mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 16:41:39 +00:00
10b40ffba2
Allows sampling frequency and IIR filter coefficients configuration using sysfs ABI. The IIR filter coefficient is configurable using the sysfs attribute "filter_low_pass_3db_frequency". Signed-off-by: Angel Iglesias <ang.iglesiasg@gmail.com> Link: https://lore.kernel.org/r/876f8a2277f71672488e99aa02aae4239d530f51.1663025017.git.ang.iglesiasg@gmail.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
1842 lines
48 KiB
C
1842 lines
48 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
|
|
* Copyright (c) 2012 Bosch Sensortec GmbH
|
|
* Copyright (c) 2012 Unixphere AB
|
|
* Copyright (c) 2014 Intel Corporation
|
|
* Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
|
|
*
|
|
* Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
|
|
*
|
|
* Datasheet:
|
|
* https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
|
|
* https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
|
|
* https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
|
|
* https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf
|
|
*
|
|
* Notice:
|
|
* The link to the bmp180 datasheet points to an outdated version missing these changes:
|
|
* - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26
|
|
* - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4
|
|
* - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "bmp280: " fmt
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/device.h>
|
|
#include <linux/module.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/iio/iio.h>
|
|
#include <linux/iio/sysfs.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h> /* For irq_get_irq_data() */
|
|
#include <linux/completion.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/random.h>
|
|
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "bmp280.h"
|
|
|
|
/*
|
|
* These enums are used for indexing into the array of calibration
|
|
* coefficients for BMP180.
|
|
*/
|
|
enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
|
|
|
|
struct bmp180_calib {
|
|
s16 AC1;
|
|
s16 AC2;
|
|
s16 AC3;
|
|
u16 AC4;
|
|
u16 AC5;
|
|
u16 AC6;
|
|
s16 B1;
|
|
s16 B2;
|
|
s16 MB;
|
|
s16 MC;
|
|
s16 MD;
|
|
};
|
|
|
|
/* See datasheet Section 4.2.2. */
|
|
struct bmp280_calib {
|
|
u16 T1;
|
|
s16 T2;
|
|
s16 T3;
|
|
u16 P1;
|
|
s16 P2;
|
|
s16 P3;
|
|
s16 P4;
|
|
s16 P5;
|
|
s16 P6;
|
|
s16 P7;
|
|
s16 P8;
|
|
s16 P9;
|
|
u8 H1;
|
|
s16 H2;
|
|
u8 H3;
|
|
s16 H4;
|
|
s16 H5;
|
|
s8 H6;
|
|
};
|
|
|
|
/* See datasheet Section 3.11.1. */
|
|
struct bmp380_calib {
|
|
u16 T1;
|
|
u16 T2;
|
|
s8 T3;
|
|
s16 P1;
|
|
s16 P2;
|
|
s8 P3;
|
|
s8 P4;
|
|
u16 P5;
|
|
u16 P6;
|
|
s8 P7;
|
|
s8 P8;
|
|
s16 P9;
|
|
s8 P10;
|
|
s8 P11;
|
|
};
|
|
|
|
static const char *const bmp280_supply_names[] = {
|
|
"vddd", "vdda"
|
|
};
|
|
|
|
#define BMP280_NUM_SUPPLIES ARRAY_SIZE(bmp280_supply_names)
|
|
|
|
enum bmp380_odr {
|
|
BMP380_ODR_200HZ,
|
|
BMP380_ODR_100HZ,
|
|
BMP380_ODR_50HZ,
|
|
BMP380_ODR_25HZ,
|
|
BMP380_ODR_12_5HZ,
|
|
BMP380_ODR_6_25HZ,
|
|
BMP380_ODR_3_125HZ,
|
|
BMP380_ODR_1_5625HZ,
|
|
BMP380_ODR_0_78HZ,
|
|
BMP380_ODR_0_39HZ,
|
|
BMP380_ODR_0_2HZ,
|
|
BMP380_ODR_0_1HZ,
|
|
BMP380_ODR_0_05HZ,
|
|
BMP380_ODR_0_02HZ,
|
|
BMP380_ODR_0_01HZ,
|
|
BMP380_ODR_0_006HZ,
|
|
BMP380_ODR_0_003HZ,
|
|
BMP380_ODR_0_0015HZ,
|
|
};
|
|
|
|
struct bmp280_data {
|
|
struct device *dev;
|
|
struct mutex lock;
|
|
struct regmap *regmap;
|
|
struct completion done;
|
|
bool use_eoc;
|
|
const struct bmp280_chip_info *chip_info;
|
|
union {
|
|
struct bmp180_calib bmp180;
|
|
struct bmp280_calib bmp280;
|
|
struct bmp380_calib bmp380;
|
|
} calib;
|
|
struct regulator_bulk_data supplies[BMP280_NUM_SUPPLIES];
|
|
unsigned int start_up_time; /* in microseconds */
|
|
|
|
/* log of base 2 of oversampling rate */
|
|
u8 oversampling_press;
|
|
u8 oversampling_temp;
|
|
u8 oversampling_humid;
|
|
u8 iir_filter_coeff;
|
|
|
|
/*
|
|
* BMP380 devices introduce sampling frequency configuration. See
|
|
* datasheet sections 3.3.3. and 4.3.19 for more details.
|
|
*
|
|
* BMx280 devices allowed indirect configuration of sampling frequency
|
|
* changing the t_standby duration between measurements, as detailed on
|
|
* section 3.6.3 of the datasheet.
|
|
*/
|
|
int sampling_freq;
|
|
|
|
/*
|
|
* Carryover value from temperature conversion, used in pressure
|
|
* calculation.
|
|
*/
|
|
s32 t_fine;
|
|
|
|
/*
|
|
* DMA (thus cache coherency maintenance) may require the
|
|
* transfer buffers to live in their own cache lines.
|
|
*/
|
|
union {
|
|
/* Sensor data buffer */
|
|
u8 buf[3];
|
|
/* Calibration data buffers */
|
|
__le16 bmp280_cal_buf[BMP280_CONTIGUOUS_CALIB_REGS / 2];
|
|
__be16 bmp180_cal_buf[BMP180_REG_CALIB_COUNT / 2];
|
|
u8 bmp380_cal_buf[BMP380_CALIB_REG_COUNT];
|
|
/* Miscellaneous, endianess-aware data buffers */
|
|
__le16 le16;
|
|
__be16 be16;
|
|
} __aligned(IIO_DMA_MINALIGN);
|
|
};
|
|
|
|
struct bmp280_chip_info {
|
|
unsigned int id_reg;
|
|
|
|
const struct iio_chan_spec *channels;
|
|
int num_channels;
|
|
unsigned int start_up_time;
|
|
|
|
const int *oversampling_temp_avail;
|
|
int num_oversampling_temp_avail;
|
|
int oversampling_temp_default;
|
|
|
|
const int *oversampling_press_avail;
|
|
int num_oversampling_press_avail;
|
|
int oversampling_press_default;
|
|
|
|
const int *oversampling_humid_avail;
|
|
int num_oversampling_humid_avail;
|
|
int oversampling_humid_default;
|
|
|
|
const int *iir_filter_coeffs_avail;
|
|
int num_iir_filter_coeffs_avail;
|
|
int iir_filter_coeff_default;
|
|
|
|
const int (*sampling_freq_avail)[2];
|
|
int num_sampling_freq_avail;
|
|
int sampling_freq_default;
|
|
|
|
int (*chip_config)(struct bmp280_data *);
|
|
int (*read_temp)(struct bmp280_data *, int *);
|
|
int (*read_press)(struct bmp280_data *, int *, int *);
|
|
int (*read_humid)(struct bmp280_data *, int *, int *);
|
|
int (*read_calib)(struct bmp280_data *);
|
|
};
|
|
|
|
/*
|
|
* These enums are used for indexing into the array of compensation
|
|
* parameters for BMP280.
|
|
*/
|
|
enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 };
|
|
|
|
enum {
|
|
/* Temperature calib indexes */
|
|
BMP380_T1 = 0,
|
|
BMP380_T2 = 2,
|
|
BMP380_T3 = 4,
|
|
/* Pressure calib indexes */
|
|
BMP380_P1 = 5,
|
|
BMP380_P2 = 7,
|
|
BMP380_P3 = 9,
|
|
BMP380_P4 = 10,
|
|
BMP380_P5 = 11,
|
|
BMP380_P6 = 13,
|
|
BMP380_P7 = 15,
|
|
BMP380_P8 = 16,
|
|
BMP380_P9 = 17,
|
|
BMP380_P10 = 19,
|
|
BMP380_P11 = 20,
|
|
};
|
|
|
|
static const struct iio_chan_spec bmp280_channels[] = {
|
|
{
|
|
.type = IIO_PRESSURE,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
|
|
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
|
|
},
|
|
{
|
|
.type = IIO_TEMP,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
|
|
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
|
|
},
|
|
{
|
|
.type = IIO_HUMIDITYRELATIVE,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
|
|
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
|
|
},
|
|
};
|
|
|
|
static const struct iio_chan_spec bmp380_channels[] = {
|
|
{
|
|
.type = IIO_PRESSURE,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
|
|
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
|
|
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
|
|
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
|
|
},
|
|
{
|
|
.type = IIO_TEMP,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
|
|
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
|
|
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
|
|
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
|
|
},
|
|
{
|
|
.type = IIO_HUMIDITYRELATIVE,
|
|
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
|
|
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
|
|
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
|
|
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
|
|
},
|
|
};
|
|
|
|
static int bmp280_read_calib(struct bmp280_data *data)
|
|
{
|
|
struct bmp280_calib *calib = &data->calib.bmp280;
|
|
int ret;
|
|
|
|
|
|
/* Read temperature and pressure calibration values. */
|
|
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
|
|
data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf));
|
|
if (ret < 0) {
|
|
dev_err(data->dev,
|
|
"failed to read temperature and pressure calibration parameters\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Toss the temperature and pressure calibration data into the entropy pool */
|
|
add_device_randomness(data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf));
|
|
|
|
/* Parse temperature calibration values. */
|
|
calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]);
|
|
calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]);
|
|
calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]);
|
|
|
|
/* Parse pressure calibration values. */
|
|
calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]);
|
|
calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]);
|
|
calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]);
|
|
calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]);
|
|
calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]);
|
|
calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]);
|
|
calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]);
|
|
calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]);
|
|
calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bme280_read_calib(struct bmp280_data *data)
|
|
{
|
|
struct bmp280_calib *calib = &data->calib.bmp280;
|
|
struct device *dev = data->dev;
|
|
unsigned int tmp;
|
|
int ret;
|
|
|
|
/* Load shared calibration params with bmp280 first */
|
|
ret = bmp280_read_calib(data);
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to read common bmp280 calibration parameters\n");
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Read humidity calibration values.
|
|
* Due to some odd register addressing we cannot just
|
|
* do a big bulk read. Instead, we have to read each Hx
|
|
* value separately and sometimes do some bit shifting...
|
|
* Humidity data is only available on BME280.
|
|
*/
|
|
|
|
ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to read H1 comp value\n");
|
|
return ret;
|
|
}
|
|
calib->H1 = tmp;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2,
|
|
&data->le16, sizeof(data->le16));
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to read H2 comp value\n");
|
|
return ret;
|
|
}
|
|
calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15);
|
|
|
|
ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to read H3 comp value\n");
|
|
return ret;
|
|
}
|
|
calib->H3 = tmp;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4,
|
|
&data->be16, sizeof(data->be16));
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to read H4 comp value\n");
|
|
return ret;
|
|
}
|
|
calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) |
|
|
(be16_to_cpu(data->be16) & 0xf), 11);
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5,
|
|
&data->le16, sizeof(data->le16));
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to read H5 comp value\n");
|
|
return ret;
|
|
}
|
|
calib->H5 = sign_extend32(FIELD_GET(BMP280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11);
|
|
|
|
ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
|
|
if (ret < 0) {
|
|
dev_err(dev, "failed to read H6 comp value\n");
|
|
return ret;
|
|
}
|
|
calib->H6 = sign_extend32(tmp, 7);
|
|
|
|
return 0;
|
|
}
|
|
/*
|
|
* Returns humidity in percent, resolution is 0.01 percent. Output value of
|
|
* "47445" represents 47445/1024 = 46.333 %RH.
|
|
*
|
|
* Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
|
|
*/
|
|
static u32 bmp280_compensate_humidity(struct bmp280_data *data,
|
|
s32 adc_humidity)
|
|
{
|
|
struct bmp280_calib *calib = &data->calib.bmp280;
|
|
s32 var;
|
|
|
|
var = ((s32)data->t_fine) - (s32)76800;
|
|
var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
|
|
+ (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
|
|
* (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
|
|
+ (s32)2097152) * calib->H2 + 8192) >> 14);
|
|
var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
|
|
|
|
var = clamp_val(var, 0, 419430400);
|
|
|
|
return var >> 12;
|
|
};
|
|
|
|
/*
|
|
* Returns temperature in DegC, resolution is 0.01 DegC. Output value of
|
|
* "5123" equals 51.23 DegC. t_fine carries fine temperature as global
|
|
* value.
|
|
*
|
|
* Taken from datasheet, Section 3.11.3, "Compensation formula".
|
|
*/
|
|
static s32 bmp280_compensate_temp(struct bmp280_data *data,
|
|
s32 adc_temp)
|
|
{
|
|
struct bmp280_calib *calib = &data->calib.bmp280;
|
|
s32 var1, var2;
|
|
|
|
var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
|
|
((s32)calib->T2)) >> 11;
|
|
var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
|
|
((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
|
|
((s32)calib->T3)) >> 14;
|
|
data->t_fine = var1 + var2;
|
|
|
|
return (data->t_fine * 5 + 128) >> 8;
|
|
}
|
|
|
|
/*
|
|
* Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
|
|
* integer bits and 8 fractional bits). Output value of "24674867"
|
|
* represents 24674867/256 = 96386.2 Pa = 963.862 hPa
|
|
*
|
|
* Taken from datasheet, Section 3.11.3, "Compensation formula".
|
|
*/
|
|
static u32 bmp280_compensate_press(struct bmp280_data *data,
|
|
s32 adc_press)
|
|
{
|
|
struct bmp280_calib *calib = &data->calib.bmp280;
|
|
s64 var1, var2, p;
|
|
|
|
var1 = ((s64)data->t_fine) - 128000;
|
|
var2 = var1 * var1 * (s64)calib->P6;
|
|
var2 += (var1 * (s64)calib->P5) << 17;
|
|
var2 += ((s64)calib->P4) << 35;
|
|
var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
|
|
((var1 * (s64)calib->P2) << 12);
|
|
var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
|
|
|
|
if (var1 == 0)
|
|
return 0;
|
|
|
|
p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
|
|
p = div64_s64(p, var1);
|
|
var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
|
|
var2 = ((s64)(calib->P8) * p) >> 19;
|
|
p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
|
|
|
|
return (u32)p;
|
|
}
|
|
|
|
static int bmp280_read_temp(struct bmp280_data *data,
|
|
int *val)
|
|
{
|
|
s32 adc_temp, comp_temp;
|
|
int ret;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
|
|
data->buf, sizeof(data->buf));
|
|
if (ret < 0) {
|
|
dev_err(data->dev, "failed to read temperature\n");
|
|
return ret;
|
|
}
|
|
|
|
adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
|
|
if (adc_temp == BMP280_TEMP_SKIPPED) {
|
|
/* reading was skipped */
|
|
dev_err(data->dev, "reading temperature skipped\n");
|
|
return -EIO;
|
|
}
|
|
comp_temp = bmp280_compensate_temp(data, adc_temp);
|
|
|
|
/*
|
|
* val might be NULL if we're called by the read_press routine,
|
|
* who only cares about the carry over t_fine value.
|
|
*/
|
|
if (val) {
|
|
*val = comp_temp * 10;
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmp280_read_press(struct bmp280_data *data,
|
|
int *val, int *val2)
|
|
{
|
|
u32 comp_press;
|
|
s32 adc_press;
|
|
int ret;
|
|
|
|
/* Read and compensate temperature so we get a reading of t_fine. */
|
|
ret = bmp280_read_temp(data, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
|
|
data->buf, sizeof(data->buf));
|
|
if (ret < 0) {
|
|
dev_err(data->dev, "failed to read pressure\n");
|
|
return ret;
|
|
}
|
|
|
|
adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
|
|
if (adc_press == BMP280_PRESS_SKIPPED) {
|
|
/* reading was skipped */
|
|
dev_err(data->dev, "reading pressure skipped\n");
|
|
return -EIO;
|
|
}
|
|
comp_press = bmp280_compensate_press(data, adc_press);
|
|
|
|
*val = comp_press;
|
|
*val2 = 256000;
|
|
|
|
return IIO_VAL_FRACTIONAL;
|
|
}
|
|
|
|
static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
|
|
{
|
|
u32 comp_humidity;
|
|
s32 adc_humidity;
|
|
int ret;
|
|
|
|
/* Read and compensate temperature so we get a reading of t_fine. */
|
|
ret = bmp280_read_temp(data, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
|
|
&data->be16, sizeof(data->be16));
|
|
if (ret < 0) {
|
|
dev_err(data->dev, "failed to read humidity\n");
|
|
return ret;
|
|
}
|
|
|
|
adc_humidity = be16_to_cpu(data->be16);
|
|
if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
|
|
/* reading was skipped */
|
|
dev_err(data->dev, "reading humidity skipped\n");
|
|
return -EIO;
|
|
}
|
|
comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
|
|
|
|
*val = comp_humidity * 1000 / 1024;
|
|
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
static int bmp280_read_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
int *val, int *val2, long mask)
|
|
{
|
|
struct bmp280_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
pm_runtime_get_sync(data->dev);
|
|
mutex_lock(&data->lock);
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_PROCESSED:
|
|
switch (chan->type) {
|
|
case IIO_HUMIDITYRELATIVE:
|
|
ret = data->chip_info->read_humid(data, val, val2);
|
|
break;
|
|
case IIO_PRESSURE:
|
|
ret = data->chip_info->read_press(data, val, val2);
|
|
break;
|
|
case IIO_TEMP:
|
|
ret = data->chip_info->read_temp(data, val);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
|
|
switch (chan->type) {
|
|
case IIO_HUMIDITYRELATIVE:
|
|
*val = 1 << data->oversampling_humid;
|
|
ret = IIO_VAL_INT;
|
|
break;
|
|
case IIO_PRESSURE:
|
|
*val = 1 << data->oversampling_press;
|
|
ret = IIO_VAL_INT;
|
|
break;
|
|
case IIO_TEMP:
|
|
*val = 1 << data->oversampling_temp;
|
|
ret = IIO_VAL_INT;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
if (!data->chip_info->sampling_freq_avail) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
*val = data->chip_info->sampling_freq_avail[data->sampling_freq][0];
|
|
*val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1];
|
|
ret = IIO_VAL_INT_PLUS_MICRO;
|
|
break;
|
|
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
|
|
if (!data->chip_info->iir_filter_coeffs_avail) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
*val = (1 << data->iir_filter_coeff) - 1;
|
|
ret = IIO_VAL_INT;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&data->lock);
|
|
pm_runtime_mark_last_busy(data->dev);
|
|
pm_runtime_put_autosuspend(data->dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
|
|
int val)
|
|
{
|
|
const int *avail = data->chip_info->oversampling_humid_avail;
|
|
const int n = data->chip_info->num_oversampling_humid_avail;
|
|
int ret, prev;
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (avail[i] == val) {
|
|
prev = data->oversampling_humid;
|
|
data->oversampling_humid = ilog2(val);
|
|
|
|
ret = data->chip_info->chip_config(data);
|
|
if (ret) {
|
|
data->oversampling_humid = prev;
|
|
data->chip_info->chip_config(data);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
|
|
int val)
|
|
{
|
|
const int *avail = data->chip_info->oversampling_temp_avail;
|
|
const int n = data->chip_info->num_oversampling_temp_avail;
|
|
int ret, prev;
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (avail[i] == val) {
|
|
prev = data->oversampling_temp;
|
|
data->oversampling_temp = ilog2(val);
|
|
|
|
ret = data->chip_info->chip_config(data);
|
|
if (ret) {
|
|
data->oversampling_temp = prev;
|
|
data->chip_info->chip_config(data);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
|
|
int val)
|
|
{
|
|
const int *avail = data->chip_info->oversampling_press_avail;
|
|
const int n = data->chip_info->num_oversampling_press_avail;
|
|
int ret, prev;
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (avail[i] == val) {
|
|
prev = data->oversampling_press;
|
|
data->oversampling_press = ilog2(val);
|
|
|
|
ret = data->chip_info->chip_config(data);
|
|
if (ret) {
|
|
data->oversampling_press = prev;
|
|
data->chip_info->chip_config(data);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int bmp280_write_sampling_frequency(struct bmp280_data *data,
|
|
int val, int val2)
|
|
{
|
|
const int (*avail)[2] = data->chip_info->sampling_freq_avail;
|
|
const int n = data->chip_info->num_sampling_freq_avail;
|
|
int ret, prev;
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (avail[i][0] == val && avail[i][1] == val2) {
|
|
prev = data->sampling_freq;
|
|
data->sampling_freq = i;
|
|
|
|
ret = data->chip_info->chip_config(data);
|
|
if (ret) {
|
|
data->sampling_freq = prev;
|
|
data->chip_info->chip_config(data);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val)
|
|
{
|
|
const int *avail = data->chip_info->iir_filter_coeffs_avail;
|
|
const int n = data->chip_info->num_iir_filter_coeffs_avail;
|
|
int ret, prev;
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (avail[i] - 1 == val) {
|
|
prev = data->iir_filter_coeff;
|
|
data->iir_filter_coeff = i;
|
|
|
|
ret = data->chip_info->chip_config(data);
|
|
if (ret) {
|
|
data->iir_filter_coeff = prev;
|
|
data->chip_info->chip_config(data);
|
|
return ret;
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int bmp280_write_raw(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
int val, int val2, long mask)
|
|
{
|
|
struct bmp280_data *data = iio_priv(indio_dev);
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Helper functions to update sensor running configuration.
|
|
* If an error happens applying new settings, will try restore
|
|
* previous parameters to ensure the sensor is left in a known
|
|
* working configuration.
|
|
*/
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
|
|
pm_runtime_get_sync(data->dev);
|
|
mutex_lock(&data->lock);
|
|
switch (chan->type) {
|
|
case IIO_HUMIDITYRELATIVE:
|
|
ret = bmp280_write_oversampling_ratio_humid(data, val);
|
|
break;
|
|
case IIO_PRESSURE:
|
|
ret = bmp280_write_oversampling_ratio_press(data, val);
|
|
break;
|
|
case IIO_TEMP:
|
|
ret = bmp280_write_oversampling_ratio_temp(data, val);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
mutex_unlock(&data->lock);
|
|
pm_runtime_mark_last_busy(data->dev);
|
|
pm_runtime_put_autosuspend(data->dev);
|
|
break;
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
pm_runtime_get_sync(data->dev);
|
|
mutex_lock(&data->lock);
|
|
ret = bmp280_write_sampling_frequency(data, val, val2);
|
|
mutex_unlock(&data->lock);
|
|
pm_runtime_mark_last_busy(data->dev);
|
|
pm_runtime_put_autosuspend(data->dev);
|
|
break;
|
|
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
|
|
pm_runtime_get_sync(data->dev);
|
|
mutex_lock(&data->lock);
|
|
ret = bmp280_write_iir_filter_coeffs(data, val);
|
|
mutex_unlock(&data->lock);
|
|
pm_runtime_mark_last_busy(data->dev);
|
|
pm_runtime_put_autosuspend(data->dev);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bmp280_read_avail(struct iio_dev *indio_dev,
|
|
struct iio_chan_spec const *chan,
|
|
const int **vals, int *type, int *length,
|
|
long mask)
|
|
{
|
|
struct bmp280_data *data = iio_priv(indio_dev);
|
|
|
|
switch (mask) {
|
|
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
|
|
switch (chan->type) {
|
|
case IIO_PRESSURE:
|
|
*vals = data->chip_info->oversampling_press_avail;
|
|
*length = data->chip_info->num_oversampling_press_avail;
|
|
break;
|
|
case IIO_TEMP:
|
|
*vals = data->chip_info->oversampling_temp_avail;
|
|
*length = data->chip_info->num_oversampling_temp_avail;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
*type = IIO_VAL_INT;
|
|
return IIO_AVAIL_LIST;
|
|
case IIO_CHAN_INFO_SAMP_FREQ:
|
|
*vals = (const int *)data->chip_info->sampling_freq_avail;
|
|
*type = IIO_VAL_INT_PLUS_MICRO;
|
|
/* Values are stored in a 2D matrix */
|
|
*length = data->chip_info->num_sampling_freq_avail;
|
|
return IIO_AVAIL_LIST;
|
|
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
|
|
*vals = data->chip_info->iir_filter_coeffs_avail;
|
|
*type = IIO_VAL_INT;
|
|
*length = data->chip_info->num_iir_filter_coeffs_avail;
|
|
return IIO_AVAIL_LIST;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static const struct iio_info bmp280_info = {
|
|
.read_raw = &bmp280_read_raw,
|
|
.read_avail = &bmp280_read_avail,
|
|
.write_raw = &bmp280_write_raw,
|
|
};
|
|
|
|
static int bmp280_chip_config(struct bmp280_data *data)
|
|
{
|
|
u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) |
|
|
FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1);
|
|
int ret;
|
|
|
|
ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
|
|
BMP280_OSRS_TEMP_MASK |
|
|
BMP280_OSRS_PRESS_MASK |
|
|
BMP280_MODE_MASK,
|
|
osrs | BMP280_MODE_NORMAL);
|
|
if (ret < 0) {
|
|
dev_err(data->dev,
|
|
"failed to write ctrl_meas register\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
|
|
BMP280_FILTER_MASK,
|
|
BMP280_FILTER_4X);
|
|
if (ret < 0) {
|
|
dev_err(data->dev,
|
|
"failed to write config register\n");
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
|
|
|
|
static const struct bmp280_chip_info bmp280_chip_info = {
|
|
.id_reg = BMP280_REG_ID,
|
|
.start_up_time = 2000,
|
|
.channels = bmp280_channels,
|
|
.num_channels = 2,
|
|
|
|
.oversampling_temp_avail = bmp280_oversampling_avail,
|
|
.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
|
|
/*
|
|
* Oversampling config values on BMx280 have one additional setting
|
|
* that other generations of the family don't:
|
|
* The value 0 means the measurement is bypassed instead of
|
|
* oversampling set to x1.
|
|
*
|
|
* To account for this difference, and preserve the same common
|
|
* config logic, this is handled later on chip_config callback
|
|
* incrementing one unit the oversampling setting.
|
|
*/
|
|
.oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
|
|
|
|
.oversampling_press_avail = bmp280_oversampling_avail,
|
|
.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
|
|
.oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
|
|
|
|
.chip_config = bmp280_chip_config,
|
|
.read_temp = bmp280_read_temp,
|
|
.read_press = bmp280_read_press,
|
|
.read_calib = bmp280_read_calib,
|
|
};
|
|
|
|
static int bme280_chip_config(struct bmp280_data *data)
|
|
{
|
|
u8 osrs = FIELD_PREP(BMP280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1);
|
|
int ret;
|
|
|
|
/*
|
|
* Oversampling of humidity must be set before oversampling of
|
|
* temperature/pressure is set to become effective.
|
|
*/
|
|
ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
|
|
BMP280_OSRS_HUMIDITY_MASK, osrs);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return bmp280_chip_config(data);
|
|
}
|
|
|
|
static const struct bmp280_chip_info bme280_chip_info = {
|
|
.id_reg = BMP280_REG_ID,
|
|
.start_up_time = 2000,
|
|
.channels = bmp280_channels,
|
|
.num_channels = 3,
|
|
|
|
.oversampling_temp_avail = bmp280_oversampling_avail,
|
|
.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
|
|
.oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
|
|
|
|
.oversampling_press_avail = bmp280_oversampling_avail,
|
|
.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
|
|
.oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
|
|
|
|
.oversampling_humid_avail = bmp280_oversampling_avail,
|
|
.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
|
|
.oversampling_humid_default = BMP280_OSRS_HUMIDITY_16X - 1,
|
|
|
|
.chip_config = bme280_chip_config,
|
|
.read_temp = bmp280_read_temp,
|
|
.read_press = bmp280_read_press,
|
|
.read_humid = bmp280_read_humid,
|
|
.read_calib = bme280_read_calib,
|
|
};
|
|
|
|
/*
|
|
* Helper function to send a command to BMP3XX sensors.
|
|
*
|
|
* Sensor processes commands written to the CMD register and signals
|
|
* execution result through "cmd_rdy" and "cmd_error" flags available on
|
|
* STATUS and ERROR registers.
|
|
*/
|
|
static int bmp380_cmd(struct bmp280_data *data, u8 cmd)
|
|
{
|
|
unsigned int reg;
|
|
int ret;
|
|
|
|
/* Check if device is ready to process a command */
|
|
ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to read error register\n");
|
|
return ret;
|
|
}
|
|
if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) {
|
|
dev_err(data->dev, "device is not ready to accept commands\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Send command to process */
|
|
ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to send command to device\n");
|
|
return ret;
|
|
}
|
|
/* Wait for 2ms for command to be processed */
|
|
usleep_range(data->start_up_time, data->start_up_time + 100);
|
|
/* Check for command processing error */
|
|
ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®);
|
|
if (ret) {
|
|
dev_err(data->dev, "error reading ERROR reg\n");
|
|
return ret;
|
|
}
|
|
if (reg & BMP380_ERR_CMD_MASK) {
|
|
dev_err(data->dev, "error processing command 0x%X\n", cmd);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns temperature in Celsius dregrees, resolution is 0.01º C. Output value of
|
|
* "5123" equals 51.2º C. t_fine carries fine temperature as global value.
|
|
*
|
|
* Taken from datasheet, Section Appendix 9, "Compensation formula" and repo
|
|
* https://github.com/BoschSensortec/BMP3-Sensor-API.
|
|
*/
|
|
static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp)
|
|
{
|
|
s64 var1, var2, var3, var4, var5, var6, comp_temp;
|
|
struct bmp380_calib *calib = &data->calib.bmp380;
|
|
|
|
var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8);
|
|
var2 = var1 * ((s64) calib->T2);
|
|
var3 = var1 * var1;
|
|
var4 = var3 * ((s64) calib->T3);
|
|
var5 = (var2 << 18) + var4;
|
|
var6 = var5 >> 32;
|
|
data->t_fine = (s32) var6;
|
|
comp_temp = (var6 * 25) >> 14;
|
|
|
|
comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP);
|
|
return (s32) comp_temp;
|
|
}
|
|
|
|
/*
|
|
* Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal.
|
|
* Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa.
|
|
*
|
|
* Taken from datasheet, Section 9.3. "Pressure compensation" and repository
|
|
* https://github.com/BoschSensortec/BMP3-Sensor-API.
|
|
*/
|
|
static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press)
|
|
{
|
|
s64 var1, var2, var3, var4, var5, var6, offset, sensitivity;
|
|
struct bmp380_calib *calib = &data->calib.bmp380;
|
|
u32 comp_press;
|
|
|
|
var1 = (s64)data->t_fine * (s64)data->t_fine;
|
|
var2 = var1 >> 6;
|
|
var3 = (var2 * ((s64) data->t_fine)) >> 8;
|
|
var4 = ((s64)calib->P8 * var3) >> 5;
|
|
var5 = ((s64)calib->P7 * var1) << 4;
|
|
var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22;
|
|
offset = ((s64)calib->P5 << 47) + var4 + var5 + var6;
|
|
var2 = ((s64)calib->P4 * var3) >> 5;
|
|
var4 = ((s64)calib->P3 * var1) << 2;
|
|
var5 = ((s64)calib->P2 - ((s64)1 << 14)) *
|
|
((s64)data->t_fine << 21);
|
|
sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) +
|
|
var2 + var4 + var5;
|
|
var1 = (sensitivity >> 24) * (s64)adc_press;
|
|
var2 = (s64)calib->P10 * (s64)data->t_fine;
|
|
var3 = var2 + ((s64)calib->P9 << 16);
|
|
var4 = (var3 * (s64)adc_press) >> 13;
|
|
|
|
/*
|
|
* Dividing by 10 followed by multiplying by 10 to avoid
|
|
* possible overflow caused by (uncomp_data->pressure * partial_data4).
|
|
*/
|
|
var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9;
|
|
var5 *= 10;
|
|
var6 = (s64)adc_press * (s64)adc_press;
|
|
var2 = ((s64)calib->P11 * var6) >> 16;
|
|
var3 = (var2 * (s64)adc_press) >> 7;
|
|
var4 = (offset >> 2) + var1 + var5 + var3;
|
|
comp_press = ((u64)var4 * 25) >> 40;
|
|
|
|
comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES);
|
|
return comp_press;
|
|
}
|
|
|
|
static int bmp380_read_temp(struct bmp280_data *data, int *val)
|
|
{
|
|
s32 comp_temp;
|
|
u32 adc_temp;
|
|
int ret;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB,
|
|
data->buf, sizeof(data->buf));
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to read temperature\n");
|
|
return ret;
|
|
}
|
|
|
|
adc_temp = get_unaligned_le24(data->buf);
|
|
if (adc_temp == BMP380_TEMP_SKIPPED) {
|
|
dev_err(data->dev, "reading temperature skipped\n");
|
|
return -EIO;
|
|
}
|
|
comp_temp = bmp380_compensate_temp(data, adc_temp);
|
|
|
|
/*
|
|
* Val might be NULL if we're called by the read_press routine,
|
|
* who only cares about the carry over t_fine value.
|
|
*/
|
|
if (val) {
|
|
/* IIO reports temperatures in milli Celsius */
|
|
*val = comp_temp * 10;
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2)
|
|
{
|
|
s32 comp_press;
|
|
u32 adc_press;
|
|
int ret;
|
|
|
|
/* Read and compensate for temperature so we get a reading of t_fine */
|
|
ret = bmp380_read_temp(data, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB,
|
|
data->buf, sizeof(data->buf));
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to read pressure\n");
|
|
return ret;
|
|
}
|
|
|
|
adc_press = get_unaligned_le24(data->buf);
|
|
if (adc_press == BMP380_PRESS_SKIPPED) {
|
|
dev_err(data->dev, "reading pressure skipped\n");
|
|
return -EIO;
|
|
}
|
|
comp_press = bmp380_compensate_press(data, adc_press);
|
|
|
|
*val = comp_press;
|
|
/* Compensated pressure is in cPa (centipascals) */
|
|
*val2 = 100000;
|
|
|
|
return IIO_VAL_FRACTIONAL;
|
|
}
|
|
|
|
static int bmp380_read_calib(struct bmp280_data *data)
|
|
{
|
|
struct bmp380_calib *calib = &data->calib.bmp380;
|
|
int ret;
|
|
|
|
/* Read temperature and pressure calibration data */
|
|
ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START,
|
|
data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf));
|
|
if (ret) {
|
|
dev_err(data->dev,
|
|
"failed to read temperature calibration parameters\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Toss the temperature calibration data into the entropy pool */
|
|
add_device_randomness(data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf));
|
|
|
|
/* Parse calibration values */
|
|
calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]);
|
|
calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]);
|
|
calib->T3 = data->bmp380_cal_buf[BMP380_T3];
|
|
calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]);
|
|
calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]);
|
|
calib->P3 = data->bmp380_cal_buf[BMP380_P3];
|
|
calib->P4 = data->bmp380_cal_buf[BMP380_P4];
|
|
calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]);
|
|
calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]);
|
|
calib->P7 = data->bmp380_cal_buf[BMP380_P7];
|
|
calib->P8 = data->bmp380_cal_buf[BMP380_P8];
|
|
calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]);
|
|
calib->P10 = data->bmp380_cal_buf[BMP380_P10];
|
|
calib->P11 = data->bmp380_cal_buf[BMP380_P11];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const int bmp380_odr_table[][2] = {
|
|
[BMP380_ODR_200HZ] = {200, 0},
|
|
[BMP380_ODR_100HZ] = {100, 0},
|
|
[BMP380_ODR_50HZ] = {50, 0},
|
|
[BMP380_ODR_25HZ] = {25, 0},
|
|
[BMP380_ODR_12_5HZ] = {12, 500000},
|
|
[BMP380_ODR_6_25HZ] = {6, 250000},
|
|
[BMP380_ODR_3_125HZ] = {3, 125000},
|
|
[BMP380_ODR_1_5625HZ] = {1, 562500},
|
|
[BMP380_ODR_0_78HZ] = {0, 781250},
|
|
[BMP380_ODR_0_39HZ] = {0, 390625},
|
|
[BMP380_ODR_0_2HZ] = {0, 195313},
|
|
[BMP380_ODR_0_1HZ] = {0, 97656},
|
|
[BMP380_ODR_0_05HZ] = {0, 48828},
|
|
[BMP380_ODR_0_02HZ] = {0, 24414},
|
|
[BMP380_ODR_0_01HZ] = {0, 12207},
|
|
[BMP380_ODR_0_006HZ] = {0, 6104},
|
|
[BMP380_ODR_0_003HZ] = {0, 3052},
|
|
[BMP380_ODR_0_0015HZ] = {0, 1526},
|
|
};
|
|
|
|
static int bmp380_chip_config(struct bmp280_data *data)
|
|
{
|
|
bool change = false, aux;
|
|
unsigned int tmp;
|
|
u8 osrs;
|
|
int ret;
|
|
|
|
/* Configure power control register */
|
|
ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL,
|
|
BMP380_CTRL_SENSORS_MASK,
|
|
BMP380_CTRL_SENSORS_PRESS_EN |
|
|
BMP380_CTRL_SENSORS_TEMP_EN);
|
|
if (ret) {
|
|
dev_err(data->dev,
|
|
"failed to write operation control register\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Configure oversampling */
|
|
osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) |
|
|
FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press);
|
|
|
|
ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR,
|
|
BMP380_OSRS_TEMP_MASK |
|
|
BMP380_OSRS_PRESS_MASK,
|
|
osrs, &aux);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to write oversampling register\n");
|
|
return ret;
|
|
}
|
|
change = change || aux;
|
|
|
|
/* Configure output data rate */
|
|
ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR,
|
|
BMP380_ODRS_MASK, data->sampling_freq, &aux);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to write ODR selection register\n");
|
|
return ret;
|
|
}
|
|
change = change || aux;
|
|
|
|
/* Set filter data */
|
|
ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK,
|
|
FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff),
|
|
&aux);
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to write config register\n");
|
|
return ret;
|
|
}
|
|
change = change || aux;
|
|
|
|
if (change) {
|
|
/*
|
|
* The configurations errors are detected on the fly during a measurement
|
|
* cycle. If the sampling frequency is too low, it's faster to reset
|
|
* the measurement loop than wait until the next measurement is due.
|
|
*
|
|
* Resets sensor measurement loop toggling between sleep and normal
|
|
* operating modes.
|
|
*/
|
|
ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
|
|
BMP380_MODE_MASK,
|
|
FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP));
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to set sleep mode\n");
|
|
return ret;
|
|
}
|
|
usleep_range(2000, 2500);
|
|
ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
|
|
BMP380_MODE_MASK,
|
|
FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL));
|
|
if (ret) {
|
|
dev_err(data->dev, "failed to set normal mode\n");
|
|
return ret;
|
|
}
|
|
/*
|
|
* Waits for measurement before checking configuration error flag.
|
|
* Selected longest measure time indicated in section 3.9.1
|
|
* in the datasheet.
|
|
*/
|
|
msleep(80);
|
|
|
|
/* Check config error flag */
|
|
ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp);
|
|
if (ret) {
|
|
dev_err(data->dev,
|
|
"failed to read error register\n");
|
|
return ret;
|
|
}
|
|
if (tmp & BMP380_ERR_CONF_MASK) {
|
|
dev_warn(data->dev,
|
|
"sensor flagged configuration as incompatible\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 };
|
|
static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128};
|
|
|
|
static const struct bmp280_chip_info bmp380_chip_info = {
|
|
.id_reg = BMP380_REG_ID,
|
|
.start_up_time = 2000,
|
|
.channels = bmp380_channels,
|
|
.num_channels = 2,
|
|
|
|
.oversampling_temp_avail = bmp380_oversampling_avail,
|
|
.num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail),
|
|
.oversampling_temp_default = ilog2(1),
|
|
|
|
.oversampling_press_avail = bmp380_oversampling_avail,
|
|
.num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail),
|
|
.oversampling_press_default = ilog2(4),
|
|
|
|
.sampling_freq_avail = bmp380_odr_table,
|
|
.num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2,
|
|
.sampling_freq_default = BMP380_ODR_50HZ,
|
|
|
|
.iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
|
|
.num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
|
|
.iir_filter_coeff_default = 2,
|
|
|
|
.chip_config = bmp380_chip_config,
|
|
.read_temp = bmp380_read_temp,
|
|
.read_press = bmp380_read_press,
|
|
.read_calib = bmp380_read_calib,
|
|
};
|
|
|
|
static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
|
|
{
|
|
const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
|
|
unsigned int delay_us;
|
|
unsigned int ctrl;
|
|
int ret;
|
|
|
|
if (data->use_eoc)
|
|
reinit_completion(&data->done);
|
|
|
|
ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (data->use_eoc) {
|
|
/*
|
|
* If we have a completion interrupt, use it, wait up to
|
|
* 100ms. The longest conversion time listed is 76.5 ms for
|
|
* advanced resolution mode.
|
|
*/
|
|
ret = wait_for_completion_timeout(&data->done,
|
|
1 + msecs_to_jiffies(100));
|
|
if (!ret)
|
|
dev_err(data->dev, "timeout waiting for completion\n");
|
|
} else {
|
|
if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP)
|
|
delay_us = 4500;
|
|
else
|
|
delay_us =
|
|
conversion_time_max[data->oversampling_press];
|
|
|
|
usleep_range(delay_us, delay_us + 1000);
|
|
}
|
|
|
|
ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* The value of this bit reset to "0" after conversion is complete */
|
|
if (ctrl & BMP180_MEAS_SCO)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
|
|
{
|
|
int ret;
|
|
|
|
ret = bmp180_measure(data,
|
|
FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) |
|
|
BMP180_MEAS_SCO);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
|
|
&data->be16, sizeof(data->be16));
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = be16_to_cpu(data->be16);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmp180_read_calib(struct bmp280_data *data)
|
|
{
|
|
struct bmp180_calib *calib = &data->calib.bmp180;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START,
|
|
data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* None of the words has the value 0 or 0xFFFF */
|
|
for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) {
|
|
if (data->bmp180_cal_buf[i] == cpu_to_be16(0) ||
|
|
data->bmp180_cal_buf[i] == cpu_to_be16(0xffff))
|
|
return -EIO;
|
|
}
|
|
|
|
/* Toss the calibration data into the entropy pool */
|
|
add_device_randomness(data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
|
|
|
|
calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]);
|
|
calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]);
|
|
calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]);
|
|
calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]);
|
|
calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]);
|
|
calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]);
|
|
calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]);
|
|
calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]);
|
|
calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]);
|
|
calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]);
|
|
calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns temperature in DegC, resolution is 0.1 DegC.
|
|
* t_fine carries fine temperature as global value.
|
|
*
|
|
* Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
|
|
*/
|
|
static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
|
|
{
|
|
struct bmp180_calib *calib = &data->calib.bmp180;
|
|
s32 x1, x2;
|
|
|
|
x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
|
|
x2 = (calib->MC << 11) / (x1 + calib->MD);
|
|
data->t_fine = x1 + x2;
|
|
|
|
return (data->t_fine + 8) >> 4;
|
|
}
|
|
|
|
static int bmp180_read_temp(struct bmp280_data *data, int *val)
|
|
{
|
|
s32 adc_temp, comp_temp;
|
|
int ret;
|
|
|
|
ret = bmp180_read_adc_temp(data, &adc_temp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
comp_temp = bmp180_compensate_temp(data, adc_temp);
|
|
|
|
/*
|
|
* val might be NULL if we're called by the read_press routine,
|
|
* who only cares about the carry over t_fine value.
|
|
*/
|
|
if (val) {
|
|
*val = comp_temp * 100;
|
|
return IIO_VAL_INT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
|
|
{
|
|
u8 oss = data->oversampling_press;
|
|
int ret;
|
|
|
|
ret = bmp180_measure(data,
|
|
FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) |
|
|
FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) |
|
|
BMP180_MEAS_SCO);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
|
|
data->buf, sizeof(data->buf));
|
|
if (ret)
|
|
return ret;
|
|
|
|
*val = get_unaligned_be24(data->buf) >> (8 - oss);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns pressure in Pa, resolution is 1 Pa.
|
|
*
|
|
* Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
|
|
*/
|
|
static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
|
|
{
|
|
struct bmp180_calib *calib = &data->calib.bmp180;
|
|
s32 oss = data->oversampling_press;
|
|
s32 x1, x2, x3, p;
|
|
s32 b3, b6;
|
|
u32 b4, b7;
|
|
|
|
b6 = data->t_fine - 4000;
|
|
x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
|
|
x2 = calib->AC2 * b6 >> 11;
|
|
x3 = x1 + x2;
|
|
b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
|
|
x1 = calib->AC3 * b6 >> 13;
|
|
x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
|
|
x3 = (x1 + x2 + 2) >> 2;
|
|
b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
|
|
b7 = ((u32)adc_press - b3) * (50000 >> oss);
|
|
if (b7 < 0x80000000)
|
|
p = (b7 * 2) / b4;
|
|
else
|
|
p = (b7 / b4) * 2;
|
|
|
|
x1 = (p >> 8) * (p >> 8);
|
|
x1 = (x1 * 3038) >> 16;
|
|
x2 = (-7357 * p) >> 16;
|
|
|
|
return p + ((x1 + x2 + 3791) >> 4);
|
|
}
|
|
|
|
static int bmp180_read_press(struct bmp280_data *data,
|
|
int *val, int *val2)
|
|
{
|
|
u32 comp_press;
|
|
s32 adc_press;
|
|
int ret;
|
|
|
|
/* Read and compensate temperature so we get a reading of t_fine. */
|
|
ret = bmp180_read_temp(data, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bmp180_read_adc_press(data, &adc_press);
|
|
if (ret)
|
|
return ret;
|
|
|
|
comp_press = bmp180_compensate_press(data, adc_press);
|
|
|
|
*val = comp_press;
|
|
*val2 = 1000;
|
|
|
|
return IIO_VAL_FRACTIONAL;
|
|
}
|
|
|
|
static int bmp180_chip_config(struct bmp280_data *data)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const int bmp180_oversampling_temp_avail[] = { 1 };
|
|
static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
|
|
|
|
static const struct bmp280_chip_info bmp180_chip_info = {
|
|
.id_reg = BMP280_REG_ID,
|
|
.start_up_time = 2000,
|
|
.channels = bmp280_channels,
|
|
.num_channels = 2,
|
|
|
|
.oversampling_temp_avail = bmp180_oversampling_temp_avail,
|
|
.num_oversampling_temp_avail =
|
|
ARRAY_SIZE(bmp180_oversampling_temp_avail),
|
|
.oversampling_temp_default = 0,
|
|
|
|
.oversampling_press_avail = bmp180_oversampling_press_avail,
|
|
.num_oversampling_press_avail =
|
|
ARRAY_SIZE(bmp180_oversampling_press_avail),
|
|
.oversampling_press_default = BMP180_MEAS_PRESS_8X,
|
|
|
|
.chip_config = bmp180_chip_config,
|
|
.read_temp = bmp180_read_temp,
|
|
.read_press = bmp180_read_press,
|
|
.read_calib = bmp180_read_calib,
|
|
};
|
|
|
|
static irqreturn_t bmp085_eoc_irq(int irq, void *d)
|
|
{
|
|
struct bmp280_data *data = d;
|
|
|
|
complete(&data->done);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int bmp085_fetch_eoc_irq(struct device *dev,
|
|
const char *name,
|
|
int irq,
|
|
struct bmp280_data *data)
|
|
{
|
|
unsigned long irq_trig;
|
|
int ret;
|
|
|
|
irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
|
|
if (irq_trig != IRQF_TRIGGER_RISING) {
|
|
dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
|
|
irq_trig = IRQF_TRIGGER_RISING;
|
|
}
|
|
|
|
init_completion(&data->done);
|
|
|
|
ret = devm_request_threaded_irq(dev,
|
|
irq,
|
|
bmp085_eoc_irq,
|
|
NULL,
|
|
irq_trig,
|
|
name,
|
|
data);
|
|
if (ret) {
|
|
/* Bail out without IRQ but keep the driver in place */
|
|
dev_err(dev, "unable to request DRDY IRQ\n");
|
|
return 0;
|
|
}
|
|
|
|
data->use_eoc = true;
|
|
return 0;
|
|
}
|
|
|
|
static void bmp280_pm_disable(void *data)
|
|
{
|
|
struct device *dev = data;
|
|
|
|
pm_runtime_get_sync(dev);
|
|
pm_runtime_put_noidle(dev);
|
|
pm_runtime_disable(dev);
|
|
}
|
|
|
|
static void bmp280_regulators_disable(void *data)
|
|
{
|
|
struct regulator_bulk_data *supplies = data;
|
|
|
|
regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
|
|
}
|
|
|
|
int bmp280_common_probe(struct device *dev,
|
|
struct regmap *regmap,
|
|
unsigned int chip,
|
|
const char *name,
|
|
int irq)
|
|
{
|
|
const struct bmp280_chip_info *chip_info;
|
|
struct iio_dev *indio_dev;
|
|
struct bmp280_data *data;
|
|
struct gpio_desc *gpiod;
|
|
unsigned int chip_id;
|
|
int ret;
|
|
|
|
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
|
|
if (!indio_dev)
|
|
return -ENOMEM;
|
|
|
|
data = iio_priv(indio_dev);
|
|
mutex_init(&data->lock);
|
|
data->dev = dev;
|
|
|
|
indio_dev->name = name;
|
|
indio_dev->info = &bmp280_info;
|
|
indio_dev->modes = INDIO_DIRECT_MODE;
|
|
|
|
switch (chip) {
|
|
case BMP180_CHIP_ID:
|
|
chip_info = &bmp180_chip_info;
|
|
break;
|
|
case BMP280_CHIP_ID:
|
|
chip_info = &bmp280_chip_info;
|
|
break;
|
|
case BME280_CHIP_ID:
|
|
chip_info = &bme280_chip_info;
|
|
break;
|
|
case BMP380_CHIP_ID:
|
|
chip_info = &bmp380_chip_info;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
data->chip_info = chip_info;
|
|
|
|
/* Apply initial values from chip info structure */
|
|
indio_dev->channels = chip_info->channels;
|
|
indio_dev->num_channels = chip_info->num_channels;
|
|
data->oversampling_press = chip_info->oversampling_press_default;
|
|
data->oversampling_humid = chip_info->oversampling_humid_default;
|
|
data->oversampling_temp = chip_info->oversampling_temp_default;
|
|
data->iir_filter_coeff = chip_info->iir_filter_coeff_default;
|
|
data->sampling_freq = chip_info->sampling_freq_default;
|
|
data->start_up_time = chip_info->start_up_time;
|
|
|
|
/* Bring up regulators */
|
|
regulator_bulk_set_supply_names(data->supplies,
|
|
bmp280_supply_names,
|
|
BMP280_NUM_SUPPLIES);
|
|
|
|
ret = devm_regulator_bulk_get(dev,
|
|
BMP280_NUM_SUPPLIES, data->supplies);
|
|
if (ret) {
|
|
dev_err(dev, "failed to get regulators\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
|
|
if (ret) {
|
|
dev_err(dev, "failed to enable regulators\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
|
|
data->supplies);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Wait to make sure we started up properly */
|
|
usleep_range(data->start_up_time, data->start_up_time + 100);
|
|
|
|
/* Bring chip out of reset if there is an assigned GPIO line */
|
|
gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
|
|
/* Deassert the signal */
|
|
if (gpiod) {
|
|
dev_info(dev, "release reset\n");
|
|
gpiod_set_value(gpiod, 0);
|
|
}
|
|
|
|
data->regmap = regmap;
|
|
|
|
ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (chip_id != chip) {
|
|
dev_err(dev, "bad chip id: expected %x got %x\n",
|
|
chip, chip_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* BMP3xx requires soft-reset as part of initialization */
|
|
if (chip_id == BMP380_CHIP_ID) {
|
|
ret = bmp380_cmd(data, BMP380_CMD_SOFT_RESET);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
ret = data->chip_info->chip_config(data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dev_set_drvdata(dev, indio_dev);
|
|
|
|
/*
|
|
* Some chips have calibration parameters "programmed into the devices'
|
|
* non-volatile memory during production". Let's read them out at probe
|
|
* time once. They will not change.
|
|
*/
|
|
|
|
ret = data->chip_info->read_calib(data);
|
|
if (ret < 0)
|
|
return dev_err_probe(data->dev, ret,
|
|
"failed to read calibration coefficients\n");
|
|
|
|
/*
|
|
* Attempt to grab an optional EOC IRQ - only the BMP085 has this
|
|
* however as it happens, the BMP085 shares the chip ID of BMP180
|
|
* so we look for an IRQ if we have that.
|
|
*/
|
|
if (irq > 0 || (chip_id == BMP180_CHIP_ID)) {
|
|
ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Enable runtime PM */
|
|
pm_runtime_get_noresume(dev);
|
|
pm_runtime_set_active(dev);
|
|
pm_runtime_enable(dev);
|
|
/*
|
|
* Set autosuspend to two orders of magnitude larger than the
|
|
* start-up time.
|
|
*/
|
|
pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
|
|
pm_runtime_use_autosuspend(dev);
|
|
pm_runtime_put(dev);
|
|
|
|
ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return devm_iio_device_register(dev, indio_dev);
|
|
}
|
|
EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280);
|
|
|
|
static int bmp280_runtime_suspend(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct bmp280_data *data = iio_priv(indio_dev);
|
|
|
|
return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
|
|
}
|
|
|
|
static int bmp280_runtime_resume(struct device *dev)
|
|
{
|
|
struct iio_dev *indio_dev = dev_get_drvdata(dev);
|
|
struct bmp280_data *data = iio_priv(indio_dev);
|
|
int ret;
|
|
|
|
ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
|
|
if (ret)
|
|
return ret;
|
|
usleep_range(data->start_up_time, data->start_up_time + 100);
|
|
return data->chip_info->chip_config(data);
|
|
}
|
|
|
|
EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
|
|
bmp280_runtime_resume, NULL);
|
|
|
|
MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
|
|
MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
|
|
MODULE_LICENSE("GPL v2");
|