mirror of
https://github.com/torvalds/linux.git
synced 2024-12-02 09:01:34 +00:00
A mirror of the official Linux kernel repository just in case
7248e0cebb
[BACKGROUND] When committing a transaction, we will update block group items for all dirty block groups. But in fact, dirty block groups don't always need to update their block group items. It's pretty common to have a metadata block group which experienced several COW operations, but still have the same amount of used bytes. In that case, we may unnecessarily COW a tree block doing nothing. [ENHANCEMENT] This patch will introduce btrfs_block_group::commit_used member to remember the last used bytes, and use that new member to skip unnecessary block group item update. This would be more common for large filesystems, where metadata block group can be as large as 1GiB, containing at most 64K metadata items. In that case, if COW added and then deleted one metadata item near the end of the block group, then it's completely possible we don't need to touch the block group item at all. [BENCHMARK] The change itself can have quite a high chance (20~80%) to skip block group item updates in lot of workloads. As a result, it would result shorter time spent on btrfs_write_dirty_block_groups(), and overall reduce the execution time of the critical section of btrfs_commit_transaction(). Here comes a fio command, which will do random writes in 4K block size, causing a very heavy metadata updates. fio --filename=$mnt/file --size=512M --rw=randwrite --direct=1 --bs=4k \ --ioengine=libaio --iodepth=64 --runtime=300 --numjobs=4 \ --name=random_write --fallocate=none --time_based --fsync_on_close=1 The file size (512M) and number of threads (4) means 2GiB file size in total, but during the full 300s run time, my dedicated SATA SSD is able to write around 20~25GiB, which is over 10 times the file size. Thus after we fill the initial 2G, we should not cause much block group item updates. Please note, the fio numbers by themselves don't have much change, but if we look deeper, there is some reduced execution time, especially for the critical section of btrfs_commit_transaction(). I added extra trace_printk() to measure the following per-transaction execution time: - Critical section of btrfs_commit_transaction() By re-using the existing update_commit_stats() function, which has already calculated the interval correctly. - The while() loop for btrfs_write_dirty_block_groups() Although this includes the execution time of btrfs_run_delayed_refs(), it should still be representative overall. Both result involves transid 7~30, the same amount of transaction committed. The result looks like this: | Before | After | Diff ----------------------+-------------------+----------------+-------- Transaction interval | 229247198.5 | 215016933.6 | -6.2% Block group interval | 23133.33333 | 18970.83333 | -18.0% The change in block group item updates is more obvious, as skipped block group item updates also mean less delayed refs. And the overall execution time for that block group update loop is pretty small, thus we can assume the extent tree is already mostly cached. If we can skip an uncached tree block, it would cause more obvious change. Unfortunately the overall reduction in commit transaction critical section is much smaller, as the block group item updates loop is not really the major part, at least not for the above fio script. But still we have a observable reduction in the critical section. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
io_uring | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
rust | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
.rustfmt.toml | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.