mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 21:51:40 +00:00
a530bbc538
Commit3718c02dbd
("acpi, hmat: calculate abstract distance with HMAT") added a default_dram_perf_ref_source variable that was initialized but never used. This causes kmemleak to report the following memory leak: unreferenced object 0xff11000225a47b60 (size 16): comm "swapper/0", pid 1, jiffies 4294761654 hex dump (first 16 bytes): 41 43 50 49 20 48 4d 41 54 00 c1 4b 7d b7 75 7c ACPI HMAT..K}.u| backtrace (crc e6d0e7b2): [<ffffffff95d5afdb>] __kmalloc_node_track_caller_noprof+0x36b/0x440 [<ffffffff95c276d6>] kstrdup+0x36/0x60 [<ffffffff95dfabfa>] mt_set_default_dram_perf+0x23a/0x2c0 [<ffffffff9ad64733>] hmat_init+0x2b3/0x660 [<ffffffff95203cec>] do_one_initcall+0x11c/0x5c0 [<ffffffff9ac9cfc4>] do_initcalls+0x1b4/0x1f0 [<ffffffff9ac9d52e>] kernel_init_freeable+0x4ae/0x520 [<ffffffff97c789cc>] kernel_init+0x1c/0x150 [<ffffffff952aecd1>] ret_from_fork+0x31/0x70 [<ffffffff9520b18a>] ret_from_fork_asm+0x1a/0x30 This reminds us that we forget to use the performance data source information. So, use the variable in the error log message to help identify the root cause of inconsistent performance number. Link: https://lkml.kernel.org/r/87y13mvo0n.fsf@yhuang6-desk2.ccr.corp.intel.com Fixes:3718c02dbd
("acpi, hmat: calculate abstract distance with HMAT") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reported-by: Waiman Long <longman@redhat.com> Acked-by: Waiman Long <longman@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
996 lines
27 KiB
C
996 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/slab.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/memory-tiers.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/sched/sysctl.h>
|
|
|
|
#include "internal.h"
|
|
|
|
struct memory_tier {
|
|
/* hierarchy of memory tiers */
|
|
struct list_head list;
|
|
/* list of all memory types part of this tier */
|
|
struct list_head memory_types;
|
|
/*
|
|
* start value of abstract distance. memory tier maps
|
|
* an abstract distance range,
|
|
* adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
|
|
*/
|
|
int adistance_start;
|
|
struct device dev;
|
|
/* All the nodes that are part of all the lower memory tiers. */
|
|
nodemask_t lower_tier_mask;
|
|
};
|
|
|
|
struct demotion_nodes {
|
|
nodemask_t preferred;
|
|
};
|
|
|
|
struct node_memory_type_map {
|
|
struct memory_dev_type *memtype;
|
|
int map_count;
|
|
};
|
|
|
|
static DEFINE_MUTEX(memory_tier_lock);
|
|
static LIST_HEAD(memory_tiers);
|
|
/*
|
|
* The list is used to store all memory types that are not created
|
|
* by a device driver.
|
|
*/
|
|
static LIST_HEAD(default_memory_types);
|
|
static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
|
|
struct memory_dev_type *default_dram_type;
|
|
nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
|
|
|
|
static const struct bus_type memory_tier_subsys = {
|
|
.name = "memory_tiering",
|
|
.dev_name = "memory_tier",
|
|
};
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/**
|
|
* folio_use_access_time - check if a folio reuses cpupid for page access time
|
|
* @folio: folio to check
|
|
*
|
|
* folio's _last_cpupid field is repurposed by memory tiering. In memory
|
|
* tiering mode, cpupid of slow memory folio (not toptier memory) is used to
|
|
* record page access time.
|
|
*
|
|
* Return: the folio _last_cpupid is used to record page access time
|
|
*/
|
|
bool folio_use_access_time(struct folio *folio)
|
|
{
|
|
return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
|
|
!node_is_toptier(folio_nid(folio));
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
static int top_tier_adistance;
|
|
/*
|
|
* node_demotion[] examples:
|
|
*
|
|
* Example 1:
|
|
*
|
|
* Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
|
|
*
|
|
* node distances:
|
|
* node 0 1 2 3
|
|
* 0 10 20 30 40
|
|
* 1 20 10 40 30
|
|
* 2 30 40 10 40
|
|
* 3 40 30 40 10
|
|
*
|
|
* memory_tiers0 = 0-1
|
|
* memory_tiers1 = 2-3
|
|
*
|
|
* node_demotion[0].preferred = 2
|
|
* node_demotion[1].preferred = 3
|
|
* node_demotion[2].preferred = <empty>
|
|
* node_demotion[3].preferred = <empty>
|
|
*
|
|
* Example 2:
|
|
*
|
|
* Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
|
|
*
|
|
* node distances:
|
|
* node 0 1 2
|
|
* 0 10 20 30
|
|
* 1 20 10 30
|
|
* 2 30 30 10
|
|
*
|
|
* memory_tiers0 = 0-2
|
|
*
|
|
* node_demotion[0].preferred = <empty>
|
|
* node_demotion[1].preferred = <empty>
|
|
* node_demotion[2].preferred = <empty>
|
|
*
|
|
* Example 3:
|
|
*
|
|
* Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
|
|
*
|
|
* node distances:
|
|
* node 0 1 2
|
|
* 0 10 20 30
|
|
* 1 20 10 40
|
|
* 2 30 40 10
|
|
*
|
|
* memory_tiers0 = 1
|
|
* memory_tiers1 = 0
|
|
* memory_tiers2 = 2
|
|
*
|
|
* node_demotion[0].preferred = 2
|
|
* node_demotion[1].preferred = 0
|
|
* node_demotion[2].preferred = <empty>
|
|
*
|
|
*/
|
|
static struct demotion_nodes *node_demotion __read_mostly;
|
|
#endif /* CONFIG_MIGRATION */
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
|
|
|
|
/* The lock is used to protect `default_dram_perf*` info and nid. */
|
|
static DEFINE_MUTEX(default_dram_perf_lock);
|
|
static bool default_dram_perf_error;
|
|
static struct access_coordinate default_dram_perf;
|
|
static int default_dram_perf_ref_nid = NUMA_NO_NODE;
|
|
static const char *default_dram_perf_ref_source;
|
|
|
|
static inline struct memory_tier *to_memory_tier(struct device *device)
|
|
{
|
|
return container_of(device, struct memory_tier, dev);
|
|
}
|
|
|
|
static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
|
|
{
|
|
nodemask_t nodes = NODE_MASK_NONE;
|
|
struct memory_dev_type *memtype;
|
|
|
|
list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
|
|
nodes_or(nodes, nodes, memtype->nodes);
|
|
|
|
return nodes;
|
|
}
|
|
|
|
static void memory_tier_device_release(struct device *dev)
|
|
{
|
|
struct memory_tier *tier = to_memory_tier(dev);
|
|
/*
|
|
* synchronize_rcu in clear_node_memory_tier makes sure
|
|
* we don't have rcu access to this memory tier.
|
|
*/
|
|
kfree(tier);
|
|
}
|
|
|
|
static ssize_t nodelist_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
int ret;
|
|
nodemask_t nmask;
|
|
|
|
mutex_lock(&memory_tier_lock);
|
|
nmask = get_memtier_nodemask(to_memory_tier(dev));
|
|
ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
|
|
mutex_unlock(&memory_tier_lock);
|
|
return ret;
|
|
}
|
|
static DEVICE_ATTR_RO(nodelist);
|
|
|
|
static struct attribute *memtier_dev_attrs[] = {
|
|
&dev_attr_nodelist.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group memtier_dev_group = {
|
|
.attrs = memtier_dev_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *memtier_dev_groups[] = {
|
|
&memtier_dev_group,
|
|
NULL
|
|
};
|
|
|
|
static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
|
|
{
|
|
int ret;
|
|
bool found_slot = false;
|
|
struct memory_tier *memtier, *new_memtier;
|
|
int adistance = memtype->adistance;
|
|
unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
adistance = round_down(adistance, memtier_adistance_chunk_size);
|
|
/*
|
|
* If the memtype is already part of a memory tier,
|
|
* just return that.
|
|
*/
|
|
if (!list_empty(&memtype->tier_sibling)) {
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
if (adistance == memtier->adistance_start)
|
|
return memtier;
|
|
}
|
|
WARN_ON(1);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
if (adistance == memtier->adistance_start) {
|
|
goto link_memtype;
|
|
} else if (adistance < memtier->adistance_start) {
|
|
found_slot = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
|
|
if (!new_memtier)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
new_memtier->adistance_start = adistance;
|
|
INIT_LIST_HEAD(&new_memtier->list);
|
|
INIT_LIST_HEAD(&new_memtier->memory_types);
|
|
if (found_slot)
|
|
list_add_tail(&new_memtier->list, &memtier->list);
|
|
else
|
|
list_add_tail(&new_memtier->list, &memory_tiers);
|
|
|
|
new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
|
|
new_memtier->dev.bus = &memory_tier_subsys;
|
|
new_memtier->dev.release = memory_tier_device_release;
|
|
new_memtier->dev.groups = memtier_dev_groups;
|
|
|
|
ret = device_register(&new_memtier->dev);
|
|
if (ret) {
|
|
list_del(&new_memtier->list);
|
|
put_device(&new_memtier->dev);
|
|
return ERR_PTR(ret);
|
|
}
|
|
memtier = new_memtier;
|
|
|
|
link_memtype:
|
|
list_add(&memtype->tier_sibling, &memtier->memory_types);
|
|
return memtier;
|
|
}
|
|
|
|
static struct memory_tier *__node_get_memory_tier(int node)
|
|
{
|
|
pg_data_t *pgdat;
|
|
|
|
pgdat = NODE_DATA(node);
|
|
if (!pgdat)
|
|
return NULL;
|
|
/*
|
|
* Since we hold memory_tier_lock, we can avoid
|
|
* RCU read locks when accessing the details. No
|
|
* parallel updates are possible here.
|
|
*/
|
|
return rcu_dereference_check(pgdat->memtier,
|
|
lockdep_is_held(&memory_tier_lock));
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
bool node_is_toptier(int node)
|
|
{
|
|
bool toptier;
|
|
pg_data_t *pgdat;
|
|
struct memory_tier *memtier;
|
|
|
|
pgdat = NODE_DATA(node);
|
|
if (!pgdat)
|
|
return false;
|
|
|
|
rcu_read_lock();
|
|
memtier = rcu_dereference(pgdat->memtier);
|
|
if (!memtier) {
|
|
toptier = true;
|
|
goto out;
|
|
}
|
|
if (memtier->adistance_start <= top_tier_adistance)
|
|
toptier = true;
|
|
else
|
|
toptier = false;
|
|
out:
|
|
rcu_read_unlock();
|
|
return toptier;
|
|
}
|
|
|
|
void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
|
|
{
|
|
struct memory_tier *memtier;
|
|
|
|
/*
|
|
* pg_data_t.memtier updates includes a synchronize_rcu()
|
|
* which ensures that we either find NULL or a valid memtier
|
|
* in NODE_DATA. protect the access via rcu_read_lock();
|
|
*/
|
|
rcu_read_lock();
|
|
memtier = rcu_dereference(pgdat->memtier);
|
|
if (memtier)
|
|
*targets = memtier->lower_tier_mask;
|
|
else
|
|
*targets = NODE_MASK_NONE;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* next_demotion_node() - Get the next node in the demotion path
|
|
* @node: The starting node to lookup the next node
|
|
*
|
|
* Return: node id for next memory node in the demotion path hierarchy
|
|
* from @node; NUMA_NO_NODE if @node is terminal. This does not keep
|
|
* @node online or guarantee that it *continues* to be the next demotion
|
|
* target.
|
|
*/
|
|
int next_demotion_node(int node)
|
|
{
|
|
struct demotion_nodes *nd;
|
|
int target;
|
|
|
|
if (!node_demotion)
|
|
return NUMA_NO_NODE;
|
|
|
|
nd = &node_demotion[node];
|
|
|
|
/*
|
|
* node_demotion[] is updated without excluding this
|
|
* function from running.
|
|
*
|
|
* Make sure to use RCU over entire code blocks if
|
|
* node_demotion[] reads need to be consistent.
|
|
*/
|
|
rcu_read_lock();
|
|
/*
|
|
* If there are multiple target nodes, just select one
|
|
* target node randomly.
|
|
*
|
|
* In addition, we can also use round-robin to select
|
|
* target node, but we should introduce another variable
|
|
* for node_demotion[] to record last selected target node,
|
|
* that may cause cache ping-pong due to the changing of
|
|
* last target node. Or introducing per-cpu data to avoid
|
|
* caching issue, which seems more complicated. So selecting
|
|
* target node randomly seems better until now.
|
|
*/
|
|
target = node_random(&nd->preferred);
|
|
rcu_read_unlock();
|
|
|
|
return target;
|
|
}
|
|
|
|
static void disable_all_demotion_targets(void)
|
|
{
|
|
struct memory_tier *memtier;
|
|
int node;
|
|
|
|
for_each_node_state(node, N_MEMORY) {
|
|
node_demotion[node].preferred = NODE_MASK_NONE;
|
|
/*
|
|
* We are holding memory_tier_lock, it is safe
|
|
* to access pgda->memtier.
|
|
*/
|
|
memtier = __node_get_memory_tier(node);
|
|
if (memtier)
|
|
memtier->lower_tier_mask = NODE_MASK_NONE;
|
|
}
|
|
/*
|
|
* Ensure that the "disable" is visible across the system.
|
|
* Readers will see either a combination of before+disable
|
|
* state or disable+after. They will never see before and
|
|
* after state together.
|
|
*/
|
|
synchronize_rcu();
|
|
}
|
|
|
|
static void dump_demotion_targets(void)
|
|
{
|
|
int node;
|
|
|
|
for_each_node_state(node, N_MEMORY) {
|
|
struct memory_tier *memtier = __node_get_memory_tier(node);
|
|
nodemask_t preferred = node_demotion[node].preferred;
|
|
|
|
if (!memtier)
|
|
continue;
|
|
|
|
if (nodes_empty(preferred))
|
|
pr_info("Demotion targets for Node %d: null\n", node);
|
|
else
|
|
pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
|
|
node, nodemask_pr_args(&preferred),
|
|
nodemask_pr_args(&memtier->lower_tier_mask));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find an automatic demotion target for all memory
|
|
* nodes. Failing here is OK. It might just indicate
|
|
* being at the end of a chain.
|
|
*/
|
|
static void establish_demotion_targets(void)
|
|
{
|
|
struct memory_tier *memtier;
|
|
struct demotion_nodes *nd;
|
|
int target = NUMA_NO_NODE, node;
|
|
int distance, best_distance;
|
|
nodemask_t tier_nodes, lower_tier;
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
if (!node_demotion)
|
|
return;
|
|
|
|
disable_all_demotion_targets();
|
|
|
|
for_each_node_state(node, N_MEMORY) {
|
|
best_distance = -1;
|
|
nd = &node_demotion[node];
|
|
|
|
memtier = __node_get_memory_tier(node);
|
|
if (!memtier || list_is_last(&memtier->list, &memory_tiers))
|
|
continue;
|
|
/*
|
|
* Get the lower memtier to find the demotion node list.
|
|
*/
|
|
memtier = list_next_entry(memtier, list);
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
/*
|
|
* find_next_best_node, use 'used' nodemask as a skip list.
|
|
* Add all memory nodes except the selected memory tier
|
|
* nodelist to skip list so that we find the best node from the
|
|
* memtier nodelist.
|
|
*/
|
|
nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
|
|
|
|
/*
|
|
* Find all the nodes in the memory tier node list of same best distance.
|
|
* add them to the preferred mask. We randomly select between nodes
|
|
* in the preferred mask when allocating pages during demotion.
|
|
*/
|
|
do {
|
|
target = find_next_best_node(node, &tier_nodes);
|
|
if (target == NUMA_NO_NODE)
|
|
break;
|
|
|
|
distance = node_distance(node, target);
|
|
if (distance == best_distance || best_distance == -1) {
|
|
best_distance = distance;
|
|
node_set(target, nd->preferred);
|
|
} else {
|
|
break;
|
|
}
|
|
} while (1);
|
|
}
|
|
/*
|
|
* Promotion is allowed from a memory tier to higher
|
|
* memory tier only if the memory tier doesn't include
|
|
* compute. We want to skip promotion from a memory tier,
|
|
* if any node that is part of the memory tier have CPUs.
|
|
* Once we detect such a memory tier, we consider that tier
|
|
* as top tiper from which promotion is not allowed.
|
|
*/
|
|
list_for_each_entry_reverse(memtier, &memory_tiers, list) {
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
|
|
if (!nodes_empty(tier_nodes)) {
|
|
/*
|
|
* abstract distance below the max value of this memtier
|
|
* is considered toptier.
|
|
*/
|
|
top_tier_adistance = memtier->adistance_start +
|
|
MEMTIER_CHUNK_SIZE - 1;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* Now build the lower_tier mask for each node collecting node mask from
|
|
* all memory tier below it. This allows us to fallback demotion page
|
|
* allocation to a set of nodes that is closer the above selected
|
|
* preferred node.
|
|
*/
|
|
lower_tier = node_states[N_MEMORY];
|
|
list_for_each_entry(memtier, &memory_tiers, list) {
|
|
/*
|
|
* Keep removing current tier from lower_tier nodes,
|
|
* This will remove all nodes in current and above
|
|
* memory tier from the lower_tier mask.
|
|
*/
|
|
tier_nodes = get_memtier_nodemask(memtier);
|
|
nodes_andnot(lower_tier, lower_tier, tier_nodes);
|
|
memtier->lower_tier_mask = lower_tier;
|
|
}
|
|
|
|
dump_demotion_targets();
|
|
}
|
|
|
|
#else
|
|
static inline void establish_demotion_targets(void) {}
|
|
#endif /* CONFIG_MIGRATION */
|
|
|
|
static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
{
|
|
if (!node_memory_types[node].memtype)
|
|
node_memory_types[node].memtype = memtype;
|
|
/*
|
|
* for each device getting added in the same NUMA node
|
|
* with this specific memtype, bump the map count. We
|
|
* Only take memtype device reference once, so that
|
|
* changing a node memtype can be done by droping the
|
|
* only reference count taken here.
|
|
*/
|
|
|
|
if (node_memory_types[node].memtype == memtype) {
|
|
if (!node_memory_types[node].map_count++)
|
|
kref_get(&memtype->kref);
|
|
}
|
|
}
|
|
|
|
static struct memory_tier *set_node_memory_tier(int node)
|
|
{
|
|
struct memory_tier *memtier;
|
|
struct memory_dev_type *memtype = default_dram_type;
|
|
int adist = MEMTIER_ADISTANCE_DRAM;
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
|
|
|
|
lockdep_assert_held_once(&memory_tier_lock);
|
|
|
|
if (!node_state(node, N_MEMORY))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
mt_calc_adistance(node, &adist);
|
|
if (!node_memory_types[node].memtype) {
|
|
memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
|
|
if (IS_ERR(memtype)) {
|
|
memtype = default_dram_type;
|
|
pr_info("Failed to allocate a memory type. Fall back.\n");
|
|
}
|
|
}
|
|
|
|
__init_node_memory_type(node, memtype);
|
|
|
|
memtype = node_memory_types[node].memtype;
|
|
node_set(node, memtype->nodes);
|
|
memtier = find_create_memory_tier(memtype);
|
|
if (!IS_ERR(memtier))
|
|
rcu_assign_pointer(pgdat->memtier, memtier);
|
|
return memtier;
|
|
}
|
|
|
|
static void destroy_memory_tier(struct memory_tier *memtier)
|
|
{
|
|
list_del(&memtier->list);
|
|
device_unregister(&memtier->dev);
|
|
}
|
|
|
|
static bool clear_node_memory_tier(int node)
|
|
{
|
|
bool cleared = false;
|
|
pg_data_t *pgdat;
|
|
struct memory_tier *memtier;
|
|
|
|
pgdat = NODE_DATA(node);
|
|
if (!pgdat)
|
|
return false;
|
|
|
|
/*
|
|
* Make sure that anybody looking at NODE_DATA who finds
|
|
* a valid memtier finds memory_dev_types with nodes still
|
|
* linked to the memtier. We achieve this by waiting for
|
|
* rcu read section to finish using synchronize_rcu.
|
|
* This also enables us to free the destroyed memory tier
|
|
* with kfree instead of kfree_rcu
|
|
*/
|
|
memtier = __node_get_memory_tier(node);
|
|
if (memtier) {
|
|
struct memory_dev_type *memtype;
|
|
|
|
rcu_assign_pointer(pgdat->memtier, NULL);
|
|
synchronize_rcu();
|
|
memtype = node_memory_types[node].memtype;
|
|
node_clear(node, memtype->nodes);
|
|
if (nodes_empty(memtype->nodes)) {
|
|
list_del_init(&memtype->tier_sibling);
|
|
if (list_empty(&memtier->memory_types))
|
|
destroy_memory_tier(memtier);
|
|
}
|
|
cleared = true;
|
|
}
|
|
return cleared;
|
|
}
|
|
|
|
static void release_memtype(struct kref *kref)
|
|
{
|
|
struct memory_dev_type *memtype;
|
|
|
|
memtype = container_of(kref, struct memory_dev_type, kref);
|
|
kfree(memtype);
|
|
}
|
|
|
|
struct memory_dev_type *alloc_memory_type(int adistance)
|
|
{
|
|
struct memory_dev_type *memtype;
|
|
|
|
memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
|
|
if (!memtype)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
memtype->adistance = adistance;
|
|
INIT_LIST_HEAD(&memtype->tier_sibling);
|
|
memtype->nodes = NODE_MASK_NONE;
|
|
kref_init(&memtype->kref);
|
|
return memtype;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_memory_type);
|
|
|
|
void put_memory_type(struct memory_dev_type *memtype)
|
|
{
|
|
kref_put(&memtype->kref, release_memtype);
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_memory_type);
|
|
|
|
void init_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
{
|
|
|
|
mutex_lock(&memory_tier_lock);
|
|
__init_node_memory_type(node, memtype);
|
|
mutex_unlock(&memory_tier_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(init_node_memory_type);
|
|
|
|
void clear_node_memory_type(int node, struct memory_dev_type *memtype)
|
|
{
|
|
mutex_lock(&memory_tier_lock);
|
|
if (node_memory_types[node].memtype == memtype || !memtype)
|
|
node_memory_types[node].map_count--;
|
|
/*
|
|
* If we umapped all the attached devices to this node,
|
|
* clear the node memory type.
|
|
*/
|
|
if (!node_memory_types[node].map_count) {
|
|
memtype = node_memory_types[node].memtype;
|
|
node_memory_types[node].memtype = NULL;
|
|
put_memory_type(memtype);
|
|
}
|
|
mutex_unlock(&memory_tier_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(clear_node_memory_type);
|
|
|
|
struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
|
|
{
|
|
struct memory_dev_type *mtype;
|
|
|
|
list_for_each_entry(mtype, memory_types, list)
|
|
if (mtype->adistance == adist)
|
|
return mtype;
|
|
|
|
mtype = alloc_memory_type(adist);
|
|
if (IS_ERR(mtype))
|
|
return mtype;
|
|
|
|
list_add(&mtype->list, memory_types);
|
|
|
|
return mtype;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
|
|
|
|
void mt_put_memory_types(struct list_head *memory_types)
|
|
{
|
|
struct memory_dev_type *mtype, *mtn;
|
|
|
|
list_for_each_entry_safe(mtype, mtn, memory_types, list) {
|
|
list_del(&mtype->list);
|
|
put_memory_type(mtype);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(mt_put_memory_types);
|
|
|
|
/*
|
|
* This is invoked via `late_initcall()` to initialize memory tiers for
|
|
* memory nodes, both with and without CPUs. After the initialization of
|
|
* firmware and devices, adistance algorithms are expected to be provided.
|
|
*/
|
|
static int __init memory_tier_late_init(void)
|
|
{
|
|
int nid;
|
|
struct memory_tier *memtier;
|
|
|
|
get_online_mems();
|
|
guard(mutex)(&memory_tier_lock);
|
|
|
|
/* Assign each uninitialized N_MEMORY node to a memory tier. */
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
/*
|
|
* Some device drivers may have initialized
|
|
* memory tiers, potentially bringing memory nodes
|
|
* online and configuring memory tiers.
|
|
* Exclude them here.
|
|
*/
|
|
if (node_memory_types[nid].memtype)
|
|
continue;
|
|
|
|
memtier = set_node_memory_tier(nid);
|
|
if (IS_ERR(memtier))
|
|
continue;
|
|
}
|
|
|
|
establish_demotion_targets();
|
|
put_online_mems();
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(memory_tier_late_init);
|
|
|
|
static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
|
|
{
|
|
pr_info(
|
|
"%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
|
|
prefix, coord->read_latency, coord->write_latency,
|
|
coord->read_bandwidth, coord->write_bandwidth);
|
|
}
|
|
|
|
int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
|
|
const char *source)
|
|
{
|
|
guard(mutex)(&default_dram_perf_lock);
|
|
if (default_dram_perf_error)
|
|
return -EIO;
|
|
|
|
if (perf->read_latency + perf->write_latency == 0 ||
|
|
perf->read_bandwidth + perf->write_bandwidth == 0)
|
|
return -EINVAL;
|
|
|
|
if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
|
|
default_dram_perf = *perf;
|
|
default_dram_perf_ref_nid = nid;
|
|
default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The performance of all default DRAM nodes is expected to be
|
|
* same (that is, the variation is less than 10%). And it
|
|
* will be used as base to calculate the abstract distance of
|
|
* other memory nodes.
|
|
*/
|
|
if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
|
|
default_dram_perf.read_latency ||
|
|
abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
|
|
default_dram_perf.write_latency ||
|
|
abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
|
|
default_dram_perf.read_bandwidth ||
|
|
abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
|
|
default_dram_perf.write_bandwidth) {
|
|
pr_info(
|
|
"memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
|
|
"DRAM node %d.\n", nid, default_dram_perf_ref_nid);
|
|
pr_info(" performance of reference DRAM node %d from %s:\n",
|
|
default_dram_perf_ref_nid, default_dram_perf_ref_source);
|
|
dump_hmem_attrs(&default_dram_perf, " ");
|
|
pr_info(" performance of DRAM node %d from %s:\n", nid, source);
|
|
dump_hmem_attrs(perf, " ");
|
|
pr_info(
|
|
" disable default DRAM node performance based abstract distance algorithm.\n");
|
|
default_dram_perf_error = true;
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
|
|
{
|
|
guard(mutex)(&default_dram_perf_lock);
|
|
if (default_dram_perf_error)
|
|
return -EIO;
|
|
|
|
if (perf->read_latency + perf->write_latency == 0 ||
|
|
perf->read_bandwidth + perf->write_bandwidth == 0)
|
|
return -EINVAL;
|
|
|
|
if (default_dram_perf_ref_nid == NUMA_NO_NODE)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* The abstract distance of a memory node is in direct proportion to
|
|
* its memory latency (read + write) and inversely proportional to its
|
|
* memory bandwidth (read + write). The abstract distance, memory
|
|
* latency, and memory bandwidth of the default DRAM nodes are used as
|
|
* the base.
|
|
*/
|
|
*adist = MEMTIER_ADISTANCE_DRAM *
|
|
(perf->read_latency + perf->write_latency) /
|
|
(default_dram_perf.read_latency + default_dram_perf.write_latency) *
|
|
(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
|
|
(perf->read_bandwidth + perf->write_bandwidth);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
|
|
|
|
/**
|
|
* register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
|
|
* @nb: The notifier block which describe the algorithm
|
|
*
|
|
* Return: 0 on success, errno on error.
|
|
*
|
|
* Every memory tiering abstract distance algorithm provider needs to
|
|
* register the algorithm with register_mt_adistance_algorithm(). To
|
|
* calculate the abstract distance for a specified memory node, the
|
|
* notifier function will be called unless some high priority
|
|
* algorithm has provided result. The prototype of the notifier
|
|
* function is as follows,
|
|
*
|
|
* int (*algorithm_notifier)(struct notifier_block *nb,
|
|
* unsigned long nid, void *data);
|
|
*
|
|
* Where "nid" specifies the memory node, "data" is the pointer to the
|
|
* returned abstract distance (that is, "int *adist"). If the
|
|
* algorithm provides the result, NOTIFY_STOP should be returned.
|
|
* Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
|
|
* algorithm in the chain to provide the result.
|
|
*/
|
|
int register_mt_adistance_algorithm(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
|
|
|
|
/**
|
|
* unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
|
|
* @nb: the notifier block which describe the algorithm
|
|
*
|
|
* Return: 0 on success, errno on error.
|
|
*/
|
|
int unregister_mt_adistance_algorithm(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
|
|
|
|
/**
|
|
* mt_calc_adistance() - Calculate abstract distance with registered algorithms
|
|
* @node: the node to calculate abstract distance for
|
|
* @adist: the returned abstract distance
|
|
*
|
|
* Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
|
|
* abstract distance algorithm provides the result, and return it via
|
|
* @adist. Otherwise, no algorithm can provide the result and @adist
|
|
* will be kept as it is.
|
|
*/
|
|
int mt_calc_adistance(int node, int *adist)
|
|
{
|
|
return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mt_calc_adistance);
|
|
|
|
static int __meminit memtier_hotplug_callback(struct notifier_block *self,
|
|
unsigned long action, void *_arg)
|
|
{
|
|
struct memory_tier *memtier;
|
|
struct memory_notify *arg = _arg;
|
|
|
|
/*
|
|
* Only update the node migration order when a node is
|
|
* changing status, like online->offline.
|
|
*/
|
|
if (arg->status_change_nid < 0)
|
|
return notifier_from_errno(0);
|
|
|
|
switch (action) {
|
|
case MEM_OFFLINE:
|
|
mutex_lock(&memory_tier_lock);
|
|
if (clear_node_memory_tier(arg->status_change_nid))
|
|
establish_demotion_targets();
|
|
mutex_unlock(&memory_tier_lock);
|
|
break;
|
|
case MEM_ONLINE:
|
|
mutex_lock(&memory_tier_lock);
|
|
memtier = set_node_memory_tier(arg->status_change_nid);
|
|
if (!IS_ERR(memtier))
|
|
establish_demotion_targets();
|
|
mutex_unlock(&memory_tier_lock);
|
|
break;
|
|
}
|
|
|
|
return notifier_from_errno(0);
|
|
}
|
|
|
|
static int __init memory_tier_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = subsys_virtual_register(&memory_tier_subsys, NULL);
|
|
if (ret)
|
|
panic("%s() failed to register memory tier subsystem\n", __func__);
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
|
|
GFP_KERNEL);
|
|
WARN_ON(!node_demotion);
|
|
#endif
|
|
|
|
mutex_lock(&memory_tier_lock);
|
|
/*
|
|
* For now we can have 4 faster memory tiers with smaller adistance
|
|
* than default DRAM tier.
|
|
*/
|
|
default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
|
|
&default_memory_types);
|
|
mutex_unlock(&memory_tier_lock);
|
|
if (IS_ERR(default_dram_type))
|
|
panic("%s() failed to allocate default DRAM tier\n", __func__);
|
|
|
|
/* Record nodes with memory and CPU to set default DRAM performance. */
|
|
nodes_and(default_dram_nodes, node_states[N_MEMORY],
|
|
node_states[N_CPU]);
|
|
|
|
hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
|
|
return 0;
|
|
}
|
|
subsys_initcall(memory_tier_init);
|
|
|
|
bool numa_demotion_enabled = false;
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t demotion_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%s\n", str_true_false(numa_demotion_enabled));
|
|
}
|
|
|
|
static ssize_t demotion_enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = kstrtobool(buf, &numa_demotion_enabled);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct kobj_attribute numa_demotion_enabled_attr =
|
|
__ATTR_RW(demotion_enabled);
|
|
|
|
static struct attribute *numa_attrs[] = {
|
|
&numa_demotion_enabled_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group numa_attr_group = {
|
|
.attrs = numa_attrs,
|
|
};
|
|
|
|
static int __init numa_init_sysfs(void)
|
|
{
|
|
int err;
|
|
struct kobject *numa_kobj;
|
|
|
|
numa_kobj = kobject_create_and_add("numa", mm_kobj);
|
|
if (!numa_kobj) {
|
|
pr_err("failed to create numa kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
err = sysfs_create_group(numa_kobj, &numa_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register numa group\n");
|
|
goto delete_obj;
|
|
}
|
|
return 0;
|
|
|
|
delete_obj:
|
|
kobject_put(numa_kobj);
|
|
return err;
|
|
}
|
|
subsys_initcall(numa_init_sysfs);
|
|
#endif /* CONFIG_SYSFS */
|
|
#endif
|