linux/drivers/gpu/drm/radeon/atombios_dp.c
Alex Deucher 196c58d21f drm/radeon/kms: add support for eDP (embedded DisplayPort)
This is displayport used for internal connections such
as laptop panels and systems with integrated monitors.

Signed-off-by: Alex Deucher <alexdeucher@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2010-01-08 13:04:09 +10:00

793 lines
20 KiB
C

/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon.h"
#include "atom.h"
#include "atom-bits.h"
#include "drm_dp_helper.h"
/* move these to drm_dp_helper.c/h */
#define DP_LINK_CONFIGURATION_SIZE 9
#define DP_LINK_STATUS_SIZE 6
#define DP_DPCD_SIZE 8
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
static const int dp_clocks[] = {
54000, /* 1 lane, 1.62 Ghz */
90000, /* 1 lane, 2.70 Ghz */
108000, /* 2 lane, 1.62 Ghz */
180000, /* 2 lane, 2.70 Ghz */
216000, /* 4 lane, 1.62 Ghz */
360000, /* 4 lane, 2.70 Ghz */
};
static const int num_dp_clocks = sizeof(dp_clocks) / sizeof(int);
/* common helper functions */
static int dp_lanes_for_mode_clock(u8 dpcd[DP_DPCD_SIZE], int mode_clock)
{
int i;
u8 max_link_bw;
u8 max_lane_count;
if (!dpcd)
return 0;
max_link_bw = dpcd[DP_MAX_LINK_RATE];
max_lane_count = dpcd[DP_MAX_LANE_COUNT] & DP_MAX_LANE_COUNT_MASK;
switch (max_link_bw) {
case DP_LINK_BW_1_62:
default:
for (i = 0; i < num_dp_clocks; i++) {
if (i % 2)
continue;
switch (max_lane_count) {
case 1:
if (i > 1)
return 0;
break;
case 2:
if (i > 3)
return 0;
break;
case 4:
default:
break;
}
if (dp_clocks[i] > mode_clock) {
if (i < 2)
return 1;
else if (i < 4)
return 2;
else
return 4;
}
}
break;
case DP_LINK_BW_2_7:
for (i = 0; i < num_dp_clocks; i++) {
switch (max_lane_count) {
case 1:
if (i > 1)
return 0;
break;
case 2:
if (i > 3)
return 0;
break;
case 4:
default:
break;
}
if (dp_clocks[i] > mode_clock) {
if (i < 2)
return 1;
else if (i < 4)
return 2;
else
return 4;
}
}
break;
}
return 0;
}
static int dp_link_clock_for_mode_clock(u8 dpcd[DP_DPCD_SIZE], int mode_clock)
{
int i;
u8 max_link_bw;
u8 max_lane_count;
if (!dpcd)
return 0;
max_link_bw = dpcd[DP_MAX_LINK_RATE];
max_lane_count = dpcd[DP_MAX_LANE_COUNT] & DP_MAX_LANE_COUNT_MASK;
switch (max_link_bw) {
case DP_LINK_BW_1_62:
default:
for (i = 0; i < num_dp_clocks; i++) {
if (i % 2)
continue;
switch (max_lane_count) {
case 1:
if (i > 1)
return 0;
break;
case 2:
if (i > 3)
return 0;
break;
case 4:
default:
break;
}
if (dp_clocks[i] > mode_clock)
return 162000;
}
break;
case DP_LINK_BW_2_7:
for (i = 0; i < num_dp_clocks; i++) {
switch (max_lane_count) {
case 1:
if (i > 1)
return 0;
break;
case 2:
if (i > 3)
return 0;
break;
case 4:
default:
break;
}
if (dp_clocks[i] > mode_clock)
return (i % 2) ? 270000 : 162000;
}
}
return 0;
}
int dp_mode_valid(u8 dpcd[DP_DPCD_SIZE], int mode_clock)
{
int lanes = dp_lanes_for_mode_clock(dpcd, mode_clock);
int bw = dp_lanes_for_mode_clock(dpcd, mode_clock);
if ((lanes == 0) || (bw == 0))
return MODE_CLOCK_HIGH;
return MODE_OK;
}
static u8 dp_link_status(u8 link_status[DP_LINK_STATUS_SIZE], int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static u8 dp_get_lane_status(u8 link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
u8 l = dp_link_status(link_status, i);
return (l >> s) & 0xf;
}
static bool dp_clock_recovery_ok(u8 link_status[DP_LINK_STATUS_SIZE],
int lane_count)
{
int lane;
u8 lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = dp_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
static bool dp_channel_eq_ok(u8 link_status[DP_LINK_STATUS_SIZE],
int lane_count)
{
u8 lane_align;
u8 lane_status;
int lane;
lane_align = dp_link_status(link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < lane_count; lane++) {
lane_status = dp_get_lane_status(link_status, lane);
if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
return false;
}
return true;
}
static u8 dp_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
u8 l = dp_link_status(link_status, i);
return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static u8 dp_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
u8 l = dp_link_status(link_status, i);
return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
/* XXX fix me -- chip specific */
#define DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
static u8 dp_pre_emphasis_max(u8 voltage_swing)
{
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
static void dp_get_adjust_train(u8 link_status[DP_LINK_STATUS_SIZE],
int lane_count,
u8 train_set[4])
{
u8 v = 0;
u8 p = 0;
int lane;
for (lane = 0; lane < lane_count; lane++) {
u8 this_v = dp_get_adjust_request_voltage(link_status, lane);
u8 this_p = dp_get_adjust_request_pre_emphasis(link_status, lane);
DRM_DEBUG("requested signal parameters: lane %d voltage %s pre_emph %s\n",
lane,
voltage_names[this_v >> DP_TRAIN_VOLTAGE_SWING_SHIFT],
pre_emph_names[this_p >> DP_TRAIN_PRE_EMPHASIS_SHIFT]);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= DP_VOLTAGE_MAX)
v = DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
if (p >= dp_pre_emphasis_max(v))
p = dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
DRM_DEBUG("using signal parameters: voltage %s pre_emph %s\n",
voltage_names[(v & DP_TRAIN_VOLTAGE_SWING_MASK) >> DP_TRAIN_VOLTAGE_SWING_SHIFT],
pre_emph_names[(p & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT]);
for (lane = 0; lane < 4; lane++)
train_set[lane] = v | p;
}
/* radeon aux chan functions */
bool radeon_process_aux_ch(struct radeon_i2c_chan *chan, u8 *req_bytes,
int num_bytes, u8 *read_byte,
u8 read_buf_len, u8 delay)
{
struct drm_device *dev = chan->dev;
struct radeon_device *rdev = dev->dev_private;
PROCESS_AUX_CHANNEL_TRANSACTION_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, ProcessAuxChannelTransaction);
unsigned char *base;
memset(&args, 0, sizeof(args));
base = (unsigned char *)rdev->mode_info.atom_context->scratch;
memcpy(base, req_bytes, num_bytes);
args.lpAuxRequest = 0;
args.lpDataOut = 16;
args.ucDataOutLen = 0;
args.ucChannelID = chan->rec.i2c_id;
args.ucDelay = delay / 10;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
if (args.ucReplyStatus) {
DRM_DEBUG("failed to get auxch %02x%02x %02x %02x 0x%02x %02x\n",
req_bytes[1], req_bytes[0], req_bytes[2], req_bytes[3],
chan->rec.i2c_id, args.ucReplyStatus);
return false;
}
if (args.ucDataOutLen && read_byte && read_buf_len) {
if (read_buf_len < args.ucDataOutLen) {
DRM_ERROR("Buffer to small for return answer %d %d\n",
read_buf_len, args.ucDataOutLen);
return false;
}
{
int len = min(read_buf_len, args.ucDataOutLen);
memcpy(read_byte, base + 16, len);
}
}
return true;
}
bool radeon_dp_aux_native_write(struct radeon_connector *radeon_connector, uint16_t address,
uint8_t send_bytes, uint8_t *send)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
u8 msg[20];
u8 msg_len, dp_msg_len;
bool ret;
dp_msg_len = 4;
msg[0] = address;
msg[1] = address >> 8;
msg[2] = AUX_NATIVE_WRITE << 4;
dp_msg_len += send_bytes;
msg[3] = (dp_msg_len << 4) | (send_bytes - 1);
if (send_bytes > 16)
return false;
memcpy(&msg[4], send, send_bytes);
msg_len = 4 + send_bytes;
ret = radeon_process_aux_ch(dig_connector->dp_i2c_bus, msg, msg_len, NULL, 0, 0);
return ret;
}
bool radeon_dp_aux_native_read(struct radeon_connector *radeon_connector, uint16_t address,
uint8_t delay, uint8_t expected_bytes,
uint8_t *read_p)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
u8 msg[20];
u8 msg_len, dp_msg_len;
bool ret = false;
msg_len = 4;
dp_msg_len = 4;
msg[0] = address;
msg[1] = address >> 8;
msg[2] = AUX_NATIVE_READ << 4;
msg[3] = (dp_msg_len) << 4;
msg[3] |= expected_bytes - 1;
ret = radeon_process_aux_ch(dig_connector->dp_i2c_bus, msg, msg_len, read_p, expected_bytes, delay);
return ret;
}
/* radeon dp functions */
static u8 radeon_dp_encoder_service(struct radeon_device *rdev, int action, int dp_clock,
uint8_t ucconfig, uint8_t lane_num)
{
DP_ENCODER_SERVICE_PARAMETERS args;
int index = GetIndexIntoMasterTable(COMMAND, DPEncoderService);
memset(&args, 0, sizeof(args));
args.ucLinkClock = dp_clock / 10;
args.ucConfig = ucconfig;
args.ucAction = action;
args.ucLaneNum = lane_num;
args.ucStatus = 0;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
return args.ucStatus;
}
u8 radeon_dp_getsinktype(struct radeon_connector *radeon_connector)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
struct drm_device *dev = radeon_connector->base.dev;
struct radeon_device *rdev = dev->dev_private;
return radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_GET_SINK_TYPE, 0,
dig_connector->dp_i2c_bus->rec.i2c_id, 0);
}
bool radeon_dp_getdpcd(struct radeon_connector *radeon_connector)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
u8 msg[25];
int ret;
ret = radeon_dp_aux_native_read(radeon_connector, DP_DPCD_REV, 0, 8, msg);
if (ret) {
memcpy(dig_connector->dpcd, msg, 8);
{
int i;
DRM_DEBUG("DPCD: ");
for (i = 0; i < 8; i++)
DRM_DEBUG("%02x ", msg[i]);
DRM_DEBUG("\n");
}
return true;
}
dig_connector->dpcd[0] = 0;
return false;
}
void radeon_dp_set_link_config(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct radeon_connector *radeon_connector;
struct radeon_connector_atom_dig *dig_connector;
if ((connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) ||
(connector->connector_type != DRM_MODE_CONNECTOR_eDP))
return;
radeon_connector = to_radeon_connector(connector);
if (!radeon_connector->con_priv)
return;
dig_connector = radeon_connector->con_priv;
dig_connector->dp_clock =
dp_link_clock_for_mode_clock(dig_connector->dpcd, mode->clock);
dig_connector->dp_lane_count =
dp_lanes_for_mode_clock(dig_connector->dpcd, mode->clock);
}
int radeon_dp_mode_valid_helper(struct radeon_connector *radeon_connector,
struct drm_display_mode *mode)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
return dp_mode_valid(dig_connector->dpcd, mode->clock);
}
static bool atom_dp_get_link_status(struct radeon_connector *radeon_connector,
u8 link_status[DP_LINK_STATUS_SIZE])
{
int ret;
ret = radeon_dp_aux_native_read(radeon_connector, DP_LANE0_1_STATUS, 100,
DP_LINK_STATUS_SIZE, link_status);
if (!ret) {
DRM_ERROR("displayport link status failed\n");
return false;
}
DRM_DEBUG("link status %02x %02x %02x %02x %02x %02x\n",
link_status[0], link_status[1], link_status[2],
link_status[3], link_status[4], link_status[5]);
return true;
}
bool radeon_dp_needs_link_train(struct radeon_connector *radeon_connector)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
u8 link_status[DP_LINK_STATUS_SIZE];
if (!atom_dp_get_link_status(radeon_connector, link_status))
return false;
if (dp_channel_eq_ok(link_status, dig_connector->dp_lane_count))
return false;
return true;
}
static void dp_set_power(struct radeon_connector *radeon_connector, u8 power_state)
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
if (dig_connector->dpcd[0] >= 0x11) {
radeon_dp_aux_native_write(radeon_connector, DP_SET_POWER, 1,
&power_state);
}
}
static void dp_set_downspread(struct radeon_connector *radeon_connector, u8 downspread)
{
radeon_dp_aux_native_write(radeon_connector, DP_DOWNSPREAD_CTRL, 1,
&downspread);
}
static void dp_set_link_bw_lanes(struct radeon_connector *radeon_connector,
u8 link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
radeon_dp_aux_native_write(radeon_connector, DP_LINK_BW_SET, 2,
link_configuration);
}
static void dp_update_dpvs_emph(struct radeon_connector *radeon_connector,
struct drm_encoder *encoder,
u8 train_set[4])
{
struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv;
int i;
for (i = 0; i < dig_connector->dp_lane_count; i++)
atombios_dig_transmitter_setup(encoder,
ATOM_TRANSMITTER_ACTION_SETUP_VSEMPH,
i, train_set[i]);
radeon_dp_aux_native_write(radeon_connector, DP_TRAINING_LANE0_SET,
dig_connector->dp_lane_count, train_set);
}
static void dp_set_training(struct radeon_connector *radeon_connector,
u8 training)
{
radeon_dp_aux_native_write(radeon_connector, DP_TRAINING_PATTERN_SET,
1, &training);
}
void dp_link_train(struct drm_encoder *encoder,
struct drm_connector *connector)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
struct radeon_encoder_atom_dig *dig;
struct radeon_connector *radeon_connector;
struct radeon_connector_atom_dig *dig_connector;
int enc_id = 0;
bool clock_recovery, channel_eq;
u8 link_status[DP_LINK_STATUS_SIZE];
u8 link_configuration[DP_LINK_CONFIGURATION_SIZE];
u8 tries, voltage;
u8 train_set[4];
int i;
if ((connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort) ||
(connector->connector_type != DRM_MODE_CONNECTOR_eDP))
return;
if (!radeon_encoder->enc_priv)
return;
dig = radeon_encoder->enc_priv;
radeon_connector = to_radeon_connector(connector);
if (!radeon_connector->con_priv)
return;
dig_connector = radeon_connector->con_priv;
if (ASIC_IS_DCE32(rdev)) {
if (dig->dig_block)
enc_id |= ATOM_DP_CONFIG_DIG2_ENCODER;
else
enc_id |= ATOM_DP_CONFIG_DIG1_ENCODER;
if (dig_connector->linkb)
enc_id |= ATOM_DP_CONFIG_LINK_B;
else
enc_id |= ATOM_DP_CONFIG_LINK_A;
} else {
if (dig_connector->linkb)
enc_id |= ATOM_DP_CONFIG_DIG2_ENCODER | ATOM_DP_CONFIG_LINK_B;
else
enc_id |= ATOM_DP_CONFIG_DIG1_ENCODER | ATOM_DP_CONFIG_LINK_A;
}
memset(link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
if (dig_connector->dp_clock == 270000)
link_configuration[0] = DP_LINK_BW_2_7;
else
link_configuration[0] = DP_LINK_BW_1_62;
link_configuration[1] = dig_connector->dp_lane_count;
if (dig_connector->dpcd[0] >= 0x11)
link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
/* power up the sink */
dp_set_power(radeon_connector, DP_SET_POWER_D0);
/* disable the training pattern on the sink */
dp_set_training(radeon_connector, DP_TRAINING_PATTERN_DISABLE);
/* set link bw and lanes on the sink */
dp_set_link_bw_lanes(radeon_connector, link_configuration);
/* disable downspread on the sink */
dp_set_downspread(radeon_connector, 0);
/* start training on the source */
radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_TRAINING_START,
dig_connector->dp_clock, enc_id, 0);
/* set training pattern 1 on the source */
radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_TRAINING_PATTERN_SEL,
dig_connector->dp_clock, enc_id, 0);
/* set initial vs/emph */
memset(train_set, 0, 4);
udelay(400);
/* set training pattern 1 on the sink */
dp_set_training(radeon_connector, DP_TRAINING_PATTERN_1);
dp_update_dpvs_emph(radeon_connector, encoder, train_set);
/* clock recovery loop */
clock_recovery = false;
tries = 0;
voltage = 0xff;
for (;;) {
udelay(100);
if (!atom_dp_get_link_status(radeon_connector, link_status))
break;
if (dp_clock_recovery_ok(link_status, dig_connector->dp_lane_count)) {
clock_recovery = true;
break;
}
for (i = 0; i < dig_connector->dp_lane_count; i++) {
if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
}
if (i == dig_connector->dp_lane_count) {
DRM_ERROR("clock recovery reached max voltage\n");
break;
}
if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++tries;
if (tries == 5) {
DRM_ERROR("clock recovery tried 5 times\n");
break;
}
} else
tries = 0;
voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new train_set as requested by sink */
dp_get_adjust_train(link_status, dig_connector->dp_lane_count, train_set);
dp_update_dpvs_emph(radeon_connector, encoder, train_set);
}
if (!clock_recovery)
DRM_ERROR("clock recovery failed\n");
else
DRM_DEBUG("clock recovery at voltage %d pre-emphasis %d\n",
train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK,
(train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT);
/* set training pattern 2 on the sink */
dp_set_training(radeon_connector, DP_TRAINING_PATTERN_2);
/* set training pattern 2 on the source */
radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_TRAINING_PATTERN_SEL,
dig_connector->dp_clock, enc_id, 1);
/* channel equalization loop */
tries = 0;
channel_eq = false;
for (;;) {
udelay(400);
if (!atom_dp_get_link_status(radeon_connector, link_status))
break;
if (dp_channel_eq_ok(link_status, dig_connector->dp_lane_count)) {
channel_eq = true;
break;
}
/* Try 5 times */
if (tries > 5) {
DRM_ERROR("channel eq failed: 5 tries\n");
break;
}
/* Compute new train_set as requested by sink */
dp_get_adjust_train(link_status, dig_connector->dp_lane_count, train_set);
dp_update_dpvs_emph(radeon_connector, encoder, train_set);
tries++;
}
if (!channel_eq)
DRM_ERROR("channel eq failed\n");
else
DRM_DEBUG("channel eq at voltage %d pre-emphasis %d\n",
train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK,
(train_set[0] & DP_TRAIN_PRE_EMPHASIS_MASK)
>> DP_TRAIN_PRE_EMPHASIS_SHIFT);
/* disable the training pattern on the sink */
dp_set_training(radeon_connector, DP_TRAINING_PATTERN_DISABLE);
radeon_dp_encoder_service(rdev, ATOM_DP_ACTION_TRAINING_COMPLETE,
dig_connector->dp_clock, enc_id, 0);
}
int radeon_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
uint8_t write_byte, uint8_t *read_byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
struct radeon_i2c_chan *auxch = (struct radeon_i2c_chan *)adapter;
int ret = 0;
uint16_t address = algo_data->address;
uint8_t msg[5];
uint8_t reply[2];
int msg_len, dp_msg_len;
int reply_bytes;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[2] = AUX_I2C_READ << 4;
else
msg[2] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[2] |= AUX_I2C_MOT << 4;
msg[0] = address;
msg[1] = address >> 8;
reply_bytes = 1;
msg_len = 4;
dp_msg_len = 3;
switch (mode) {
case MODE_I2C_WRITE:
msg[4] = write_byte;
msg_len++;
dp_msg_len += 2;
break;
case MODE_I2C_READ:
dp_msg_len += 1;
break;
default:
break;
}
msg[3] = (dp_msg_len) << 4;
ret = radeon_process_aux_ch(auxch, msg, msg_len, reply, reply_bytes, 0);
if (ret) {
if (read_byte)
*read_byte = reply[0];
return reply_bytes;
}
return -EREMOTEIO;
}