sas_phy->phy->maximum_linkrate;
min = r->minimum_linkrate;
} else if (r->minimum_linkrate == SAS_LINK_RATE_UNKNOWN) {
max = r->maximum_linkrate;
min = sas_phy->phy->minimum_linkrate;
} else
return;
sas_phy->phy->maximum_linkrate = max;
sas_phy->phy->minimum_linkrate = min;
min -= SAS_LINK_RATE_1_5_GBPS;
max -= SAS_LINK_RATE_1_5_GBPS;
for (i = 0; i <= max; i++)
rate_mask |= 1 << (i * 2);
prog_phy_link_rate &= ~0xff;
prog_phy_link_rate |= rate_mask;
hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
phy_hard_reset_v3_hw(hisi_hba, phy_no);
}
static void interrupt_disable_v3_hw(struct hisi_hba *hisi_hba)
{
struct pci_dev *pdev = hisi_hba->pci_dev;
int i;
synchronize_irq(pci_irq_vector(pdev, 1));
synchronize_irq(pci_irq_vector(pdev, 2));
synchronize_irq(pci_irq_vector(pdev, 11));
for (i = 0; i < hisi_hba->queue_count; i++) {
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1);
synchronize_irq(pci_irq_vector(pdev, i + 16));
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff);
for (i = 0; i < hisi_hba->n_phy; i++) {
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x1);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x1);
hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x1);
}
}
static u32 get_phys_state_v3_hw(struct hisi_hba *hisi_hba)
{
return hisi_sas_read32(hisi_hba, PHY_STATE);
}
static void phy_get_events_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_phy *sphy = sas_phy->phy;
u32 reg_value;
/* loss dword sync */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DWS_LOST);
sphy->loss_of_dword_sync_count += reg_value;
/* phy reset problem */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_RESET_PROB);
sphy->phy_reset_problem_count += reg_value;
/* invalid dword */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_INVLD_DW);
sphy->invalid_dword_count += reg_value;
/* disparity err */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DISP_ERR);
sphy->running_disparity_error_count += reg_value;
}
static int soft_reset_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int rc;
u32 status;
interrupt_disable_v3_hw(hisi_hba);
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0);
hisi_sas_kill_tasklets(hisi_hba);
hisi_sas_stop_phys(hisi_hba);
mdelay(10);
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, 0x1);
/* wait until bus idle */
rc = readl_poll_timeout(hisi_hba->regs + AXI_MASTER_CFG_BASE +
AM_CURR_TRANS_RETURN, status, status == 0x3, 10, 100);
if (rc) {
dev_err(dev, "axi bus is not idle, rc = %d\n", rc);
return rc;
}
hisi_sas_init_mem(hisi_hba);
return hw_init_v3_hw(hisi_hba);
}
static const struct hisi_sas_hw hisi_sas_v3_hw = {
.hw_init = hisi_sas_v3_init,
.setup_itct = setup_itct_v3_hw,
.max_command_entries = HISI_SAS_COMMAND_ENTRIES_V3_HW,
.get_wideport_bitmap = get_wideport_bitmap_v3_hw,
.complete_hdr_size = sizeof(struct hisi_sas_complete_v3_hdr),
.clear_itct = clear_itct_v3_hw,
.sl_notify = sl_notify_v3_hw,
.prep_ssp = prep_ssp_v3_hw,
.prep_smp = prep_smp_v3_hw,
.prep_stp = prep_ata_v3_hw,
.prep_abort = prep_abort_v3_hw,
.get_free_slot = get_free_slot_v3_hw,
.start_delivery = start_delivery_v3_hw,
.slot_complete = slot_complete_v3_hw,
.phys_init = phys_init_v3_hw,
.phy_start = start_phy_v3_hw,
.phy_disable = disable_phy_v3_hw,
.phy_hard_reset = phy_hard_reset_v3_hw,
.phy_get_max_linkrate = phy_get_max_linkrate_v3_hw,
.phy_set_linkrate = phy_set_linkrate_v3_hw,
.dereg_device = dereg_device_v3_hw,
.soft_reset = soft_reset_v3_hw,
.get_phys_state = get_phys_state_v3_hw,
.get_events = phy_get_events_v3_hw,
};
static struct Scsi_Host *
hisi_sas_shost_alloc_pci(struct pci_dev *pdev)
{
struct Scsi_Host *shost;
struct hisi_hba *hisi_hba;
struct device *dev = &pdev->dev;
shost = scsi_host_alloc(hisi_sas_sht, sizeof(*hisi_hba));
if (!shost) {
dev_err(dev, "shost alloc failed\n");
return NULL;
}
hisi_hba = shost_priv(shost);
INIT_WORK(&hisi_hba->rst_work, hisi_sas_rst_work_handler);
hisi_hba->hw = &hisi_sas_v3_hw;
hisi_hba->pci_dev = pdev;
hisi_hba->dev = dev;
hisi_hba->shost = shost;
SHOST_TO_SAS_HA(shost) = &hisi_hba->sha;
timer_setup(&hisi_hba->timer, NULL, 0);
if (hisi_sas_get_fw_info(hisi_hba) < 0)
goto err_out;
if (hisi_sas_alloc(hisi_hba, shost)) {
hisi_sas_free(hisi_hba);
goto err_out;
}
return shost;
err_out:
scsi_host_put(shost);
dev_err(dev, "shost alloc failed\n");
return NULL;
}
static int
hisi_sas_v3_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct Scsi_Host *shost;
struct hisi_hba *hisi_hba;
struct device *dev = &pdev->dev;
struct asd_sas_phy **arr_phy;
struct asd_sas_port **arr_port;
struct sas_ha_struct *sha;
int rc, phy_nr, port_nr, i;
rc = pci_enable_device(pdev);
if (rc)
goto err_out;
pci_set_master(pdev);
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out_disable_device;
if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) ||
(pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) != 0)) {
if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) ||
(pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)) {
dev_err(dev, "No usable DMA addressing method\n");
rc = -EIO;
goto err_out_regions;
}
}
shost = hisi_sas_shost_alloc_pci(pdev);
if (!shost) {
rc = -ENOMEM;
goto err_out_regions;
}
sha = SHOST_TO_SAS_HA(shost);
hisi_hba = shost_priv(shost);
dev_set_drvdata(dev, sha);
hisi_hba->regs = pcim_iomap(pdev, 5, 0);
if (!hisi_hba->regs) {
dev_err(dev, "cannot map register.\n");
rc = -ENOMEM;
goto err_out_ha;
}
phy_nr = port_nr = hisi_hba->n_phy;
arr_phy = devm_kcalloc(dev, phy_nr, sizeof(void *), GFP_KERNEL);
arr_port = devm_kcalloc(dev, port_nr, sizeof(void *), GFP_KERNEL);
if (!arr_phy || !arr_port) {
rc = -ENOMEM;
goto err_out_ha;
}
sha->sas_phy = arr_phy;
sha->sas_port = arr_port;
sha->core.shost = shost;
sha->lldd_ha = hisi_hba;
shost->transportt = hisi_sas_stt;
shost->max_id = HISI_SAS_MAX_DEVICES;
shost->max_lun = ~0;
shost->max_channel = 1;
shost->max_cmd_len = 16;
shost->sg_tablesize = min_t(u16, SG_ALL, HISI_SAS_SGE_PAGE_CNT);
shost->can_queue = hisi_hba->hw->max_command_entries;
shost->cmd_per_lun = hisi_hba->hw->max_command_entries;
sha->sas_ha_name = DRV_NAME;
sha->dev = dev;
sha->lldd_module = THIS_MODULE;
sha->sas_addr = &hisi_hba->sas_addr[0];
sha->num_phys = hisi_hba->n_phy;
sha->core.shost = hisi_hba->shost;
for (i = 0; i < hisi_hba->n_phy; i++) {
sha->sas_phy[i] = &hisi_hba->phy[i].sas_phy;
sha->sas_port[i] = &hisi_hba->port[i].sas_port;
}
hisi_sas_init_add(hisi_hba);
rc = scsi_add_host(shost, dev);
if (rc)
goto err_out_ha;
rc = sas_register_ha(sha);
if (rc)
goto err_out_register_ha;
rc = hisi_hba->hw->hw_init(hisi_hba);
if (rc)
goto err_out_register_ha;
scsi_scan_host(shost);
return 0;
err_out_register_ha:
scsi_remove_host(shost);
err_out_ha:
scsi_host_put(shost);
err_out_regions:
pci_release_regions(pdev);
err_out_disable_device:
pci_disable_device(pdev);
err_out:
return rc;
}
static void
hisi_sas_v3_destroy_irqs(struct pci_dev *pdev, struct hisi_hba *hisi_hba)
{
int i;
free_irq(pci_irq_vector(pdev, 1), hisi_hba);
free_irq(pci_irq_vector(pdev, 2), hisi_hba);
free_irq(pci_irq_vector(pdev, 11), hisi_hba);
for (i = 0; i < hisi_hba->queue_count; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
free_irq(pci_irq_vector(pdev, i+16), cq);
}
pci_free_irq_vectors(pdev);
}
static void hisi_sas_v3_remove(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct sas_ha_struct *sha = dev_get_drvdata(dev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct Scsi_Host *shost = sha->core.shost;
sas_unregister_ha(sha);
sas_remove_host(sha->core.shost);
hisi_sas_v3_destroy_irqs(pdev, hisi_hba);
hisi_sas_kill_tasklets(hisi_hba);
pci_release_regions(pdev);
pci_disable_device(pdev);
hisi_sas_free(hisi_hba);
scsi_host_put(shost);
}
static const struct hisi_sas_hw_error sas_ras_intr0_nfe[] = {
{ .irq_msk = BIT(19), .msg = "HILINK_INT" },
{ .irq_msk = BIT(20), .msg = "HILINK_PLL0_OUT_OF_LOCK" },
{ .irq_msk = BIT(21), .msg = "HILINK_PLL1_OUT_OF_LOCK" },
{ .irq_msk = BIT(22), .msg = "HILINK_LOSS_OF_REFCLK0" },
{ .irq_msk = BIT(23), .msg = "HILINK_LOSS_OF_REFCLK1" },
{ .irq_msk = BIT(24), .msg = "DMAC0_TX_POISON" },
{ .irq_msk = BIT(25), .msg = "DMAC1_TX_POISON" },
{ .irq_msk = BIT(26), .msg = "DMAC2_TX_POISON" },
{ .irq_msk = BIT(27), .msg = "DMAC3_TX_POISON" },
{ .irq_msk = BIT(28), .msg = "DMAC4_TX_POISON" },
{ .irq_msk = BIT(29), .msg = "DMAC5_TX_POISON" },
{ .irq_msk = BIT(30), .msg = "DMAC6_TX_POISON" },
{ .irq_msk = BIT(31), .msg = "DMAC7_TX_POISON" },
};
static const struct hisi_sas_hw_error sas_ras_intr1_nfe[] = {
{ .irq_msk = BIT(0), .msg = "RXM_CFG_MEM3_ECC2B_INTR" },
{ .irq_msk = BIT(1), .msg = "RXM_CFG_MEM2_ECC2B_INTR" },
{ .irq_msk = BIT(2), .msg = "RXM_CFG_MEM1_ECC2B_INTR" },
{ .irq_msk = BIT(3), .msg = "RXM_CFG_MEM0_ECC2B_INTR" },
{ .irq_msk = BIT(4), .msg = "HGC_CQE_ECC2B_INTR" },
{ .irq_msk = BIT(5), .msg = "LM_CFG_IOSTL_ECC2B_INTR" },
{ .irq_msk = BIT(6), .msg = "LM_CFG_ITCTL_ECC2B_INTR" },
{ .irq_msk = BIT(7), .msg = "HGC_ITCT_ECC2B_INTR" },
{ .irq_msk = BIT(8), .msg = "HGC_IOST_ECC2B_INTR" },
{ .irq_msk = BIT(9), .msg = "HGC_DQE_ECC2B_INTR" },
{ .irq_msk = BIT(10), .msg = "DMAC0_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(11), .msg = "DMAC1_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(12), .msg = "DMAC2_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(13), .msg = "DMAC3_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(14), .msg = "DMAC4_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(15), .msg = "DMAC5_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(16), .msg = "DMAC6_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(17), .msg = "DMAC7_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(18), .msg = "OOO_RAM_ECC2B_INTR" },
{ .irq_msk = BIT(20), .msg = "HGC_DQE_POISON_INTR" },
{ .irq_msk = BIT(21), .msg = "HGC_IOST_POISON_INTR" },
{ .irq_msk = BIT(22), .msg = "HGC_ITCT_POISON_INTR" },
{ .irq_msk = BIT(23), .msg = "HGC_ITCT_NCQ_POISON_INTR" },
{ .irq_msk = BIT(24), .msg = "DMAC0_RX_POISON" },
{ .irq_msk = BIT(25), .msg = "DMAC1_RX_POISON" },
{ .irq_msk = BIT(26), .msg = "DMAC2_RX_POISON" },
{ .irq_msk = BIT(27), .msg = "DMAC3_RX_POISON" },
{ .irq_msk = BIT(28), .msg = "DMAC4_RX_POISON" },
{ .irq_msk = BIT(29), .msg = "DMAC5_RX_POISON" },
{ .irq_msk = BIT(30), .msg = "DMAC6_RX_POISON" },
{ .irq_msk = BIT(31), .msg = "DMAC7_RX_POISON" },
};
static bool process_non_fatal_error_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *ras_error;
bool need_reset = false;
u32 irq_value;
int i;
irq_value = hisi_sas_read32(hisi_hba, SAS_RAS_INTR0);
for (i = 0; i < ARRAY_SIZE(sas_ras_intr0_nfe); i++) {
ras_error = &sas_ras_intr0_nfe[i];
if (ras_error->irq_msk & irq_value) {
dev_warn(dev, "SAS_RAS_INTR0: %s(irq_value=0x%x) found.\n",
ras_error->msg, irq_value);
need_reset = true;
}
}
hisi_sas_write32(hisi_hba, SAS_RAS_INTR0, irq_value);
irq_value = hisi_sas_read32(hisi_hba, SAS_RAS_INTR1);
for (i = 0; i < ARRAY_SIZE(sas_ras_intr1_nfe); i++) {
ras_error = &sas_ras_intr1_nfe[i];
if (ras_error->irq_msk & irq_value) {
dev_warn(dev, "SAS_RAS_INTR1: %s(irq_value=0x%x) found.\n",
ras_error->msg, irq_value);
need_reset = true;
}
}
hisi_sas_write32(hisi_hba, SAS_RAS_INTR1, irq_value);
return need_reset;
}
static pci_ers_result_t hisi_sas_error_detected_v3_hw(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct device *dev = hisi_hba->dev;
dev_info(dev, "PCI error: detected callback, state(%d)!!\n", state);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (process_non_fatal_error_v3_hw(hisi_hba))
return PCI_ERS_RESULT_NEED_RESET;
return PCI_ERS_RESULT_CAN_RECOVER;
}
static pci_ers_result_t hisi_sas_mmio_enabled_v3_hw(struct pci_dev *pdev)
{
return PCI_ERS_RESULT_RECOVERED;
}
static pci_ers_result_t hisi_sas_slot_reset_v3_hw(struct pci_dev *pdev)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct device *dev = hisi_hba->dev;
HISI_SAS_DECLARE_RST_WORK_ON_STACK(r);
dev_info(dev, "PCI error: slot reset callback!!\n");
queue_work(hisi_hba->wq, &r.work);
wait_for_completion(r.completion);
if (r.done)
return PCI_ERS_RESULT_RECOVERED;
return PCI_ERS_RESULT_DISCONNECT;
}
enum {
/* instances of the controller */
hip08,
};
static const struct pci_device_id sas_v3_pci_table[] = {
{ PCI_VDEVICE(HUAWEI, 0xa230), hip08 },
{}
};
static const struct pci_error_handlers hisi_sas_err_handler = {
.error_detected = hisi_sas_error_detected_v3_hw,
.mmio_enabled = hisi_sas_mmio_enabled_v3_hw,
.slot_reset = hisi_sas_slot_reset_v3_hw,
};
static struct pci_driver sas_v3_pci_driver = {
.name = DRV_NAME,
.id_table = sas_v3_pci_table,
.probe = hisi_sas_v3_probe,
.remove = hisi_sas_v3_remove,
.err_handler = &hisi_sas_err_handler,
};
module_pci_driver(sas_v3_pci_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Garry <john.garry@huawei.com>");
MODULE_DESCRIPTION("HISILICON SAS controller v3 hw driver based on pci device");
MODULE_ALIAS("platform:" DRV_NAME);