mirror of
https://github.com/torvalds/linux.git
synced 2024-12-31 23:31:29 +00:00
07a1006ae8
With various newer key types - stripe keys, inline data extents - the old approach of calculating the maximum size of the value is becoming more and more error prone. Better to switch to bkey_on_stack, which can dynamically allocate if necessary to handle any size bkey. In particular we also want to get rid of BKEY_EXTENT_VAL_U64s_MAX. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1694 lines
42 KiB
C
1694 lines
42 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _BCACHEFS_FORMAT_H
|
|
#define _BCACHEFS_FORMAT_H
|
|
|
|
/*
|
|
* bcachefs on disk data structures
|
|
*
|
|
* OVERVIEW:
|
|
*
|
|
* There are three main types of on disk data structures in bcachefs (this is
|
|
* reduced from 5 in bcache)
|
|
*
|
|
* - superblock
|
|
* - journal
|
|
* - btree
|
|
*
|
|
* The btree is the primary structure; most metadata exists as keys in the
|
|
* various btrees. There are only a small number of btrees, they're not
|
|
* sharded - we have one btree for extents, another for inodes, et cetera.
|
|
*
|
|
* SUPERBLOCK:
|
|
*
|
|
* The superblock contains the location of the journal, the list of devices in
|
|
* the filesystem, and in general any metadata we need in order to decide
|
|
* whether we can start a filesystem or prior to reading the journal/btree
|
|
* roots.
|
|
*
|
|
* The superblock is extensible, and most of the contents of the superblock are
|
|
* in variable length, type tagged fields; see struct bch_sb_field.
|
|
*
|
|
* Backup superblocks do not reside in a fixed location; also, superblocks do
|
|
* not have a fixed size. To locate backup superblocks we have struct
|
|
* bch_sb_layout; we store a copy of this inside every superblock, and also
|
|
* before the first superblock.
|
|
*
|
|
* JOURNAL:
|
|
*
|
|
* The journal primarily records btree updates in the order they occurred;
|
|
* journal replay consists of just iterating over all the keys in the open
|
|
* journal entries and re-inserting them into the btrees.
|
|
*
|
|
* The journal also contains entry types for the btree roots, and blacklisted
|
|
* journal sequence numbers (see journal_seq_blacklist.c).
|
|
*
|
|
* BTREE:
|
|
*
|
|
* bcachefs btrees are copy on write b+ trees, where nodes are big (typically
|
|
* 128k-256k) and log structured. We use struct btree_node for writing the first
|
|
* entry in a given node (offset 0), and struct btree_node_entry for all
|
|
* subsequent writes.
|
|
*
|
|
* After the header, btree node entries contain a list of keys in sorted order.
|
|
* Values are stored inline with the keys; since values are variable length (and
|
|
* keys effectively are variable length too, due to packing) we can't do random
|
|
* access without building up additional in memory tables in the btree node read
|
|
* path.
|
|
*
|
|
* BTREE KEYS (struct bkey):
|
|
*
|
|
* The various btrees share a common format for the key - so as to avoid
|
|
* switching in fastpath lookup/comparison code - but define their own
|
|
* structures for the key values.
|
|
*
|
|
* The size of a key/value pair is stored as a u8 in units of u64s, so the max
|
|
* size is just under 2k. The common part also contains a type tag for the
|
|
* value, and a format field indicating whether the key is packed or not (and
|
|
* also meant to allow adding new key fields in the future, if desired).
|
|
*
|
|
* bkeys, when stored within a btree node, may also be packed. In that case, the
|
|
* bkey_format in that node is used to unpack it. Packed bkeys mean that we can
|
|
* be generous with field sizes in the common part of the key format (64 bit
|
|
* inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
|
|
*/
|
|
|
|
#include <asm/types.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/uuid.h>
|
|
|
|
#ifdef __KERNEL__
|
|
typedef uuid_t __uuid_t;
|
|
#endif
|
|
|
|
#define LE_BITMASK(_bits, name, type, field, offset, end) \
|
|
static const unsigned name##_OFFSET = offset; \
|
|
static const unsigned name##_BITS = (end - offset); \
|
|
static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1; \
|
|
\
|
|
static inline __u64 name(const type *k) \
|
|
{ \
|
|
return (__le##_bits##_to_cpu(k->field) >> offset) & \
|
|
~(~0ULL << (end - offset)); \
|
|
} \
|
|
\
|
|
static inline void SET_##name(type *k, __u64 v) \
|
|
{ \
|
|
__u##_bits new = __le##_bits##_to_cpu(k->field); \
|
|
\
|
|
new &= ~(~(~0ULL << (end - offset)) << offset); \
|
|
new |= (v & ~(~0ULL << (end - offset))) << offset; \
|
|
k->field = __cpu_to_le##_bits(new); \
|
|
}
|
|
|
|
#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e)
|
|
#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e)
|
|
#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e)
|
|
|
|
struct bkey_format {
|
|
__u8 key_u64s;
|
|
__u8 nr_fields;
|
|
/* One unused slot for now: */
|
|
__u8 bits_per_field[6];
|
|
__le64 field_offset[6];
|
|
};
|
|
|
|
/* Btree keys - all units are in sectors */
|
|
|
|
struct bpos {
|
|
/*
|
|
* Word order matches machine byte order - btree code treats a bpos as a
|
|
* single large integer, for search/comparison purposes
|
|
*
|
|
* Note that wherever a bpos is embedded in another on disk data
|
|
* structure, it has to be byte swabbed when reading in metadata that
|
|
* wasn't written in native endian order:
|
|
*/
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
__u32 snapshot;
|
|
__u64 offset;
|
|
__u64 inode;
|
|
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
__u64 inode;
|
|
__u64 offset; /* Points to end of extent - sectors */
|
|
__u32 snapshot;
|
|
#else
|
|
#error edit for your odd byteorder.
|
|
#endif
|
|
} __attribute__((packed, aligned(4)));
|
|
|
|
#define KEY_INODE_MAX ((__u64)~0ULL)
|
|
#define KEY_OFFSET_MAX ((__u64)~0ULL)
|
|
#define KEY_SNAPSHOT_MAX ((__u32)~0U)
|
|
#define KEY_SIZE_MAX ((__u32)~0U)
|
|
|
|
static inline struct bpos POS(__u64 inode, __u64 offset)
|
|
{
|
|
struct bpos ret;
|
|
|
|
ret.inode = inode;
|
|
ret.offset = offset;
|
|
ret.snapshot = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define POS_MIN POS(0, 0)
|
|
#define POS_MAX POS(KEY_INODE_MAX, KEY_OFFSET_MAX)
|
|
|
|
/* Empty placeholder struct, for container_of() */
|
|
struct bch_val {
|
|
__u64 __nothing[0];
|
|
};
|
|
|
|
struct bversion {
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
__u64 lo;
|
|
__u32 hi;
|
|
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
__u32 hi;
|
|
__u64 lo;
|
|
#endif
|
|
} __attribute__((packed, aligned(4)));
|
|
|
|
struct bkey {
|
|
/* Size of combined key and value, in u64s */
|
|
__u8 u64s;
|
|
|
|
/* Format of key (0 for format local to btree node) */
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
__u8 format:7,
|
|
needs_whiteout:1;
|
|
#elif defined (__BIG_ENDIAN_BITFIELD)
|
|
__u8 needs_whiteout:1,
|
|
format:7;
|
|
#else
|
|
#error edit for your odd byteorder.
|
|
#endif
|
|
|
|
/* Type of the value */
|
|
__u8 type;
|
|
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
__u8 pad[1];
|
|
|
|
struct bversion version;
|
|
__u32 size; /* extent size, in sectors */
|
|
struct bpos p;
|
|
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
struct bpos p;
|
|
__u32 size; /* extent size, in sectors */
|
|
struct bversion version;
|
|
|
|
__u8 pad[1];
|
|
#endif
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
struct bkey_packed {
|
|
__u64 _data[0];
|
|
|
|
/* Size of combined key and value, in u64s */
|
|
__u8 u64s;
|
|
|
|
/* Format of key (0 for format local to btree node) */
|
|
|
|
/*
|
|
* XXX: next incompat on disk format change, switch format and
|
|
* needs_whiteout - bkey_packed() will be cheaper if format is the high
|
|
* bits of the bitfield
|
|
*/
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
__u8 format:7,
|
|
needs_whiteout:1;
|
|
#elif defined (__BIG_ENDIAN_BITFIELD)
|
|
__u8 needs_whiteout:1,
|
|
format:7;
|
|
#endif
|
|
|
|
/* Type of the value */
|
|
__u8 type;
|
|
__u8 key_start[0];
|
|
|
|
/*
|
|
* We copy bkeys with struct assignment in various places, and while
|
|
* that shouldn't be done with packed bkeys we can't disallow it in C,
|
|
* and it's legal to cast a bkey to a bkey_packed - so padding it out
|
|
* to the same size as struct bkey should hopefully be safest.
|
|
*/
|
|
__u8 pad[sizeof(struct bkey) - 3];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
|
|
#define BKEY_U64s_MAX U8_MAX
|
|
#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s)
|
|
|
|
#define KEY_PACKED_BITS_START 24
|
|
|
|
#define KEY_FORMAT_LOCAL_BTREE 0
|
|
#define KEY_FORMAT_CURRENT 1
|
|
|
|
enum bch_bkey_fields {
|
|
BKEY_FIELD_INODE,
|
|
BKEY_FIELD_OFFSET,
|
|
BKEY_FIELD_SNAPSHOT,
|
|
BKEY_FIELD_SIZE,
|
|
BKEY_FIELD_VERSION_HI,
|
|
BKEY_FIELD_VERSION_LO,
|
|
BKEY_NR_FIELDS,
|
|
};
|
|
|
|
#define bkey_format_field(name, field) \
|
|
[BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
|
|
|
|
#define BKEY_FORMAT_CURRENT \
|
|
((struct bkey_format) { \
|
|
.key_u64s = BKEY_U64s, \
|
|
.nr_fields = BKEY_NR_FIELDS, \
|
|
.bits_per_field = { \
|
|
bkey_format_field(INODE, p.inode), \
|
|
bkey_format_field(OFFSET, p.offset), \
|
|
bkey_format_field(SNAPSHOT, p.snapshot), \
|
|
bkey_format_field(SIZE, size), \
|
|
bkey_format_field(VERSION_HI, version.hi), \
|
|
bkey_format_field(VERSION_LO, version.lo), \
|
|
}, \
|
|
})
|
|
|
|
/* bkey with inline value */
|
|
struct bkey_i {
|
|
__u64 _data[0];
|
|
|
|
union {
|
|
struct {
|
|
/* Size of combined key and value, in u64s */
|
|
__u8 u64s;
|
|
};
|
|
struct {
|
|
struct bkey k;
|
|
struct bch_val v;
|
|
};
|
|
};
|
|
};
|
|
|
|
#define KEY(_inode, _offset, _size) \
|
|
((struct bkey) { \
|
|
.u64s = BKEY_U64s, \
|
|
.format = KEY_FORMAT_CURRENT, \
|
|
.p = POS(_inode, _offset), \
|
|
.size = _size, \
|
|
})
|
|
|
|
static inline void bkey_init(struct bkey *k)
|
|
{
|
|
*k = KEY(0, 0, 0);
|
|
}
|
|
|
|
#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
|
|
|
|
#define __BKEY_PADDED(key, pad) \
|
|
struct { struct bkey_i key; __u64 key ## _pad[pad]; }
|
|
|
|
/*
|
|
* - DELETED keys are used internally to mark keys that should be ignored but
|
|
* override keys in composition order. Their version number is ignored.
|
|
*
|
|
* - DISCARDED keys indicate that the data is all 0s because it has been
|
|
* discarded. DISCARDs may have a version; if the version is nonzero the key
|
|
* will be persistent, otherwise the key will be dropped whenever the btree
|
|
* node is rewritten (like DELETED keys).
|
|
*
|
|
* - ERROR: any read of the data returns a read error, as the data was lost due
|
|
* to a failing device. Like DISCARDED keys, they can be removed (overridden)
|
|
* by new writes or cluster-wide GC. Node repair can also overwrite them with
|
|
* the same or a more recent version number, but not with an older version
|
|
* number.
|
|
*
|
|
* - WHITEOUT: for hash table btrees
|
|
*/
|
|
#define BCH_BKEY_TYPES() \
|
|
x(deleted, 0) \
|
|
x(discard, 1) \
|
|
x(error, 2) \
|
|
x(cookie, 3) \
|
|
x(whiteout, 4) \
|
|
x(btree_ptr, 5) \
|
|
x(extent, 6) \
|
|
x(reservation, 7) \
|
|
x(inode, 8) \
|
|
x(inode_generation, 9) \
|
|
x(dirent, 10) \
|
|
x(xattr, 11) \
|
|
x(alloc, 12) \
|
|
x(quota, 13) \
|
|
x(stripe, 14) \
|
|
x(reflink_p, 15) \
|
|
x(reflink_v, 16) \
|
|
x(inline_data, 17) \
|
|
x(btree_ptr_v2, 18) \
|
|
x(indirect_inline_data, 19)
|
|
|
|
enum bch_bkey_type {
|
|
#define x(name, nr) KEY_TYPE_##name = nr,
|
|
BCH_BKEY_TYPES()
|
|
#undef x
|
|
KEY_TYPE_MAX,
|
|
};
|
|
|
|
struct bch_cookie {
|
|
struct bch_val v;
|
|
__le64 cookie;
|
|
};
|
|
|
|
/* Extents */
|
|
|
|
/*
|
|
* In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally
|
|
* preceded by checksum/compression information (bch_extent_crc32 or
|
|
* bch_extent_crc64).
|
|
*
|
|
* One major determining factor in the format of extents is how we handle and
|
|
* represent extents that have been partially overwritten and thus trimmed:
|
|
*
|
|
* If an extent is not checksummed or compressed, when the extent is trimmed we
|
|
* don't have to remember the extent we originally allocated and wrote: we can
|
|
* merely adjust ptr->offset to point to the start of the data that is currently
|
|
* live. The size field in struct bkey records the current (live) size of the
|
|
* extent, and is also used to mean "size of region on disk that we point to" in
|
|
* this case.
|
|
*
|
|
* Thus an extent that is not checksummed or compressed will consist only of a
|
|
* list of bch_extent_ptrs, with none of the fields in
|
|
* bch_extent_crc32/bch_extent_crc64.
|
|
*
|
|
* When an extent is checksummed or compressed, it's not possible to read only
|
|
* the data that is currently live: we have to read the entire extent that was
|
|
* originally written, and then return only the part of the extent that is
|
|
* currently live.
|
|
*
|
|
* Thus, in addition to the current size of the extent in struct bkey, we need
|
|
* to store the size of the originally allocated space - this is the
|
|
* compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also,
|
|
* when the extent is trimmed, instead of modifying the offset field of the
|
|
* pointer, we keep a second smaller offset field - "offset into the original
|
|
* extent of the currently live region".
|
|
*
|
|
* The other major determining factor is replication and data migration:
|
|
*
|
|
* Each pointer may have its own bch_extent_crc32/64. When doing a replicated
|
|
* write, we will initially write all the replicas in the same format, with the
|
|
* same checksum type and compression format - however, when copygc runs later (or
|
|
* tiering/cache promotion, anything that moves data), it is not in general
|
|
* going to rewrite all the pointers at once - one of the replicas may be in a
|
|
* bucket on one device that has very little fragmentation while another lives
|
|
* in a bucket that has become heavily fragmented, and thus is being rewritten
|
|
* sooner than the rest.
|
|
*
|
|
* Thus it will only move a subset of the pointers (or in the case of
|
|
* tiering/cache promotion perhaps add a single pointer without dropping any
|
|
* current pointers), and if the extent has been partially overwritten it must
|
|
* write only the currently live portion (or copygc would not be able to reduce
|
|
* fragmentation!) - which necessitates a different bch_extent_crc format for
|
|
* the new pointer.
|
|
*
|
|
* But in the interests of space efficiency, we don't want to store one
|
|
* bch_extent_crc for each pointer if we don't have to.
|
|
*
|
|
* Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and
|
|
* bch_extent_ptrs appended arbitrarily one after the other. We determine the
|
|
* type of a given entry with a scheme similar to utf8 (except we're encoding a
|
|
* type, not a size), encoding the type in the position of the first set bit:
|
|
*
|
|
* bch_extent_crc32 - 0b1
|
|
* bch_extent_ptr - 0b10
|
|
* bch_extent_crc64 - 0b100
|
|
*
|
|
* We do it this way because bch_extent_crc32 is _very_ constrained on bits (and
|
|
* bch_extent_crc64 is the least constrained).
|
|
*
|
|
* Then, each bch_extent_crc32/64 applies to the pointers that follow after it,
|
|
* until the next bch_extent_crc32/64.
|
|
*
|
|
* If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer
|
|
* is neither checksummed nor compressed.
|
|
*/
|
|
|
|
/* 128 bits, sufficient for cryptographic MACs: */
|
|
struct bch_csum {
|
|
__le64 lo;
|
|
__le64 hi;
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define BCH_EXTENT_ENTRY_TYPES() \
|
|
x(ptr, 0) \
|
|
x(crc32, 1) \
|
|
x(crc64, 2) \
|
|
x(crc128, 3) \
|
|
x(stripe_ptr, 4)
|
|
#define BCH_EXTENT_ENTRY_MAX 5
|
|
|
|
enum bch_extent_entry_type {
|
|
#define x(f, n) BCH_EXTENT_ENTRY_##f = n,
|
|
BCH_EXTENT_ENTRY_TYPES()
|
|
#undef x
|
|
};
|
|
|
|
/* Compressed/uncompressed size are stored biased by 1: */
|
|
struct bch_extent_crc32 {
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
__u32 type:2,
|
|
_compressed_size:7,
|
|
_uncompressed_size:7,
|
|
offset:7,
|
|
_unused:1,
|
|
csum_type:4,
|
|
compression_type:4;
|
|
__u32 csum;
|
|
#elif defined (__BIG_ENDIAN_BITFIELD)
|
|
__u32 csum;
|
|
__u32 compression_type:4,
|
|
csum_type:4,
|
|
_unused:1,
|
|
offset:7,
|
|
_uncompressed_size:7,
|
|
_compressed_size:7,
|
|
type:2;
|
|
#endif
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define CRC32_SIZE_MAX (1U << 7)
|
|
#define CRC32_NONCE_MAX 0
|
|
|
|
struct bch_extent_crc64 {
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
__u64 type:3,
|
|
_compressed_size:9,
|
|
_uncompressed_size:9,
|
|
offset:9,
|
|
nonce:10,
|
|
csum_type:4,
|
|
compression_type:4,
|
|
csum_hi:16;
|
|
#elif defined (__BIG_ENDIAN_BITFIELD)
|
|
__u64 csum_hi:16,
|
|
compression_type:4,
|
|
csum_type:4,
|
|
nonce:10,
|
|
offset:9,
|
|
_uncompressed_size:9,
|
|
_compressed_size:9,
|
|
type:3;
|
|
#endif
|
|
__u64 csum_lo;
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define CRC64_SIZE_MAX (1U << 9)
|
|
#define CRC64_NONCE_MAX ((1U << 10) - 1)
|
|
|
|
struct bch_extent_crc128 {
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
__u64 type:4,
|
|
_compressed_size:13,
|
|
_uncompressed_size:13,
|
|
offset:13,
|
|
nonce:13,
|
|
csum_type:4,
|
|
compression_type:4;
|
|
#elif defined (__BIG_ENDIAN_BITFIELD)
|
|
__u64 compression_type:4,
|
|
csum_type:4,
|
|
nonce:13,
|
|
offset:13,
|
|
_uncompressed_size:13,
|
|
_compressed_size:13,
|
|
type:4;
|
|
#endif
|
|
struct bch_csum csum;
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define CRC128_SIZE_MAX (1U << 13)
|
|
#define CRC128_NONCE_MAX ((1U << 13) - 1)
|
|
|
|
/*
|
|
* @reservation - pointer hasn't been written to, just reserved
|
|
*/
|
|
struct bch_extent_ptr {
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
__u64 type:1,
|
|
cached:1,
|
|
unused:1,
|
|
reservation:1,
|
|
offset:44, /* 8 petabytes */
|
|
dev:8,
|
|
gen:8;
|
|
#elif defined (__BIG_ENDIAN_BITFIELD)
|
|
__u64 gen:8,
|
|
dev:8,
|
|
offset:44,
|
|
reservation:1,
|
|
unused:1,
|
|
cached:1,
|
|
type:1;
|
|
#endif
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
struct bch_extent_stripe_ptr {
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
__u64 type:5,
|
|
block:8,
|
|
idx:51;
|
|
#elif defined (__BIG_ENDIAN_BITFIELD)
|
|
__u64 idx:51,
|
|
block:8,
|
|
type:5;
|
|
#endif
|
|
};
|
|
|
|
struct bch_extent_reservation {
|
|
#if defined(__LITTLE_ENDIAN_BITFIELD)
|
|
__u64 type:6,
|
|
unused:22,
|
|
replicas:4,
|
|
generation:32;
|
|
#elif defined (__BIG_ENDIAN_BITFIELD)
|
|
__u64 generation:32,
|
|
replicas:4,
|
|
unused:22,
|
|
type:6;
|
|
#endif
|
|
};
|
|
|
|
union bch_extent_entry {
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || __BITS_PER_LONG == 64
|
|
unsigned long type;
|
|
#elif __BITS_PER_LONG == 32
|
|
struct {
|
|
unsigned long pad;
|
|
unsigned long type;
|
|
};
|
|
#else
|
|
#error edit for your odd byteorder.
|
|
#endif
|
|
|
|
#define x(f, n) struct bch_extent_##f f;
|
|
BCH_EXTENT_ENTRY_TYPES()
|
|
#undef x
|
|
};
|
|
|
|
struct bch_btree_ptr {
|
|
struct bch_val v;
|
|
|
|
__u64 _data[0];
|
|
struct bch_extent_ptr start[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
struct bch_btree_ptr_v2 {
|
|
struct bch_val v;
|
|
|
|
__u64 mem_ptr;
|
|
__le64 seq;
|
|
__le16 sectors_written;
|
|
/* In case we ever decide to do variable size btree nodes: */
|
|
__le16 sectors;
|
|
struct bpos min_key;
|
|
__u64 _data[0];
|
|
struct bch_extent_ptr start[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
struct bch_extent {
|
|
struct bch_val v;
|
|
|
|
__u64 _data[0];
|
|
union bch_extent_entry start[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
struct bch_reservation {
|
|
struct bch_val v;
|
|
|
|
__le32 generation;
|
|
__u8 nr_replicas;
|
|
__u8 pad[3];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/* Maximum size (in u64s) a single pointer could be: */
|
|
#define BKEY_EXTENT_PTR_U64s_MAX\
|
|
((sizeof(struct bch_extent_crc128) + \
|
|
sizeof(struct bch_extent_ptr)) / sizeof(u64))
|
|
|
|
/* Maximum possible size of an entire extent value: */
|
|
#define BKEY_EXTENT_VAL_U64s_MAX \
|
|
(1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1))
|
|
|
|
/* * Maximum possible size of an entire extent, key + value: */
|
|
#define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX)
|
|
|
|
/* Btree pointers don't carry around checksums: */
|
|
#define BKEY_BTREE_PTR_VAL_U64s_MAX \
|
|
((sizeof(struct bch_btree_ptr_v2) + \
|
|
sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(u64))
|
|
#define BKEY_BTREE_PTR_U64s_MAX \
|
|
(BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX)
|
|
|
|
/* Inodes */
|
|
|
|
#define BLOCKDEV_INODE_MAX 4096
|
|
|
|
#define BCACHEFS_ROOT_INO 4096
|
|
|
|
struct bch_inode {
|
|
struct bch_val v;
|
|
|
|
__le64 bi_hash_seed;
|
|
__le32 bi_flags;
|
|
__le16 bi_mode;
|
|
__u8 fields[0];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
struct bch_inode_generation {
|
|
struct bch_val v;
|
|
|
|
__le32 bi_generation;
|
|
__le32 pad;
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define BCH_INODE_FIELDS() \
|
|
x(bi_atime, 96) \
|
|
x(bi_ctime, 96) \
|
|
x(bi_mtime, 96) \
|
|
x(bi_otime, 96) \
|
|
x(bi_size, 64) \
|
|
x(bi_sectors, 64) \
|
|
x(bi_uid, 32) \
|
|
x(bi_gid, 32) \
|
|
x(bi_nlink, 32) \
|
|
x(bi_generation, 32) \
|
|
x(bi_dev, 32) \
|
|
x(bi_data_checksum, 8) \
|
|
x(bi_compression, 8) \
|
|
x(bi_project, 32) \
|
|
x(bi_background_compression, 8) \
|
|
x(bi_data_replicas, 8) \
|
|
x(bi_promote_target, 16) \
|
|
x(bi_foreground_target, 16) \
|
|
x(bi_background_target, 16) \
|
|
x(bi_erasure_code, 16) \
|
|
x(bi_fields_set, 16)
|
|
|
|
/* subset of BCH_INODE_FIELDS */
|
|
#define BCH_INODE_OPTS() \
|
|
x(data_checksum, 8) \
|
|
x(compression, 8) \
|
|
x(project, 32) \
|
|
x(background_compression, 8) \
|
|
x(data_replicas, 8) \
|
|
x(promote_target, 16) \
|
|
x(foreground_target, 16) \
|
|
x(background_target, 16) \
|
|
x(erasure_code, 16)
|
|
|
|
enum inode_opt_id {
|
|
#define x(name, ...) \
|
|
Inode_opt_##name,
|
|
BCH_INODE_OPTS()
|
|
#undef x
|
|
Inode_opt_nr,
|
|
};
|
|
|
|
enum {
|
|
/*
|
|
* User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL
|
|
* flags)
|
|
*/
|
|
__BCH_INODE_SYNC = 0,
|
|
__BCH_INODE_IMMUTABLE = 1,
|
|
__BCH_INODE_APPEND = 2,
|
|
__BCH_INODE_NODUMP = 3,
|
|
__BCH_INODE_NOATIME = 4,
|
|
|
|
__BCH_INODE_I_SIZE_DIRTY= 5,
|
|
__BCH_INODE_I_SECTORS_DIRTY= 6,
|
|
__BCH_INODE_UNLINKED = 7,
|
|
|
|
/* bits 20+ reserved for packed fields below: */
|
|
};
|
|
|
|
#define BCH_INODE_SYNC (1 << __BCH_INODE_SYNC)
|
|
#define BCH_INODE_IMMUTABLE (1 << __BCH_INODE_IMMUTABLE)
|
|
#define BCH_INODE_APPEND (1 << __BCH_INODE_APPEND)
|
|
#define BCH_INODE_NODUMP (1 << __BCH_INODE_NODUMP)
|
|
#define BCH_INODE_NOATIME (1 << __BCH_INODE_NOATIME)
|
|
#define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY)
|
|
#define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY)
|
|
#define BCH_INODE_UNLINKED (1 << __BCH_INODE_UNLINKED)
|
|
|
|
LE32_BITMASK(INODE_STR_HASH, struct bch_inode, bi_flags, 20, 24);
|
|
LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, bi_flags, 24, 31);
|
|
LE32_BITMASK(INODE_NEW_VARINT, struct bch_inode, bi_flags, 31, 32);
|
|
|
|
/* Dirents */
|
|
|
|
/*
|
|
* Dirents (and xattrs) have to implement string lookups; since our b-tree
|
|
* doesn't support arbitrary length strings for the key, we instead index by a
|
|
* 64 bit hash (currently truncated sha1) of the string, stored in the offset
|
|
* field of the key - using linear probing to resolve hash collisions. This also
|
|
* provides us with the readdir cookie posix requires.
|
|
*
|
|
* Linear probing requires us to use whiteouts for deletions, in the event of a
|
|
* collision:
|
|
*/
|
|
|
|
struct bch_dirent {
|
|
struct bch_val v;
|
|
|
|
/* Target inode number: */
|
|
__le64 d_inum;
|
|
|
|
/*
|
|
* Copy of mode bits 12-15 from the target inode - so userspace can get
|
|
* the filetype without having to do a stat()
|
|
*/
|
|
__u8 d_type;
|
|
|
|
__u8 d_name[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define BCH_NAME_MAX (U8_MAX * sizeof(u64) - \
|
|
sizeof(struct bkey) - \
|
|
offsetof(struct bch_dirent, d_name))
|
|
|
|
|
|
/* Xattrs */
|
|
|
|
#define KEY_TYPE_XATTR_INDEX_USER 0
|
|
#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS 1
|
|
#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT 2
|
|
#define KEY_TYPE_XATTR_INDEX_TRUSTED 3
|
|
#define KEY_TYPE_XATTR_INDEX_SECURITY 4
|
|
|
|
struct bch_xattr {
|
|
struct bch_val v;
|
|
__u8 x_type;
|
|
__u8 x_name_len;
|
|
__le16 x_val_len;
|
|
__u8 x_name[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/* Bucket/allocation information: */
|
|
|
|
struct bch_alloc {
|
|
struct bch_val v;
|
|
__u8 fields;
|
|
__u8 gen;
|
|
__u8 data[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define BCH_ALLOC_FIELDS() \
|
|
x(read_time, 16) \
|
|
x(write_time, 16) \
|
|
x(data_type, 8) \
|
|
x(dirty_sectors, 16) \
|
|
x(cached_sectors, 16) \
|
|
x(oldest_gen, 8)
|
|
|
|
enum {
|
|
#define x(name, bytes) BCH_ALLOC_FIELD_##name,
|
|
BCH_ALLOC_FIELDS()
|
|
#undef x
|
|
BCH_ALLOC_FIELD_NR
|
|
};
|
|
|
|
static const unsigned BCH_ALLOC_FIELD_BYTES[] = {
|
|
#define x(name, bits) [BCH_ALLOC_FIELD_##name] = bits / 8,
|
|
BCH_ALLOC_FIELDS()
|
|
#undef x
|
|
};
|
|
|
|
#define x(name, bits) + (bits / 8)
|
|
static const unsigned BKEY_ALLOC_VAL_U64s_MAX =
|
|
DIV_ROUND_UP(offsetof(struct bch_alloc, data)
|
|
BCH_ALLOC_FIELDS(), sizeof(u64));
|
|
#undef x
|
|
|
|
#define BKEY_ALLOC_U64s_MAX (BKEY_U64s + BKEY_ALLOC_VAL_U64s_MAX)
|
|
|
|
/* Quotas: */
|
|
|
|
enum quota_types {
|
|
QTYP_USR = 0,
|
|
QTYP_GRP = 1,
|
|
QTYP_PRJ = 2,
|
|
QTYP_NR = 3,
|
|
};
|
|
|
|
enum quota_counters {
|
|
Q_SPC = 0,
|
|
Q_INO = 1,
|
|
Q_COUNTERS = 2,
|
|
};
|
|
|
|
struct bch_quota_counter {
|
|
__le64 hardlimit;
|
|
__le64 softlimit;
|
|
};
|
|
|
|
struct bch_quota {
|
|
struct bch_val v;
|
|
struct bch_quota_counter c[Q_COUNTERS];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/* Erasure coding */
|
|
|
|
struct bch_stripe {
|
|
struct bch_val v;
|
|
__le16 sectors;
|
|
__u8 algorithm;
|
|
__u8 nr_blocks;
|
|
__u8 nr_redundant;
|
|
|
|
__u8 csum_granularity_bits;
|
|
__u8 csum_type;
|
|
__u8 pad;
|
|
|
|
struct bch_extent_ptr ptrs[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/* Reflink: */
|
|
|
|
struct bch_reflink_p {
|
|
struct bch_val v;
|
|
__le64 idx;
|
|
|
|
__le32 reservation_generation;
|
|
__u8 nr_replicas;
|
|
__u8 pad[3];
|
|
};
|
|
|
|
struct bch_reflink_v {
|
|
struct bch_val v;
|
|
__le64 refcount;
|
|
union bch_extent_entry start[0];
|
|
__u64 _data[0];
|
|
};
|
|
|
|
struct bch_indirect_inline_data {
|
|
struct bch_val v;
|
|
__le64 refcount;
|
|
u8 data[0];
|
|
};
|
|
|
|
/* Inline data */
|
|
|
|
struct bch_inline_data {
|
|
struct bch_val v;
|
|
u8 data[0];
|
|
};
|
|
|
|
/* Optional/variable size superblock sections: */
|
|
|
|
struct bch_sb_field {
|
|
__u64 _data[0];
|
|
__le32 u64s;
|
|
__le32 type;
|
|
};
|
|
|
|
#define BCH_SB_FIELDS() \
|
|
x(journal, 0) \
|
|
x(members, 1) \
|
|
x(crypt, 2) \
|
|
x(replicas_v0, 3) \
|
|
x(quota, 4) \
|
|
x(disk_groups, 5) \
|
|
x(clean, 6) \
|
|
x(replicas, 7) \
|
|
x(journal_seq_blacklist, 8)
|
|
|
|
enum bch_sb_field_type {
|
|
#define x(f, nr) BCH_SB_FIELD_##f = nr,
|
|
BCH_SB_FIELDS()
|
|
#undef x
|
|
BCH_SB_FIELD_NR
|
|
};
|
|
|
|
/* BCH_SB_FIELD_journal: */
|
|
|
|
struct bch_sb_field_journal {
|
|
struct bch_sb_field field;
|
|
__le64 buckets[0];
|
|
};
|
|
|
|
/* BCH_SB_FIELD_members: */
|
|
|
|
#define BCH_MIN_NR_NBUCKETS (1 << 6)
|
|
|
|
struct bch_member {
|
|
__uuid_t uuid;
|
|
__le64 nbuckets; /* device size */
|
|
__le16 first_bucket; /* index of first bucket used */
|
|
__le16 bucket_size; /* sectors */
|
|
__le32 pad;
|
|
__le64 last_mount; /* time_t */
|
|
|
|
__le64 flags[2];
|
|
};
|
|
|
|
LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags[0], 0, 4)
|
|
/* 4-10 unused, was TIER, HAS_(META)DATA */
|
|
LE64_BITMASK(BCH_MEMBER_REPLACEMENT, struct bch_member, flags[0], 10, 14)
|
|
LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags[0], 14, 15)
|
|
LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags[0], 15, 20)
|
|
LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags[0], 20, 28)
|
|
LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags[0], 28, 30)
|
|
|
|
#define BCH_TIER_MAX 4U
|
|
|
|
#if 0
|
|
LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20);
|
|
LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
|
|
#endif
|
|
|
|
enum bch_member_state {
|
|
BCH_MEMBER_STATE_RW = 0,
|
|
BCH_MEMBER_STATE_RO = 1,
|
|
BCH_MEMBER_STATE_FAILED = 2,
|
|
BCH_MEMBER_STATE_SPARE = 3,
|
|
BCH_MEMBER_STATE_NR = 4,
|
|
};
|
|
|
|
enum cache_replacement {
|
|
CACHE_REPLACEMENT_LRU = 0,
|
|
CACHE_REPLACEMENT_FIFO = 1,
|
|
CACHE_REPLACEMENT_RANDOM = 2,
|
|
CACHE_REPLACEMENT_NR = 3,
|
|
};
|
|
|
|
struct bch_sb_field_members {
|
|
struct bch_sb_field field;
|
|
struct bch_member members[0];
|
|
};
|
|
|
|
/* BCH_SB_FIELD_crypt: */
|
|
|
|
struct nonce {
|
|
__le32 d[4];
|
|
};
|
|
|
|
struct bch_key {
|
|
__le64 key[4];
|
|
};
|
|
|
|
#define BCH_KEY_MAGIC \
|
|
(((u64) 'b' << 0)|((u64) 'c' << 8)| \
|
|
((u64) 'h' << 16)|((u64) '*' << 24)| \
|
|
((u64) '*' << 32)|((u64) 'k' << 40)| \
|
|
((u64) 'e' << 48)|((u64) 'y' << 56))
|
|
|
|
struct bch_encrypted_key {
|
|
__le64 magic;
|
|
struct bch_key key;
|
|
};
|
|
|
|
/*
|
|
* If this field is present in the superblock, it stores an encryption key which
|
|
* is used encrypt all other data/metadata. The key will normally be encrypted
|
|
* with the key userspace provides, but if encryption has been turned off we'll
|
|
* just store the master key unencrypted in the superblock so we can access the
|
|
* previously encrypted data.
|
|
*/
|
|
struct bch_sb_field_crypt {
|
|
struct bch_sb_field field;
|
|
|
|
__le64 flags;
|
|
__le64 kdf_flags;
|
|
struct bch_encrypted_key key;
|
|
};
|
|
|
|
LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4);
|
|
|
|
enum bch_kdf_types {
|
|
BCH_KDF_SCRYPT = 0,
|
|
BCH_KDF_NR = 1,
|
|
};
|
|
|
|
/* stored as base 2 log of scrypt params: */
|
|
LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16);
|
|
LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32);
|
|
LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48);
|
|
|
|
/* BCH_SB_FIELD_replicas: */
|
|
|
|
#define BCH_DATA_TYPES() \
|
|
x(none, 0) \
|
|
x(sb, 1) \
|
|
x(journal, 2) \
|
|
x(btree, 3) \
|
|
x(user, 4) \
|
|
x(cached, 5) \
|
|
x(parity, 6)
|
|
|
|
enum bch_data_type {
|
|
#define x(t, n) BCH_DATA_##t,
|
|
BCH_DATA_TYPES()
|
|
#undef x
|
|
BCH_DATA_NR
|
|
};
|
|
|
|
struct bch_replicas_entry_v0 {
|
|
__u8 data_type;
|
|
__u8 nr_devs;
|
|
__u8 devs[];
|
|
} __attribute__((packed));
|
|
|
|
struct bch_sb_field_replicas_v0 {
|
|
struct bch_sb_field field;
|
|
struct bch_replicas_entry_v0 entries[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
struct bch_replicas_entry {
|
|
__u8 data_type;
|
|
__u8 nr_devs;
|
|
__u8 nr_required;
|
|
__u8 devs[];
|
|
} __attribute__((packed));
|
|
|
|
#define replicas_entry_bytes(_i) \
|
|
(offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
|
|
|
|
struct bch_sb_field_replicas {
|
|
struct bch_sb_field field;
|
|
struct bch_replicas_entry entries[];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/* BCH_SB_FIELD_quota: */
|
|
|
|
struct bch_sb_quota_counter {
|
|
__le32 timelimit;
|
|
__le32 warnlimit;
|
|
};
|
|
|
|
struct bch_sb_quota_type {
|
|
__le64 flags;
|
|
struct bch_sb_quota_counter c[Q_COUNTERS];
|
|
};
|
|
|
|
struct bch_sb_field_quota {
|
|
struct bch_sb_field field;
|
|
struct bch_sb_quota_type q[QTYP_NR];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/* BCH_SB_FIELD_disk_groups: */
|
|
|
|
#define BCH_SB_LABEL_SIZE 32
|
|
|
|
struct bch_disk_group {
|
|
__u8 label[BCH_SB_LABEL_SIZE];
|
|
__le64 flags[2];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1)
|
|
LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6)
|
|
LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24)
|
|
|
|
struct bch_sb_field_disk_groups {
|
|
struct bch_sb_field field;
|
|
struct bch_disk_group entries[0];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/*
|
|
* On clean shutdown, store btree roots and current journal sequence number in
|
|
* the superblock:
|
|
*/
|
|
struct jset_entry {
|
|
__le16 u64s;
|
|
__u8 btree_id;
|
|
__u8 level;
|
|
__u8 type; /* designates what this jset holds */
|
|
__u8 pad[3];
|
|
|
|
union {
|
|
struct bkey_i start[0];
|
|
__u64 _data[0];
|
|
};
|
|
};
|
|
|
|
struct bch_sb_field_clean {
|
|
struct bch_sb_field field;
|
|
|
|
__le32 flags;
|
|
__le16 read_clock;
|
|
__le16 write_clock;
|
|
__le64 journal_seq;
|
|
|
|
union {
|
|
struct jset_entry start[0];
|
|
__u64 _data[0];
|
|
};
|
|
};
|
|
|
|
struct journal_seq_blacklist_entry {
|
|
__le64 start;
|
|
__le64 end;
|
|
};
|
|
|
|
struct bch_sb_field_journal_seq_blacklist {
|
|
struct bch_sb_field field;
|
|
|
|
union {
|
|
struct journal_seq_blacklist_entry start[0];
|
|
__u64 _data[0];
|
|
};
|
|
};
|
|
|
|
/* Superblock: */
|
|
|
|
/*
|
|
* New versioning scheme:
|
|
* One common version number for all on disk data structures - superblock, btree
|
|
* nodes, journal entries
|
|
*/
|
|
#define BCH_JSET_VERSION_OLD 2
|
|
#define BCH_BSET_VERSION_OLD 3
|
|
|
|
enum bcachefs_metadata_version {
|
|
bcachefs_metadata_version_min = 9,
|
|
bcachefs_metadata_version_new_versioning = 10,
|
|
bcachefs_metadata_version_bkey_renumber = 10,
|
|
bcachefs_metadata_version_inode_btree_change = 11,
|
|
bcachefs_metadata_version_max = 12,
|
|
};
|
|
|
|
#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1)
|
|
|
|
#define BCH_SB_SECTOR 8
|
|
#define BCH_SB_MEMBERS_MAX 64 /* XXX kill */
|
|
|
|
struct bch_sb_layout {
|
|
__uuid_t magic; /* bcachefs superblock UUID */
|
|
__u8 layout_type;
|
|
__u8 sb_max_size_bits; /* base 2 of 512 byte sectors */
|
|
__u8 nr_superblocks;
|
|
__u8 pad[5];
|
|
__le64 sb_offset[61];
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#define BCH_SB_LAYOUT_SECTOR 7
|
|
|
|
/*
|
|
* @offset - sector where this sb was written
|
|
* @version - on disk format version
|
|
* @version_min - Oldest metadata version this filesystem contains; so we can
|
|
* safely drop compatibility code and refuse to mount filesystems
|
|
* we'd need it for
|
|
* @magic - identifies as a bcachefs superblock (BCACHE_MAGIC)
|
|
* @seq - incremented each time superblock is written
|
|
* @uuid - used for generating various magic numbers and identifying
|
|
* member devices, never changes
|
|
* @user_uuid - user visible UUID, may be changed
|
|
* @label - filesystem label
|
|
* @seq - identifies most recent superblock, incremented each time
|
|
* superblock is written
|
|
* @features - enabled incompatible features
|
|
*/
|
|
struct bch_sb {
|
|
struct bch_csum csum;
|
|
__le16 version;
|
|
__le16 version_min;
|
|
__le16 pad[2];
|
|
__uuid_t magic;
|
|
__uuid_t uuid;
|
|
__uuid_t user_uuid;
|
|
__u8 label[BCH_SB_LABEL_SIZE];
|
|
__le64 offset;
|
|
__le64 seq;
|
|
|
|
__le16 block_size;
|
|
__u8 dev_idx;
|
|
__u8 nr_devices;
|
|
__le32 u64s;
|
|
|
|
__le64 time_base_lo;
|
|
__le32 time_base_hi;
|
|
__le32 time_precision;
|
|
|
|
__le64 flags[8];
|
|
__le64 features[2];
|
|
__le64 compat[2];
|
|
|
|
struct bch_sb_layout layout;
|
|
|
|
union {
|
|
struct bch_sb_field start[0];
|
|
__le64 _data[0];
|
|
};
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/*
|
|
* Flags:
|
|
* BCH_SB_INITALIZED - set on first mount
|
|
* BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect
|
|
* behaviour of mount/recovery path:
|
|
* BCH_SB_INODE_32BIT - limit inode numbers to 32 bits
|
|
* BCH_SB_128_BIT_MACS - 128 bit macs instead of 80
|
|
* BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
|
|
* DATA/META_CSUM_TYPE. Also indicates encryption
|
|
* algorithm in use, if/when we get more than one
|
|
*/
|
|
|
|
LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16);
|
|
|
|
LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1);
|
|
LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2);
|
|
LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8);
|
|
LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12);
|
|
|
|
LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28);
|
|
|
|
LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33);
|
|
LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40);
|
|
|
|
LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44);
|
|
LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48);
|
|
|
|
LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
|
|
LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
|
|
|
|
LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57);
|
|
LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58);
|
|
LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59);
|
|
LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60);
|
|
|
|
LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61);
|
|
|
|
LE64_BITMASK(BCH_SB_REFLINK, struct bch_sb, flags[0], 61, 62);
|
|
|
|
/* 61-64 unused */
|
|
|
|
LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4);
|
|
LE64_BITMASK(BCH_SB_COMPRESSION_TYPE, struct bch_sb, flags[1], 4, 8);
|
|
LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9);
|
|
|
|
LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10);
|
|
LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14);
|
|
|
|
/*
|
|
* Max size of an extent that may require bouncing to read or write
|
|
* (checksummed, compressed): 64k
|
|
*/
|
|
LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
|
|
struct bch_sb, flags[1], 14, 20);
|
|
|
|
LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24);
|
|
LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28);
|
|
|
|
LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40);
|
|
LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52);
|
|
LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64);
|
|
|
|
LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE,
|
|
struct bch_sb, flags[2], 0, 4);
|
|
LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64);
|
|
|
|
LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16);
|
|
|
|
/*
|
|
* Features:
|
|
*
|
|
* journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist
|
|
* reflink: gates KEY_TYPE_reflink
|
|
* inline_data: gates KEY_TYPE_inline_data
|
|
* new_siphash: gates BCH_STR_HASH_SIPHASH
|
|
* new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE
|
|
*/
|
|
#define BCH_SB_FEATURES() \
|
|
x(lz4, 0) \
|
|
x(gzip, 1) \
|
|
x(zstd, 2) \
|
|
x(atomic_nlink, 3) \
|
|
x(ec, 4) \
|
|
x(journal_seq_blacklist_v3, 5) \
|
|
x(reflink, 6) \
|
|
x(new_siphash, 7) \
|
|
x(inline_data, 8) \
|
|
x(new_extent_overwrite, 9) \
|
|
x(incompressible, 10) \
|
|
x(btree_ptr_v2, 11) \
|
|
x(extents_above_btree_updates, 12) \
|
|
x(btree_updates_journalled, 13) \
|
|
x(reflink_inline_data, 14) \
|
|
x(new_varint, 15) \
|
|
x(journal_no_flush, 16)
|
|
|
|
#define BCH_SB_FEATURES_ALL \
|
|
((1ULL << BCH_FEATURE_new_siphash)| \
|
|
(1ULL << BCH_FEATURE_new_extent_overwrite)| \
|
|
(1ULL << BCH_FEATURE_btree_ptr_v2)| \
|
|
(1ULL << BCH_FEATURE_extents_above_btree_updates)|\
|
|
(1ULL << BCH_FEATURE_new_varint)| \
|
|
(1ULL << BCH_FEATURE_journal_no_flush))
|
|
|
|
enum bch_sb_feature {
|
|
#define x(f, n) BCH_FEATURE_##f,
|
|
BCH_SB_FEATURES()
|
|
#undef x
|
|
BCH_FEATURE_NR,
|
|
};
|
|
|
|
enum bch_sb_compat {
|
|
BCH_COMPAT_FEAT_ALLOC_INFO = 0,
|
|
BCH_COMPAT_FEAT_ALLOC_METADATA = 1,
|
|
};
|
|
|
|
/* options: */
|
|
|
|
#define BCH_REPLICAS_MAX 4U
|
|
|
|
#define BCH_BKEY_PTRS_MAX 16U
|
|
|
|
enum bch_error_actions {
|
|
BCH_ON_ERROR_CONTINUE = 0,
|
|
BCH_ON_ERROR_RO = 1,
|
|
BCH_ON_ERROR_PANIC = 2,
|
|
BCH_NR_ERROR_ACTIONS = 3,
|
|
};
|
|
|
|
enum bch_str_hash_type {
|
|
BCH_STR_HASH_CRC32C = 0,
|
|
BCH_STR_HASH_CRC64 = 1,
|
|
BCH_STR_HASH_SIPHASH_OLD = 2,
|
|
BCH_STR_HASH_SIPHASH = 3,
|
|
BCH_STR_HASH_NR = 4,
|
|
};
|
|
|
|
enum bch_str_hash_opts {
|
|
BCH_STR_HASH_OPT_CRC32C = 0,
|
|
BCH_STR_HASH_OPT_CRC64 = 1,
|
|
BCH_STR_HASH_OPT_SIPHASH = 2,
|
|
BCH_STR_HASH_OPT_NR = 3,
|
|
};
|
|
|
|
enum bch_csum_type {
|
|
BCH_CSUM_NONE = 0,
|
|
BCH_CSUM_CRC32C_NONZERO = 1,
|
|
BCH_CSUM_CRC64_NONZERO = 2,
|
|
BCH_CSUM_CHACHA20_POLY1305_80 = 3,
|
|
BCH_CSUM_CHACHA20_POLY1305_128 = 4,
|
|
BCH_CSUM_CRC32C = 5,
|
|
BCH_CSUM_CRC64 = 6,
|
|
BCH_CSUM_NR = 7,
|
|
};
|
|
|
|
static const unsigned bch_crc_bytes[] = {
|
|
[BCH_CSUM_NONE] = 0,
|
|
[BCH_CSUM_CRC32C_NONZERO] = 4,
|
|
[BCH_CSUM_CRC32C] = 4,
|
|
[BCH_CSUM_CRC64_NONZERO] = 8,
|
|
[BCH_CSUM_CRC64] = 8,
|
|
[BCH_CSUM_CHACHA20_POLY1305_80] = 10,
|
|
[BCH_CSUM_CHACHA20_POLY1305_128] = 16,
|
|
};
|
|
|
|
static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
|
|
{
|
|
switch (type) {
|
|
case BCH_CSUM_CHACHA20_POLY1305_80:
|
|
case BCH_CSUM_CHACHA20_POLY1305_128:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
enum bch_csum_opts {
|
|
BCH_CSUM_OPT_NONE = 0,
|
|
BCH_CSUM_OPT_CRC32C = 1,
|
|
BCH_CSUM_OPT_CRC64 = 2,
|
|
BCH_CSUM_OPT_NR = 3,
|
|
};
|
|
|
|
#define BCH_COMPRESSION_TYPES() \
|
|
x(none, 0) \
|
|
x(lz4_old, 1) \
|
|
x(gzip, 2) \
|
|
x(lz4, 3) \
|
|
x(zstd, 4) \
|
|
x(incompressible, 5)
|
|
|
|
enum bch_compression_type {
|
|
#define x(t, n) BCH_COMPRESSION_TYPE_##t,
|
|
BCH_COMPRESSION_TYPES()
|
|
#undef x
|
|
BCH_COMPRESSION_TYPE_NR
|
|
};
|
|
|
|
#define BCH_COMPRESSION_OPTS() \
|
|
x(none, 0) \
|
|
x(lz4, 1) \
|
|
x(gzip, 2) \
|
|
x(zstd, 3)
|
|
|
|
enum bch_compression_opts {
|
|
#define x(t, n) BCH_COMPRESSION_OPT_##t,
|
|
BCH_COMPRESSION_OPTS()
|
|
#undef x
|
|
BCH_COMPRESSION_OPT_NR
|
|
};
|
|
|
|
/*
|
|
* Magic numbers
|
|
*
|
|
* The various other data structures have their own magic numbers, which are
|
|
* xored with the first part of the cache set's UUID
|
|
*/
|
|
|
|
#define BCACHE_MAGIC \
|
|
UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \
|
|
0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
|
|
#define BCHFS_MAGIC \
|
|
UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \
|
|
0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
|
|
|
|
#define BCACHEFS_STATFS_MAGIC 0xca451a4e
|
|
|
|
#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL)
|
|
#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL)
|
|
|
|
static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
|
|
{
|
|
__le64 ret;
|
|
memcpy(&ret, &sb->uuid, sizeof(ret));
|
|
return ret;
|
|
}
|
|
|
|
static inline __u64 __jset_magic(struct bch_sb *sb)
|
|
{
|
|
return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
|
|
}
|
|
|
|
static inline __u64 __bset_magic(struct bch_sb *sb)
|
|
{
|
|
return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
|
|
}
|
|
|
|
/* Journal */
|
|
|
|
#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
|
|
|
|
#define BCH_JSET_ENTRY_TYPES() \
|
|
x(btree_keys, 0) \
|
|
x(btree_root, 1) \
|
|
x(prio_ptrs, 2) \
|
|
x(blacklist, 3) \
|
|
x(blacklist_v2, 4) \
|
|
x(usage, 5) \
|
|
x(data_usage, 6)
|
|
|
|
enum {
|
|
#define x(f, nr) BCH_JSET_ENTRY_##f = nr,
|
|
BCH_JSET_ENTRY_TYPES()
|
|
#undef x
|
|
BCH_JSET_ENTRY_NR
|
|
};
|
|
|
|
/*
|
|
* Journal sequence numbers can be blacklisted: bsets record the max sequence
|
|
* number of all the journal entries they contain updates for, so that on
|
|
* recovery we can ignore those bsets that contain index updates newer that what
|
|
* made it into the journal.
|
|
*
|
|
* This means that we can't reuse that journal_seq - we have to skip it, and
|
|
* then record that we skipped it so that the next time we crash and recover we
|
|
* don't think there was a missing journal entry.
|
|
*/
|
|
struct jset_entry_blacklist {
|
|
struct jset_entry entry;
|
|
__le64 seq;
|
|
};
|
|
|
|
struct jset_entry_blacklist_v2 {
|
|
struct jset_entry entry;
|
|
__le64 start;
|
|
__le64 end;
|
|
};
|
|
|
|
enum {
|
|
FS_USAGE_RESERVED = 0,
|
|
FS_USAGE_INODES = 1,
|
|
FS_USAGE_KEY_VERSION = 2,
|
|
FS_USAGE_NR = 3
|
|
};
|
|
|
|
struct jset_entry_usage {
|
|
struct jset_entry entry;
|
|
__le64 v;
|
|
} __attribute__((packed));
|
|
|
|
struct jset_entry_data_usage {
|
|
struct jset_entry entry;
|
|
__le64 v;
|
|
struct bch_replicas_entry r;
|
|
} __attribute__((packed));
|
|
|
|
/*
|
|
* On disk format for a journal entry:
|
|
* seq is monotonically increasing; every journal entry has its own unique
|
|
* sequence number.
|
|
*
|
|
* last_seq is the oldest journal entry that still has keys the btree hasn't
|
|
* flushed to disk yet.
|
|
*
|
|
* version is for on disk format changes.
|
|
*/
|
|
struct jset {
|
|
struct bch_csum csum;
|
|
|
|
__le64 magic;
|
|
__le64 seq;
|
|
__le32 version;
|
|
__le32 flags;
|
|
|
|
__le32 u64s; /* size of d[] in u64s */
|
|
|
|
__u8 encrypted_start[0];
|
|
|
|
__le16 read_clock;
|
|
__le16 write_clock;
|
|
|
|
/* Sequence number of oldest dirty journal entry */
|
|
__le64 last_seq;
|
|
|
|
|
|
union {
|
|
struct jset_entry start[0];
|
|
__u64 _data[0];
|
|
};
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4);
|
|
LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5);
|
|
LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6);
|
|
|
|
#define BCH_JOURNAL_BUCKETS_MIN 8
|
|
|
|
/* Btree: */
|
|
|
|
#define BCH_BTREE_IDS() \
|
|
x(EXTENTS, 0, "extents") \
|
|
x(INODES, 1, "inodes") \
|
|
x(DIRENTS, 2, "dirents") \
|
|
x(XATTRS, 3, "xattrs") \
|
|
x(ALLOC, 4, "alloc") \
|
|
x(QUOTAS, 5, "quotas") \
|
|
x(EC, 6, "stripes") \
|
|
x(REFLINK, 7, "reflink")
|
|
|
|
enum btree_id {
|
|
#define x(kwd, val, name) BTREE_ID_##kwd = val,
|
|
BCH_BTREE_IDS()
|
|
#undef x
|
|
BTREE_ID_NR
|
|
};
|
|
|
|
#define BTREE_MAX_DEPTH 4U
|
|
|
|
/* Btree nodes */
|
|
|
|
/*
|
|
* Btree nodes
|
|
*
|
|
* On disk a btree node is a list/log of these; within each set the keys are
|
|
* sorted
|
|
*/
|
|
struct bset {
|
|
__le64 seq;
|
|
|
|
/*
|
|
* Highest journal entry this bset contains keys for.
|
|
* If on recovery we don't see that journal entry, this bset is ignored:
|
|
* this allows us to preserve the order of all index updates after a
|
|
* crash, since the journal records a total order of all index updates
|
|
* and anything that didn't make it to the journal doesn't get used.
|
|
*/
|
|
__le64 journal_seq;
|
|
|
|
__le32 flags;
|
|
__le16 version;
|
|
__le16 u64s; /* count of d[] in u64s */
|
|
|
|
union {
|
|
struct bkey_packed start[0];
|
|
__u64 _data[0];
|
|
};
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4);
|
|
|
|
LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5);
|
|
LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
|
|
struct bset, flags, 5, 6);
|
|
|
|
struct btree_node {
|
|
struct bch_csum csum;
|
|
__le64 magic;
|
|
|
|
/* this flags field is encrypted, unlike bset->flags: */
|
|
__le64 flags;
|
|
|
|
/* Closed interval: */
|
|
struct bpos min_key;
|
|
struct bpos max_key;
|
|
struct bch_extent_ptr ptr;
|
|
struct bkey_format format;
|
|
|
|
union {
|
|
struct bset keys;
|
|
struct {
|
|
__u8 pad[22];
|
|
__le16 u64s;
|
|
__u64 _data[0];
|
|
|
|
};
|
|
};
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
LE64_BITMASK(BTREE_NODE_ID, struct btree_node, flags, 0, 4);
|
|
LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8);
|
|
LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
|
|
struct btree_node, flags, 8, 9);
|
|
/* 9-32 unused */
|
|
LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64);
|
|
|
|
struct btree_node_entry {
|
|
struct bch_csum csum;
|
|
|
|
union {
|
|
struct bset keys;
|
|
struct {
|
|
__u8 pad[22];
|
|
__le16 u64s;
|
|
__u64 _data[0];
|
|
|
|
};
|
|
};
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
#endif /* _BCACHEFS_FORMAT_H */
|