linux/drivers/dma/stm32/stm32-dma3.c
Kees Cook b53b831919 dmaengine: stm32-dma3: Set lli_size after allocation
With the new __counted_by annotation, the "lli_size" variable needs to
valid for accesses to the "lli" array. This requirement is not met in
stm32_dma3_chan_desc_alloc(), since "lli_size" starts at "0", so "lli"
index "0" will not be considered valid during the initialization for loop.

Fix this by setting lli_size immediately after allocation (similar to
how this is handled in stm32_mdma_alloc_desc() for the node/count
relationship).

Fixes: f561ec8b2b ("dmaengine: Add STM32 DMA3 support")
Signed-off-by: Kees Cook <kees@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Link: https://lore.kernel.org/r/20240716213830.work.951-kees@kernel.org
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2024-08-05 22:28:48 +05:30

1848 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* STM32 DMA3 controller driver
*
* Copyright (C) STMicroelectronics 2024
* Author(s): Amelie Delaunay <amelie.delaunay@foss.st.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "../virt-dma.h"
#define STM32_DMA3_SECCFGR 0x00
#define STM32_DMA3_PRIVCFGR 0x04
#define STM32_DMA3_RCFGLOCKR 0x08
#define STM32_DMA3_MISR 0x0c
#define STM32_DMA3_SMISR 0x10
#define STM32_DMA3_CLBAR(x) (0x50 + 0x80 * (x))
#define STM32_DMA3_CCIDCFGR(x) (0x54 + 0x80 * (x))
#define STM32_DMA3_CSEMCR(x) (0x58 + 0x80 * (x))
#define STM32_DMA3_CFCR(x) (0x5c + 0x80 * (x))
#define STM32_DMA3_CSR(x) (0x60 + 0x80 * (x))
#define STM32_DMA3_CCR(x) (0x64 + 0x80 * (x))
#define STM32_DMA3_CTR1(x) (0x90 + 0x80 * (x))
#define STM32_DMA3_CTR2(x) (0x94 + 0x80 * (x))
#define STM32_DMA3_CBR1(x) (0x98 + 0x80 * (x))
#define STM32_DMA3_CSAR(x) (0x9c + 0x80 * (x))
#define STM32_DMA3_CDAR(x) (0xa0 + 0x80 * (x))
#define STM32_DMA3_CLLR(x) (0xcc + 0x80 * (x))
#define STM32_DMA3_HWCFGR13 0xfc0 /* G_PER_CTRL(X) x=8..15 */
#define STM32_DMA3_HWCFGR12 0xfc4 /* G_PER_CTRL(X) x=0..7 */
#define STM32_DMA3_HWCFGR4 0xfe4 /* G_FIFO_SIZE(X) x=8..15 */
#define STM32_DMA3_HWCFGR3 0xfe8 /* G_FIFO_SIZE(X) x=0..7 */
#define STM32_DMA3_HWCFGR2 0xfec /* G_MAX_REQ_ID */
#define STM32_DMA3_HWCFGR1 0xff0 /* G_MASTER_PORTS, G_NUM_CHANNELS, G_Mx_DATA_WIDTH */
#define STM32_DMA3_VERR 0xff4
/* SECCFGR DMA secure configuration register */
#define SECCFGR_SEC(x) BIT(x)
/* MISR DMA non-secure/secure masked interrupt status register */
#define MISR_MIS(x) BIT(x)
/* CxLBAR DMA channel x linked_list base address register */
#define CLBAR_LBA GENMASK(31, 16)
/* CxCIDCFGR DMA channel x CID register */
#define CCIDCFGR_CFEN BIT(0)
#define CCIDCFGR_SEM_EN BIT(1)
#define CCIDCFGR_SCID GENMASK(5, 4)
#define CCIDCFGR_SEM_WLIST_CID0 BIT(16)
#define CCIDCFGR_SEM_WLIST_CID1 BIT(17)
#define CCIDCFGR_SEM_WLIST_CID2 BIT(18)
enum ccidcfgr_cid {
CCIDCFGR_CID0,
CCIDCFGR_CID1,
CCIDCFGR_CID2,
};
/* CxSEMCR DMA channel x semaphore control register */
#define CSEMCR_SEM_MUTEX BIT(0)
#define CSEMCR_SEM_CCID GENMASK(5, 4)
/* CxFCR DMA channel x flag clear register */
#define CFCR_TCF BIT(8)
#define CFCR_HTF BIT(9)
#define CFCR_DTEF BIT(10)
#define CFCR_ULEF BIT(11)
#define CFCR_USEF BIT(12)
#define CFCR_SUSPF BIT(13)
/* CxSR DMA channel x status register */
#define CSR_IDLEF BIT(0)
#define CSR_TCF BIT(8)
#define CSR_HTF BIT(9)
#define CSR_DTEF BIT(10)
#define CSR_ULEF BIT(11)
#define CSR_USEF BIT(12)
#define CSR_SUSPF BIT(13)
#define CSR_ALL_F GENMASK(13, 8)
#define CSR_FIFOL GENMASK(24, 16)
/* CxCR DMA channel x control register */
#define CCR_EN BIT(0)
#define CCR_RESET BIT(1)
#define CCR_SUSP BIT(2)
#define CCR_TCIE BIT(8)
#define CCR_HTIE BIT(9)
#define CCR_DTEIE BIT(10)
#define CCR_ULEIE BIT(11)
#define CCR_USEIE BIT(12)
#define CCR_SUSPIE BIT(13)
#define CCR_ALLIE GENMASK(13, 8)
#define CCR_LSM BIT(16)
#define CCR_LAP BIT(17)
#define CCR_PRIO GENMASK(23, 22)
enum ccr_prio {
CCR_PRIO_LOW,
CCR_PRIO_MID,
CCR_PRIO_HIGH,
CCR_PRIO_VERY_HIGH,
};
/* CxTR1 DMA channel x transfer register 1 */
#define CTR1_SINC BIT(3)
#define CTR1_SBL_1 GENMASK(9, 4)
#define CTR1_DINC BIT(19)
#define CTR1_DBL_1 GENMASK(25, 20)
#define CTR1_SDW_LOG2 GENMASK(1, 0)
#define CTR1_PAM GENMASK(12, 11)
#define CTR1_SAP BIT(14)
#define CTR1_DDW_LOG2 GENMASK(17, 16)
#define CTR1_DAP BIT(30)
enum ctr1_dw {
CTR1_DW_BYTE,
CTR1_DW_HWORD,
CTR1_DW_WORD,
CTR1_DW_DWORD, /* Depends on HWCFGR1.G_M0_DATA_WIDTH_ENC and .G_M1_DATA_WIDTH_ENC */
};
enum ctr1_pam {
CTR1_PAM_0S_LT, /* if DDW > SDW, padded with 0s else left-truncated */
CTR1_PAM_SE_RT, /* if DDW > SDW, sign extended else right-truncated */
CTR1_PAM_PACK_UNPACK, /* FIFO queued */
};
/* CxTR2 DMA channel x transfer register 2 */
#define CTR2_REQSEL GENMASK(7, 0)
#define CTR2_SWREQ BIT(9)
#define CTR2_DREQ BIT(10)
#define CTR2_BREQ BIT(11)
#define CTR2_PFREQ BIT(12)
#define CTR2_TCEM GENMASK(31, 30)
enum ctr2_tcem {
CTR2_TCEM_BLOCK,
CTR2_TCEM_REPEAT_BLOCK,
CTR2_TCEM_LLI,
CTR2_TCEM_CHANNEL,
};
/* CxBR1 DMA channel x block register 1 */
#define CBR1_BNDT GENMASK(15, 0)
/* CxLLR DMA channel x linked-list address register */
#define CLLR_LA GENMASK(15, 2)
#define CLLR_ULL BIT(16)
#define CLLR_UDA BIT(27)
#define CLLR_USA BIT(28)
#define CLLR_UB1 BIT(29)
#define CLLR_UT2 BIT(30)
#define CLLR_UT1 BIT(31)
/* HWCFGR13 DMA hardware configuration register 13 x=8..15 */
/* HWCFGR12 DMA hardware configuration register 12 x=0..7 */
#define G_PER_CTRL(x) (ULL(0x1) << (4 * (x)))
/* HWCFGR4 DMA hardware configuration register 4 x=8..15 */
/* HWCFGR3 DMA hardware configuration register 3 x=0..7 */
#define G_FIFO_SIZE(x) (ULL(0x7) << (4 * (x)))
#define get_chan_hwcfg(x, mask, reg) (((reg) & (mask)) >> (4 * (x)))
/* HWCFGR2 DMA hardware configuration register 2 */
#define G_MAX_REQ_ID GENMASK(7, 0)
/* HWCFGR1 DMA hardware configuration register 1 */
#define G_MASTER_PORTS GENMASK(2, 0)
#define G_NUM_CHANNELS GENMASK(12, 8)
#define G_M0_DATA_WIDTH_ENC GENMASK(25, 24)
#define G_M1_DATA_WIDTH_ENC GENMASK(29, 28)
enum stm32_dma3_master_ports {
AXI64, /* 1x AXI: 64-bit port 0 */
AHB32, /* 1x AHB: 32-bit port 0 */
AHB32_AHB32, /* 2x AHB: 32-bit port 0 and 32-bit port 1 */
AXI64_AHB32, /* 1x AXI 64-bit port 0 and 1x AHB 32-bit port 1 */
AXI64_AXI64, /* 2x AXI: 64-bit port 0 and 64-bit port 1 */
AXI128_AHB32, /* 1x AXI 128-bit port 0 and 1x AHB 32-bit port 1 */
};
enum stm32_dma3_port_data_width {
DW_32, /* 32-bit, for AHB */
DW_64, /* 64-bit, for AXI */
DW_128, /* 128-bit, for AXI */
DW_INVALID,
};
/* VERR DMA version register */
#define VERR_MINREV GENMASK(3, 0)
#define VERR_MAJREV GENMASK(7, 4)
/* Device tree */
/* struct stm32_dma3_dt_conf */
/* .ch_conf */
#define STM32_DMA3_DT_PRIO GENMASK(1, 0) /* CCR_PRIO */
#define STM32_DMA3_DT_FIFO GENMASK(7, 4)
/* .tr_conf */
#define STM32_DMA3_DT_SINC BIT(0) /* CTR1_SINC */
#define STM32_DMA3_DT_SAP BIT(1) /* CTR1_SAP */
#define STM32_DMA3_DT_DINC BIT(4) /* CTR1_DINC */
#define STM32_DMA3_DT_DAP BIT(5) /* CTR1_DAP */
#define STM32_DMA3_DT_BREQ BIT(8) /* CTR2_BREQ */
#define STM32_DMA3_DT_PFREQ BIT(9) /* CTR2_PFREQ */
#define STM32_DMA3_DT_TCEM GENMASK(13, 12) /* CTR2_TCEM */
/* struct stm32_dma3_chan .config_set bitfield */
#define STM32_DMA3_CFG_SET_DT BIT(0)
#define STM32_DMA3_CFG_SET_DMA BIT(1)
#define STM32_DMA3_CFG_SET_BOTH (STM32_DMA3_CFG_SET_DT | STM32_DMA3_CFG_SET_DMA)
#define STM32_DMA3_MAX_BLOCK_SIZE ALIGN_DOWN(CBR1_BNDT, 64)
#define port_is_ahb(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \
((_maxdw) != DW_INVALID) && ((_maxdw) == DW_32); })
#define port_is_axi(maxdw) ({ typeof(maxdw) (_maxdw) = (maxdw); \
((_maxdw) != DW_INVALID) && ((_maxdw) != DW_32); })
#define get_chan_max_dw(maxdw, maxburst)((port_is_ahb(maxdw) || \
(maxburst) < DMA_SLAVE_BUSWIDTH_8_BYTES) ? \
DMA_SLAVE_BUSWIDTH_4_BYTES : DMA_SLAVE_BUSWIDTH_8_BYTES)
/* Static linked-list data structure (depends on update bits UT1/UT2/UB1/USA/UDA/ULL) */
struct stm32_dma3_hwdesc {
u32 ctr1;
u32 ctr2;
u32 cbr1;
u32 csar;
u32 cdar;
u32 cllr;
} __packed __aligned(32);
/*
* CLLR_LA / sizeof(struct stm32_dma3_hwdesc) represents the number of hdwdesc that can be addressed
* by the pointer to the next linked-list data structure. The __aligned forces the 32-byte
* alignment. So use hardcoded 32. Multiplied by the max block size of each item, it represents
* the sg size limitation.
*/
#define STM32_DMA3_MAX_SEG_SIZE ((CLLR_LA / 32) * STM32_DMA3_MAX_BLOCK_SIZE)
/*
* Linked-list items
*/
struct stm32_dma3_lli {
struct stm32_dma3_hwdesc *hwdesc;
dma_addr_t hwdesc_addr;
};
struct stm32_dma3_swdesc {
struct virt_dma_desc vdesc;
u32 ccr;
bool cyclic;
u32 lli_size;
struct stm32_dma3_lli lli[] __counted_by(lli_size);
};
struct stm32_dma3_dt_conf {
u32 ch_id;
u32 req_line;
u32 ch_conf;
u32 tr_conf;
};
struct stm32_dma3_chan {
struct virt_dma_chan vchan;
u32 id;
int irq;
u32 fifo_size;
u32 max_burst;
bool semaphore_mode;
struct stm32_dma3_dt_conf dt_config;
struct dma_slave_config dma_config;
u8 config_set;
struct dma_pool *lli_pool;
struct stm32_dma3_swdesc *swdesc;
enum ctr2_tcem tcem;
u32 dma_status;
};
struct stm32_dma3_ddata {
struct dma_device dma_dev;
void __iomem *base;
struct clk *clk;
struct stm32_dma3_chan *chans;
u32 dma_channels;
u32 dma_requests;
enum stm32_dma3_port_data_width ports_max_dw[2];
};
static inline struct stm32_dma3_ddata *to_stm32_dma3_ddata(struct stm32_dma3_chan *chan)
{
return container_of(chan->vchan.chan.device, struct stm32_dma3_ddata, dma_dev);
}
static inline struct stm32_dma3_chan *to_stm32_dma3_chan(struct dma_chan *c)
{
return container_of(c, struct stm32_dma3_chan, vchan.chan);
}
static inline struct stm32_dma3_swdesc *to_stm32_dma3_swdesc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct stm32_dma3_swdesc, vdesc);
}
static struct device *chan2dev(struct stm32_dma3_chan *chan)
{
return &chan->vchan.chan.dev->device;
}
static void stm32_dma3_chan_dump_reg(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct device *dev = chan2dev(chan);
u32 id = chan->id, offset;
offset = STM32_DMA3_SECCFGR;
dev_dbg(dev, "SECCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_PRIVCFGR;
dev_dbg(dev, "PRIVCFGR(0x%03x): %08x\n", offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CCIDCFGR(id);
dev_dbg(dev, "C%dCIDCFGR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CSEMCR(id);
dev_dbg(dev, "C%dSEMCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CSR(id);
dev_dbg(dev, "C%dSR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CCR(id);
dev_dbg(dev, "C%dCR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CTR1(id);
dev_dbg(dev, "C%dTR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CTR2(id);
dev_dbg(dev, "C%dTR2(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CBR1(id);
dev_dbg(dev, "C%dBR1(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CSAR(id);
dev_dbg(dev, "C%dSAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CDAR(id);
dev_dbg(dev, "C%dDAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CLLR(id);
dev_dbg(dev, "C%dLLR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
offset = STM32_DMA3_CLBAR(id);
dev_dbg(dev, "C%dLBAR(0x%03x): %08x\n", id, offset, readl_relaxed(ddata->base + offset));
}
static void stm32_dma3_chan_dump_hwdesc(struct stm32_dma3_chan *chan,
struct stm32_dma3_swdesc *swdesc)
{
struct stm32_dma3_hwdesc *hwdesc;
int i;
for (i = 0; i < swdesc->lli_size; i++) {
hwdesc = swdesc->lli[i].hwdesc;
if (i)
dev_dbg(chan2dev(chan), "V\n");
dev_dbg(chan2dev(chan), "[%d]@%pad\n", i, &swdesc->lli[i].hwdesc_addr);
dev_dbg(chan2dev(chan), "| C%dTR1: %08x\n", chan->id, hwdesc->ctr1);
dev_dbg(chan2dev(chan), "| C%dTR2: %08x\n", chan->id, hwdesc->ctr2);
dev_dbg(chan2dev(chan), "| C%dBR1: %08x\n", chan->id, hwdesc->cbr1);
dev_dbg(chan2dev(chan), "| C%dSAR: %08x\n", chan->id, hwdesc->csar);
dev_dbg(chan2dev(chan), "| C%dDAR: %08x\n", chan->id, hwdesc->cdar);
dev_dbg(chan2dev(chan), "| C%dLLR: %08x\n", chan->id, hwdesc->cllr);
}
if (swdesc->cyclic) {
dev_dbg(chan2dev(chan), "|\n");
dev_dbg(chan2dev(chan), "-->[0]@%pad\n", &swdesc->lli[0].hwdesc_addr);
} else {
dev_dbg(chan2dev(chan), "X\n");
}
}
static struct stm32_dma3_swdesc *stm32_dma3_chan_desc_alloc(struct stm32_dma3_chan *chan, u32 count)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct stm32_dma3_swdesc *swdesc;
int i;
/*
* If the memory to be allocated for the number of hwdesc (6 u32 members but 32-bytes
* aligned) is greater than the maximum address of CLLR_LA, then the last items can't be
* addressed, so abort the allocation.
*/
if ((count * 32) > CLLR_LA) {
dev_err(chan2dev(chan), "Transfer is too big (> %luB)\n", STM32_DMA3_MAX_SEG_SIZE);
return NULL;
}
swdesc = kzalloc(struct_size(swdesc, lli, count), GFP_NOWAIT);
if (!swdesc)
return NULL;
swdesc->lli_size = count;
for (i = 0; i < count; i++) {
swdesc->lli[i].hwdesc = dma_pool_zalloc(chan->lli_pool, GFP_NOWAIT,
&swdesc->lli[i].hwdesc_addr);
if (!swdesc->lli[i].hwdesc)
goto err_pool_free;
}
swdesc->ccr = 0;
/* Set LL base address */
writel_relaxed(swdesc->lli[0].hwdesc_addr & CLBAR_LBA,
ddata->base + STM32_DMA3_CLBAR(chan->id));
/* Set LL allocated port */
swdesc->ccr &= ~CCR_LAP;
return swdesc;
err_pool_free:
dev_err(chan2dev(chan), "Failed to alloc descriptors\n");
while (--i >= 0)
dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr);
kfree(swdesc);
return NULL;
}
static void stm32_dma3_chan_desc_free(struct stm32_dma3_chan *chan,
struct stm32_dma3_swdesc *swdesc)
{
int i;
for (i = 0; i < swdesc->lli_size; i++)
dma_pool_free(chan->lli_pool, swdesc->lli[i].hwdesc, swdesc->lli[i].hwdesc_addr);
kfree(swdesc);
}
static void stm32_dma3_chan_vdesc_free(struct virt_dma_desc *vdesc)
{
struct stm32_dma3_swdesc *swdesc = to_stm32_dma3_swdesc(vdesc);
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(vdesc->tx.chan);
stm32_dma3_chan_desc_free(chan, swdesc);
}
static void stm32_dma3_check_user_setting(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct device *dev = chan2dev(chan);
u32 ctr1 = readl_relaxed(ddata->base + STM32_DMA3_CTR1(chan->id));
u32 cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id));
u32 csar = readl_relaxed(ddata->base + STM32_DMA3_CSAR(chan->id));
u32 cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id));
u32 cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id));
u32 bndt = FIELD_GET(CBR1_BNDT, cbr1);
u32 sdw = 1 << FIELD_GET(CTR1_SDW_LOG2, ctr1);
u32 ddw = 1 << FIELD_GET(CTR1_DDW_LOG2, ctr1);
u32 sap = FIELD_GET(CTR1_SAP, ctr1);
u32 dap = FIELD_GET(CTR1_DAP, ctr1);
if (!bndt && !FIELD_GET(CLLR_UB1, cllr))
dev_err(dev, "null source block size and no update of this value\n");
if (bndt % sdw)
dev_err(dev, "source block size not multiple of src data width\n");
if (FIELD_GET(CTR1_PAM, ctr1) == CTR1_PAM_PACK_UNPACK && bndt % ddw)
dev_err(dev, "(un)packing mode w/ src block size not multiple of dst data width\n");
if (csar % sdw)
dev_err(dev, "unaligned source address not multiple of src data width\n");
if (cdar % ddw)
dev_err(dev, "unaligned destination address not multiple of dst data width\n");
if (sdw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[sap]))
dev_err(dev, "double-word source data width not supported on port %u\n", sap);
if (ddw == DMA_SLAVE_BUSWIDTH_8_BYTES && port_is_ahb(ddata->ports_max_dw[dap]))
dev_err(dev, "double-word destination data width not supported on port %u\n", dap);
}
static void stm32_dma3_chan_prep_hwdesc(struct stm32_dma3_chan *chan,
struct stm32_dma3_swdesc *swdesc,
u32 curr, dma_addr_t src, dma_addr_t dst, u32 len,
u32 ctr1, u32 ctr2, bool is_last, bool is_cyclic)
{
struct stm32_dma3_hwdesc *hwdesc;
dma_addr_t next_lli;
u32 next = curr + 1;
hwdesc = swdesc->lli[curr].hwdesc;
hwdesc->ctr1 = ctr1;
hwdesc->ctr2 = ctr2;
hwdesc->cbr1 = FIELD_PREP(CBR1_BNDT, len);
hwdesc->csar = src;
hwdesc->cdar = dst;
if (is_last) {
if (is_cyclic)
next_lli = swdesc->lli[0].hwdesc_addr;
else
next_lli = 0;
} else {
next_lli = swdesc->lli[next].hwdesc_addr;
}
hwdesc->cllr = 0;
if (next_lli) {
hwdesc->cllr |= CLLR_UT1 | CLLR_UT2 | CLLR_UB1;
hwdesc->cllr |= CLLR_USA | CLLR_UDA | CLLR_ULL;
hwdesc->cllr |= (next_lli & CLLR_LA);
}
/*
* Make sure to flush the CPU's write buffers so that the descriptors are ready to be read
* by DMA3. By explicitly using a write memory barrier here, instead of doing it with writel
* to enable the channel, we avoid an unnecessary barrier in the case where the descriptors
* are reused (DMA_CTRL_REUSE).
*/
if (is_last)
dma_wmb();
}
static enum dma_slave_buswidth stm32_dma3_get_max_dw(u32 chan_max_burst,
enum stm32_dma3_port_data_width port_max_dw,
u32 len, dma_addr_t addr)
{
enum dma_slave_buswidth max_dw = get_chan_max_dw(port_max_dw, chan_max_burst);
/* len and addr must be a multiple of dw */
return 1 << __ffs(len | addr | max_dw);
}
static u32 stm32_dma3_get_max_burst(u32 len, enum dma_slave_buswidth dw, u32 chan_max_burst)
{
u32 max_burst = chan_max_burst ? chan_max_burst / dw : 1;
/* len is a multiple of dw, so if len is < chan_max_burst, shorten burst */
if (len < chan_max_burst)
max_burst = len / dw;
/*
* HW doesn't modify the burst if burst size <= half of the fifo size.
* If len is not a multiple of burst size, last burst is shortened by HW.
*/
return max_burst;
}
static int stm32_dma3_chan_prep_hw(struct stm32_dma3_chan *chan, enum dma_transfer_direction dir,
u32 *ccr, u32 *ctr1, u32 *ctr2,
dma_addr_t src_addr, dma_addr_t dst_addr, u32 len)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct dma_device dma_device = ddata->dma_dev;
u32 sdw, ddw, sbl_max, dbl_max, tcem, init_dw, init_bl_max;
u32 _ctr1 = 0, _ctr2 = 0;
u32 ch_conf = chan->dt_config.ch_conf;
u32 tr_conf = chan->dt_config.tr_conf;
u32 sap = FIELD_GET(STM32_DMA3_DT_SAP, tr_conf), sap_max_dw;
u32 dap = FIELD_GET(STM32_DMA3_DT_DAP, tr_conf), dap_max_dw;
dev_dbg(chan2dev(chan), "%s from %pad to %pad\n",
dmaengine_get_direction_text(dir), &src_addr, &dst_addr);
sdw = chan->dma_config.src_addr_width ? : get_chan_max_dw(sap, chan->max_burst);
ddw = chan->dma_config.dst_addr_width ? : get_chan_max_dw(dap, chan->max_burst);
sbl_max = chan->dma_config.src_maxburst ? : 1;
dbl_max = chan->dma_config.dst_maxburst ? : 1;
/* Following conditions would raise User Setting Error interrupt */
if (!(dma_device.src_addr_widths & BIT(sdw)) || !(dma_device.dst_addr_widths & BIT(ddw))) {
dev_err(chan2dev(chan), "Bus width (src=%u, dst=%u) not supported\n", sdw, ddw);
return -EINVAL;
}
if (ddata->ports_max_dw[1] == DW_INVALID && (sap || dap)) {
dev_err(chan2dev(chan), "Only one master port, port 1 is not supported\n");
return -EINVAL;
}
sap_max_dw = ddata->ports_max_dw[sap];
dap_max_dw = ddata->ports_max_dw[dap];
if ((port_is_ahb(sap_max_dw) && sdw == DMA_SLAVE_BUSWIDTH_8_BYTES) ||
(port_is_ahb(dap_max_dw) && ddw == DMA_SLAVE_BUSWIDTH_8_BYTES)) {
dev_err(chan2dev(chan),
"8 bytes buswidth (src=%u, dst=%u) not supported on port (sap=%u, dap=%u\n",
sdw, ddw, sap, dap);
return -EINVAL;
}
if (FIELD_GET(STM32_DMA3_DT_SINC, tr_conf))
_ctr1 |= CTR1_SINC;
if (sap)
_ctr1 |= CTR1_SAP;
if (FIELD_GET(STM32_DMA3_DT_DINC, tr_conf))
_ctr1 |= CTR1_DINC;
if (dap)
_ctr1 |= CTR1_DAP;
_ctr2 |= FIELD_PREP(CTR2_REQSEL, chan->dt_config.req_line) & ~CTR2_SWREQ;
if (FIELD_GET(STM32_DMA3_DT_BREQ, tr_conf))
_ctr2 |= CTR2_BREQ;
if (dir == DMA_DEV_TO_MEM && FIELD_GET(STM32_DMA3_DT_PFREQ, tr_conf))
_ctr2 |= CTR2_PFREQ;
tcem = FIELD_GET(STM32_DMA3_DT_TCEM, tr_conf);
_ctr2 |= FIELD_PREP(CTR2_TCEM, tcem);
/* Store TCEM to know on which event TC flag occurred */
chan->tcem = tcem;
/* Store direction for residue computation */
chan->dma_config.direction = dir;
switch (dir) {
case DMA_MEM_TO_DEV:
/* Set destination (device) data width and burst */
ddw = min_t(u32, ddw, stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw,
len, dst_addr));
dbl_max = min_t(u32, dbl_max, stm32_dma3_get_max_burst(len, ddw, chan->max_burst));
/* Set source (memory) data width and burst */
sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr);
sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst);
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
if (ddw != sdw) {
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
/* Should never reach this case as ddw is clamped down */
if (len & (ddw - 1)) {
dev_err(chan2dev(chan),
"Packing mode is enabled and len is not multiple of ddw");
return -EINVAL;
}
}
/* dst = dev */
_ctr2 |= CTR2_DREQ;
break;
case DMA_DEV_TO_MEM:
/* Set source (device) data width and burst */
sdw = min_t(u32, sdw, stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw,
len, src_addr));
sbl_max = min_t(u32, sbl_max, stm32_dma3_get_max_burst(len, sdw, chan->max_burst));
/* Set destination (memory) data width and burst */
ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr);
dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst);
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
if (ddw != sdw) {
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
/* Should never reach this case as ddw is clamped down */
if (len & (ddw - 1)) {
dev_err(chan2dev(chan),
"Packing mode is enabled and len is not multiple of ddw\n");
return -EINVAL;
}
}
/* dst = mem */
_ctr2 &= ~CTR2_DREQ;
break;
case DMA_MEM_TO_MEM:
/* Set source (memory) data width and burst */
init_dw = sdw;
init_bl_max = sbl_max;
sdw = stm32_dma3_get_max_dw(chan->max_burst, sap_max_dw, len, src_addr);
sbl_max = stm32_dma3_get_max_burst(len, sdw, chan->max_burst);
if (chan->config_set & STM32_DMA3_CFG_SET_DMA) {
sdw = min_t(u32, init_dw, sdw);
sbl_max = min_t(u32, init_bl_max,
stm32_dma3_get_max_burst(len, sdw, chan->max_burst));
}
/* Set destination (memory) data width and burst */
init_dw = ddw;
init_bl_max = dbl_max;
ddw = stm32_dma3_get_max_dw(chan->max_burst, dap_max_dw, len, dst_addr);
dbl_max = stm32_dma3_get_max_burst(len, ddw, chan->max_burst);
if (chan->config_set & STM32_DMA3_CFG_SET_DMA) {
ddw = min_t(u32, init_dw, ddw);
dbl_max = min_t(u32, init_bl_max,
stm32_dma3_get_max_burst(len, ddw, chan->max_burst));
}
_ctr1 |= FIELD_PREP(CTR1_SDW_LOG2, ilog2(sdw));
_ctr1 |= FIELD_PREP(CTR1_SBL_1, sbl_max - 1);
_ctr1 |= FIELD_PREP(CTR1_DDW_LOG2, ilog2(ddw));
_ctr1 |= FIELD_PREP(CTR1_DBL_1, dbl_max - 1);
if (ddw != sdw) {
_ctr1 |= FIELD_PREP(CTR1_PAM, CTR1_PAM_PACK_UNPACK);
/* Should never reach this case as ddw is clamped down */
if (len & (ddw - 1)) {
dev_err(chan2dev(chan),
"Packing mode is enabled and len is not multiple of ddw");
return -EINVAL;
}
}
/* CTR2_REQSEL/DREQ/BREQ/PFREQ are ignored with CTR2_SWREQ=1 */
_ctr2 |= CTR2_SWREQ;
break;
default:
dev_err(chan2dev(chan), "Direction %s not supported\n",
dmaengine_get_direction_text(dir));
return -EINVAL;
}
*ccr |= FIELD_PREP(CCR_PRIO, FIELD_GET(STM32_DMA3_DT_PRIO, ch_conf));
*ctr1 = _ctr1;
*ctr2 = _ctr2;
dev_dbg(chan2dev(chan), "%s: sdw=%u bytes sbl=%u beats ddw=%u bytes dbl=%u beats\n",
__func__, sdw, sbl_max, ddw, dbl_max);
return 0;
}
static void stm32_dma3_chan_start(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct virt_dma_desc *vdesc;
struct stm32_dma3_hwdesc *hwdesc;
u32 id = chan->id;
u32 csr, ccr;
vdesc = vchan_next_desc(&chan->vchan);
if (!vdesc) {
chan->swdesc = NULL;
return;
}
list_del(&vdesc->node);
chan->swdesc = to_stm32_dma3_swdesc(vdesc);
hwdesc = chan->swdesc->lli[0].hwdesc;
stm32_dma3_chan_dump_hwdesc(chan, chan->swdesc);
writel_relaxed(chan->swdesc->ccr, ddata->base + STM32_DMA3_CCR(id));
writel_relaxed(hwdesc->ctr1, ddata->base + STM32_DMA3_CTR1(id));
writel_relaxed(hwdesc->ctr2, ddata->base + STM32_DMA3_CTR2(id));
writel_relaxed(hwdesc->cbr1, ddata->base + STM32_DMA3_CBR1(id));
writel_relaxed(hwdesc->csar, ddata->base + STM32_DMA3_CSAR(id));
writel_relaxed(hwdesc->cdar, ddata->base + STM32_DMA3_CDAR(id));
writel_relaxed(hwdesc->cllr, ddata->base + STM32_DMA3_CLLR(id));
/* Clear any pending interrupts */
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(id));
if (csr & CSR_ALL_F)
writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(id));
stm32_dma3_chan_dump_reg(chan);
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(id));
writel_relaxed(ccr | CCR_EN, ddata->base + STM32_DMA3_CCR(id));
chan->dma_status = DMA_IN_PROGRESS;
dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
}
static int stm32_dma3_chan_suspend(struct stm32_dma3_chan *chan, bool susp)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 csr, ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN;
int ret = 0;
if (susp)
ccr |= CCR_SUSP;
else
ccr &= ~CCR_SUSP;
writel_relaxed(ccr, ddata->base + STM32_DMA3_CCR(chan->id));
if (susp) {
ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr,
csr & CSR_SUSPF, 1, 10);
if (!ret)
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
stm32_dma3_chan_dump_reg(chan);
}
return ret;
}
static void stm32_dma3_chan_reset(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & ~CCR_EN;
writel_relaxed(ccr |= CCR_RESET, ddata->base + STM32_DMA3_CCR(chan->id));
}
static int stm32_dma3_chan_get_curr_hwdesc(struct stm32_dma3_swdesc *swdesc, u32 cllr, u32 *residue)
{
u32 i, lli_offset, next_lli_offset = cllr & CLLR_LA;
/* If cllr is null, it means it is either the last or single item */
if (!cllr)
return swdesc->lli_size - 1;
/* In cyclic mode, go fast and first check we are not on the last item */
if (swdesc->cyclic && next_lli_offset == (swdesc->lli[0].hwdesc_addr & CLLR_LA))
return swdesc->lli_size - 1;
/* As transfer is in progress, look backward from the last item */
for (i = swdesc->lli_size - 1; i > 0; i--) {
*residue += FIELD_GET(CBR1_BNDT, swdesc->lli[i].hwdesc->cbr1);
lli_offset = swdesc->lli[i].hwdesc_addr & CLLR_LA;
if (lli_offset == next_lli_offset)
return i - 1;
}
return -EINVAL;
}
static void stm32_dma3_chan_set_residue(struct stm32_dma3_chan *chan,
struct stm32_dma3_swdesc *swdesc,
struct dma_tx_state *txstate)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct device *dev = chan2dev(chan);
struct stm32_dma3_hwdesc *hwdesc;
u32 residue, curr_lli, csr, cdar, cbr1, cllr, bndt, fifol;
bool pack_unpack;
int ret;
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id));
if (!(csr & CSR_IDLEF) && chan->dma_status != DMA_PAUSED) {
/* Suspend current transfer to read registers for a snapshot */
writel_relaxed(swdesc->ccr | CCR_SUSP, ddata->base + STM32_DMA3_CCR(chan->id));
ret = readl_relaxed_poll_timeout_atomic(ddata->base + STM32_DMA3_CSR(chan->id), csr,
csr & (CSR_SUSPF | CSR_IDLEF), 1, 10);
if (ret || ((csr & CSR_TCF) && (csr & CSR_IDLEF))) {
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id));
if (ret)
dev_err(dev, "Channel suspension timeout, csr=%08x\n", csr);
}
}
/* If channel is still active (CSR_IDLEF is not set), can't get a reliable residue */
if (!(csr & CSR_IDLEF))
dev_warn(dev, "Can't get residue: channel still active, csr=%08x\n", csr);
/*
* If channel is not suspended, but Idle and Transfer Complete are set,
* linked-list is over, no residue
*/
if (!(csr & CSR_SUSPF) && (csr & CSR_TCF) && (csr & CSR_IDLEF))
return;
/* Read registers to have a snapshot */
cllr = readl_relaxed(ddata->base + STM32_DMA3_CLLR(chan->id));
cbr1 = readl_relaxed(ddata->base + STM32_DMA3_CBR1(chan->id));
cdar = readl_relaxed(ddata->base + STM32_DMA3_CDAR(chan->id));
/* Resume current transfer */
if (csr & CSR_SUSPF) {
writel_relaxed(CFCR_SUSPF, ddata->base + STM32_DMA3_CFCR(chan->id));
writel_relaxed(swdesc->ccr, ddata->base + STM32_DMA3_CCR(chan->id));
}
/* Add current BNDT */
bndt = FIELD_GET(CBR1_BNDT, cbr1);
residue = bndt;
/* Get current hwdesc and cumulate residue of pending hwdesc BNDT */
ret = stm32_dma3_chan_get_curr_hwdesc(swdesc, cllr, &residue);
if (ret < 0) {
dev_err(chan2dev(chan), "Can't get residue: current hwdesc not found\n");
return;
}
curr_lli = ret;
/* Read current FIFO level - in units of programmed destination data width */
hwdesc = swdesc->lli[curr_lli].hwdesc;
fifol = FIELD_GET(CSR_FIFOL, csr) * (1 << FIELD_GET(CTR1_DDW_LOG2, hwdesc->ctr1));
/* If the FIFO contains as many bytes as its size, it can't contain more */
if (fifol == (1 << (chan->fifo_size + 1)))
goto skip_fifol_update;
/*
* In case of PACKING (Destination burst length > Source burst length) or UNPACKING
* (Source burst length > Destination burst length), bytes could be pending in the FIFO
* (to be packed up to Destination burst length or unpacked into Destination burst length
* chunks).
* BNDT is not reliable, as it reflects the number of bytes read from the source but not the
* number of bytes written to the destination.
* FIFOL is also not sufficient, because it reflects the number of available write beats in
* units of Destination data width but not the bytes not yet packed or unpacked.
* In case of Destination increment DINC, it is possible to compute the number of bytes in
* the FIFO:
* fifol_in_bytes = bytes_read - bytes_written.
*/
pack_unpack = !!(FIELD_GET(CTR1_PAM, hwdesc->ctr1) == CTR1_PAM_PACK_UNPACK);
if (pack_unpack && (hwdesc->ctr1 & CTR1_DINC)) {
int bytes_read = FIELD_GET(CBR1_BNDT, hwdesc->cbr1) - bndt;
int bytes_written = cdar - hwdesc->cdar;
if (bytes_read > 0)
fifol = bytes_read - bytes_written;
}
skip_fifol_update:
if (fifol) {
dev_dbg(chan2dev(chan), "%u byte(s) in the FIFO\n", fifol);
dma_set_in_flight_bytes(txstate, fifol);
/*
* Residue is already accurate for DMA_MEM_TO_DEV as BNDT reflects data read from
* the source memory buffer, so just need to add fifol to residue in case of
* DMA_DEV_TO_MEM transfer because these bytes are not yet written in destination
* memory buffer.
*/
if (chan->dma_config.direction == DMA_DEV_TO_MEM)
residue += fifol;
}
dma_set_residue(txstate, residue);
}
static int stm32_dma3_chan_stop(struct stm32_dma3_chan *chan)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 ccr;
int ret = 0;
chan->dma_status = DMA_COMPLETE;
/* Disable interrupts */
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id));
writel_relaxed(ccr & ~(CCR_ALLIE | CCR_EN), ddata->base + STM32_DMA3_CCR(chan->id));
if (!(ccr & CCR_SUSP) && (ccr & CCR_EN)) {
/* Suspend the channel */
ret = stm32_dma3_chan_suspend(chan, true);
if (ret)
dev_warn(chan2dev(chan), "%s: timeout, data might be lost\n", __func__);
}
/*
* Reset the channel: this causes the reset of the FIFO and the reset of the channel
* internal state, the reset of CCR_EN and CCR_SUSP bits.
*/
stm32_dma3_chan_reset(chan);
return ret;
}
static void stm32_dma3_chan_complete(struct stm32_dma3_chan *chan)
{
if (!chan->swdesc)
return;
vchan_cookie_complete(&chan->swdesc->vdesc);
chan->swdesc = NULL;
stm32_dma3_chan_start(chan);
}
static irqreturn_t stm32_dma3_chan_irq(int irq, void *devid)
{
struct stm32_dma3_chan *chan = devid;
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 misr, csr, ccr;
spin_lock(&chan->vchan.lock);
misr = readl_relaxed(ddata->base + STM32_DMA3_MISR);
if (!(misr & MISR_MIS(chan->id))) {
spin_unlock(&chan->vchan.lock);
return IRQ_NONE;
}
csr = readl_relaxed(ddata->base + STM32_DMA3_CSR(chan->id));
ccr = readl_relaxed(ddata->base + STM32_DMA3_CCR(chan->id)) & CCR_ALLIE;
if (csr & CSR_TCF && ccr & CCR_TCIE) {
if (chan->swdesc->cyclic)
vchan_cyclic_callback(&chan->swdesc->vdesc);
else
stm32_dma3_chan_complete(chan);
}
if (csr & CSR_USEF && ccr & CCR_USEIE) {
dev_err(chan2dev(chan), "User setting error\n");
chan->dma_status = DMA_ERROR;
/* CCR.EN automatically cleared by HW */
stm32_dma3_check_user_setting(chan);
stm32_dma3_chan_reset(chan);
}
if (csr & CSR_ULEF && ccr & CCR_ULEIE) {
dev_err(chan2dev(chan), "Update link transfer error\n");
chan->dma_status = DMA_ERROR;
/* CCR.EN automatically cleared by HW */
stm32_dma3_chan_reset(chan);
}
if (csr & CSR_DTEF && ccr & CCR_DTEIE) {
dev_err(chan2dev(chan), "Data transfer error\n");
chan->dma_status = DMA_ERROR;
/* CCR.EN automatically cleared by HW */
stm32_dma3_chan_reset(chan);
}
/*
* Half Transfer Interrupt may be disabled but Half Transfer Flag can be set,
* ensure HTF flag to be cleared, with other flags.
*/
csr &= (ccr | CCR_HTIE);
if (csr)
writel_relaxed(csr, ddata->base + STM32_DMA3_CFCR(chan->id));
spin_unlock(&chan->vchan.lock);
return IRQ_HANDLED;
}
static int stm32_dma3_alloc_chan_resources(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 id = chan->id, csemcr, ccid;
int ret;
ret = pm_runtime_resume_and_get(ddata->dma_dev.dev);
if (ret < 0)
return ret;
/* Ensure the channel is free */
if (chan->semaphore_mode &&
readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id)) & CSEMCR_SEM_MUTEX) {
ret = -EBUSY;
goto err_put_sync;
}
chan->lli_pool = dmam_pool_create(dev_name(&c->dev->device), c->device->dev,
sizeof(struct stm32_dma3_hwdesc),
__alignof__(struct stm32_dma3_hwdesc), SZ_64K);
if (!chan->lli_pool) {
dev_err(chan2dev(chan), "Failed to create LLI pool\n");
ret = -ENOMEM;
goto err_put_sync;
}
/* Take the channel semaphore */
if (chan->semaphore_mode) {
writel_relaxed(CSEMCR_SEM_MUTEX, ddata->base + STM32_DMA3_CSEMCR(id));
csemcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(id));
ccid = FIELD_GET(CSEMCR_SEM_CCID, csemcr);
/* Check that the channel is well taken */
if (ccid != CCIDCFGR_CID1) {
dev_err(chan2dev(chan), "Not under CID1 control (in-use by CID%d)\n", ccid);
ret = -EPERM;
goto err_pool_destroy;
}
dev_dbg(chan2dev(chan), "Under CID1 control (semcr=0x%08x)\n", csemcr);
}
return 0;
err_pool_destroy:
dmam_pool_destroy(chan->lli_pool);
chan->lli_pool = NULL;
err_put_sync:
pm_runtime_put_sync(ddata->dma_dev.dev);
return ret;
}
static void stm32_dma3_free_chan_resources(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
unsigned long flags;
/* Ensure channel is in idle state */
spin_lock_irqsave(&chan->vchan.lock, flags);
stm32_dma3_chan_stop(chan);
chan->swdesc = NULL;
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_free_chan_resources(to_virt_chan(c));
dmam_pool_destroy(chan->lli_pool);
chan->lli_pool = NULL;
/* Release the channel semaphore */
if (chan->semaphore_mode)
writel_relaxed(0, ddata->base + STM32_DMA3_CSEMCR(chan->id));
pm_runtime_put_sync(ddata->dma_dev.dev);
/* Reset configuration */
memset(&chan->dt_config, 0, sizeof(chan->dt_config));
memset(&chan->dma_config, 0, sizeof(chan->dma_config));
chan->config_set = 0;
}
static void stm32_dma3_init_chan_config_for_memcpy(struct stm32_dma3_chan *chan,
dma_addr_t dst, dma_addr_t src)
{
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
u32 dw = get_chan_max_dw(ddata->ports_max_dw[0], chan->max_burst); /* port 0 by default */
u32 burst = chan->max_burst / dw;
/* Initialize dt_config if channel not pre-configured through DT */
if (!(chan->config_set & STM32_DMA3_CFG_SET_DT)) {
chan->dt_config.ch_conf = FIELD_PREP(STM32_DMA3_DT_PRIO, CCR_PRIO_VERY_HIGH);
chan->dt_config.ch_conf |= FIELD_PREP(STM32_DMA3_DT_FIFO, chan->fifo_size);
chan->dt_config.tr_conf = STM32_DMA3_DT_SINC | STM32_DMA3_DT_DINC;
chan->dt_config.tr_conf |= FIELD_PREP(STM32_DMA3_DT_TCEM, CTR2_TCEM_CHANNEL);
}
/* Initialize dma_config if dmaengine_slave_config() not used */
if (!(chan->config_set & STM32_DMA3_CFG_SET_DMA)) {
chan->dma_config.src_addr_width = dw;
chan->dma_config.dst_addr_width = dw;
chan->dma_config.src_maxburst = burst;
chan->dma_config.dst_maxburst = burst;
chan->dma_config.src_addr = src;
chan->dma_config.dst_addr = dst;
}
}
static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_memcpy(struct dma_chan *c,
dma_addr_t dst, dma_addr_t src,
size_t len, unsigned long flags)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_swdesc *swdesc;
size_t next_size, offset;
u32 count, i, ctr1, ctr2;
count = DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE);
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
if (!swdesc)
return NULL;
if (chan->config_set != STM32_DMA3_CFG_SET_BOTH)
stm32_dma3_init_chan_config_for_memcpy(chan, dst, src);
for (i = 0, offset = 0; offset < len; i++, offset += next_size) {
size_t remaining;
int ret;
remaining = len - offset;
next_size = min_t(size_t, remaining, STM32_DMA3_MAX_BLOCK_SIZE);
ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_MEM, &swdesc->ccr, &ctr1, &ctr2,
src + offset, dst + offset, next_size);
if (ret)
goto err_desc_free;
stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src + offset, dst + offset, next_size,
ctr1, ctr2, next_size == remaining, false);
}
/* Enable Errors interrupts */
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
/* Enable Transfer state interrupts */
swdesc->ccr |= CCR_TCIE;
swdesc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
err_desc_free:
stm32_dma3_chan_desc_free(chan, swdesc);
return NULL;
}
static struct dma_async_tx_descriptor *stm32_dma3_prep_slave_sg(struct dma_chan *c,
struct scatterlist *sgl,
unsigned int sg_len,
enum dma_transfer_direction dir,
unsigned long flags, void *context)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_swdesc *swdesc;
struct scatterlist *sg;
size_t len;
dma_addr_t sg_addr, dev_addr, src, dst;
u32 i, j, count, ctr1, ctr2;
int ret;
count = sg_len;
for_each_sg(sgl, sg, sg_len, i) {
len = sg_dma_len(sg);
if (len > STM32_DMA3_MAX_BLOCK_SIZE)
count += DIV_ROUND_UP(len, STM32_DMA3_MAX_BLOCK_SIZE) - 1;
}
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
if (!swdesc)
return NULL;
/* sg_len and i correspond to the initial sgl; count and j correspond to the hwdesc LL */
j = 0;
for_each_sg(sgl, sg, sg_len, i) {
sg_addr = sg_dma_address(sg);
dev_addr = (dir == DMA_MEM_TO_DEV) ? chan->dma_config.dst_addr :
chan->dma_config.src_addr;
len = sg_dma_len(sg);
do {
size_t chunk = min_t(size_t, len, STM32_DMA3_MAX_BLOCK_SIZE);
if (dir == DMA_MEM_TO_DEV) {
src = sg_addr;
dst = dev_addr;
ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2,
src, dst, chunk);
if (FIELD_GET(CTR1_DINC, ctr1))
dev_addr += chunk;
} else { /* (dir == DMA_DEV_TO_MEM || dir == DMA_MEM_TO_MEM) */
src = dev_addr;
dst = sg_addr;
ret = stm32_dma3_chan_prep_hw(chan, dir, &swdesc->ccr, &ctr1, &ctr2,
src, dst, chunk);
if (FIELD_GET(CTR1_SINC, ctr1))
dev_addr += chunk;
}
if (ret)
goto err_desc_free;
stm32_dma3_chan_prep_hwdesc(chan, swdesc, j, src, dst, chunk,
ctr1, ctr2, j == (count - 1), false);
sg_addr += chunk;
len -= chunk;
j++;
} while (len);
}
/* Enable Error interrupts */
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
/* Enable Transfer state interrupts */
swdesc->ccr |= CCR_TCIE;
swdesc->cyclic = false;
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
err_desc_free:
stm32_dma3_chan_desc_free(chan, swdesc);
return NULL;
}
static struct dma_async_tx_descriptor *stm32_dma3_prep_dma_cyclic(struct dma_chan *c,
dma_addr_t buf_addr,
size_t buf_len, size_t period_len,
enum dma_transfer_direction dir,
unsigned long flags)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_swdesc *swdesc;
dma_addr_t src, dst;
u32 count, i, ctr1, ctr2;
int ret;
if (!buf_len || !period_len || period_len > STM32_DMA3_MAX_BLOCK_SIZE) {
dev_err(chan2dev(chan), "Invalid buffer/period length\n");
return NULL;
}
if (buf_len % period_len) {
dev_err(chan2dev(chan), "Buffer length not multiple of period length\n");
return NULL;
}
count = buf_len / period_len;
swdesc = stm32_dma3_chan_desc_alloc(chan, count);
if (!swdesc)
return NULL;
if (dir == DMA_MEM_TO_DEV) {
src = buf_addr;
dst = chan->dma_config.dst_addr;
ret = stm32_dma3_chan_prep_hw(chan, DMA_MEM_TO_DEV, &swdesc->ccr, &ctr1, &ctr2,
src, dst, period_len);
} else if (dir == DMA_DEV_TO_MEM) {
src = chan->dma_config.src_addr;
dst = buf_addr;
ret = stm32_dma3_chan_prep_hw(chan, DMA_DEV_TO_MEM, &swdesc->ccr, &ctr1, &ctr2,
src, dst, period_len);
} else {
dev_err(chan2dev(chan), "Invalid direction\n");
ret = -EINVAL;
}
if (ret)
goto err_desc_free;
for (i = 0; i < count; i++) {
if (dir == DMA_MEM_TO_DEV) {
src = buf_addr + i * period_len;
dst = chan->dma_config.dst_addr;
} else { /* (dir == DMA_DEV_TO_MEM) */
src = chan->dma_config.src_addr;
dst = buf_addr + i * period_len;
}
stm32_dma3_chan_prep_hwdesc(chan, swdesc, i, src, dst, period_len,
ctr1, ctr2, i == (count - 1), true);
}
/* Enable Error interrupts */
swdesc->ccr |= CCR_USEIE | CCR_ULEIE | CCR_DTEIE;
/* Enable Transfer state interrupts */
swdesc->ccr |= CCR_TCIE;
swdesc->cyclic = true;
return vchan_tx_prep(&chan->vchan, &swdesc->vdesc, flags);
err_desc_free:
stm32_dma3_chan_desc_free(chan, swdesc);
return NULL;
}
static void stm32_dma3_caps(struct dma_chan *c, struct dma_slave_caps *caps)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
if (!chan->fifo_size) {
caps->max_burst = 0;
caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
} else {
/* Burst transfer should not exceed half of the fifo size */
caps->max_burst = chan->max_burst;
if (caps->max_burst < DMA_SLAVE_BUSWIDTH_8_BYTES) {
caps->src_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
caps->dst_addr_widths &= ~BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
}
}
}
static int stm32_dma3_config(struct dma_chan *c, struct dma_slave_config *config)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
memcpy(&chan->dma_config, config, sizeof(*config));
chan->config_set |= STM32_DMA3_CFG_SET_DMA;
return 0;
}
static int stm32_dma3_pause(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
int ret;
ret = stm32_dma3_chan_suspend(chan, true);
if (ret)
return ret;
chan->dma_status = DMA_PAUSED;
dev_dbg(chan2dev(chan), "vchan %pK: paused\n", &chan->vchan);
return 0;
}
static int stm32_dma3_resume(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
stm32_dma3_chan_suspend(chan, false);
chan->dma_status = DMA_IN_PROGRESS;
dev_dbg(chan2dev(chan), "vchan %pK: resumed\n", &chan->vchan);
return 0;
}
static int stm32_dma3_terminate_all(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&chan->vchan.lock, flags);
if (chan->swdesc) {
vchan_terminate_vdesc(&chan->swdesc->vdesc);
chan->swdesc = NULL;
}
stm32_dma3_chan_stop(chan);
vchan_get_all_descriptors(&chan->vchan, &head);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_dma_desc_free_list(&chan->vchan, &head);
dev_dbg(chan2dev(chan), "vchan %pK: terminated\n", &chan->vchan);
return 0;
}
static void stm32_dma3_synchronize(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
vchan_synchronize(&chan->vchan);
}
static enum dma_status stm32_dma3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_swdesc *swdesc = NULL;
enum dma_status status;
unsigned long flags;
struct virt_dma_desc *vd;
status = dma_cookie_status(c, cookie, txstate);
if (status == DMA_COMPLETE)
return status;
if (!txstate)
return chan->dma_status;
spin_lock_irqsave(&chan->vchan.lock, flags);
vd = vchan_find_desc(&chan->vchan, cookie);
if (vd)
swdesc = to_stm32_dma3_swdesc(vd);
else if (chan->swdesc && chan->swdesc->vdesc.tx.cookie == cookie)
swdesc = chan->swdesc;
/* Get residue/in_flight_bytes only if a transfer is currently running (swdesc != NULL) */
if (swdesc)
stm32_dma3_chan_set_residue(chan, swdesc, txstate);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
return chan->dma_status;
}
static void stm32_dma3_issue_pending(struct dma_chan *c)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
unsigned long flags;
spin_lock_irqsave(&chan->vchan.lock, flags);
if (vchan_issue_pending(&chan->vchan) && !chan->swdesc) {
dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
stm32_dma3_chan_start(chan);
}
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
static bool stm32_dma3_filter_fn(struct dma_chan *c, void *fn_param)
{
struct stm32_dma3_chan *chan = to_stm32_dma3_chan(c);
struct stm32_dma3_ddata *ddata = to_stm32_dma3_ddata(chan);
struct stm32_dma3_dt_conf *conf = fn_param;
u32 mask, semcr;
int ret;
dev_dbg(c->device->dev, "%s(%s): req_line=%d ch_conf=%08x tr_conf=%08x\n",
__func__, dma_chan_name(c), conf->req_line, conf->ch_conf, conf->tr_conf);
if (!of_property_read_u32(c->device->dev->of_node, "dma-channel-mask", &mask))
if (!(mask & BIT(chan->id)))
return false;
ret = pm_runtime_resume_and_get(ddata->dma_dev.dev);
if (ret < 0)
return false;
semcr = readl_relaxed(ddata->base + STM32_DMA3_CSEMCR(chan->id));
pm_runtime_put_sync(ddata->dma_dev.dev);
/* Check if chan is free */
if (semcr & CSEMCR_SEM_MUTEX)
return false;
/* Check if chan fifo fits well */
if (FIELD_GET(STM32_DMA3_DT_FIFO, conf->ch_conf) != chan->fifo_size)
return false;
return true;
}
static struct dma_chan *stm32_dma3_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma)
{
struct stm32_dma3_ddata *ddata = ofdma->of_dma_data;
dma_cap_mask_t mask = ddata->dma_dev.cap_mask;
struct stm32_dma3_dt_conf conf;
struct stm32_dma3_chan *chan;
struct dma_chan *c;
if (dma_spec->args_count < 3) {
dev_err(ddata->dma_dev.dev, "Invalid args count\n");
return NULL;
}
conf.req_line = dma_spec->args[0];
conf.ch_conf = dma_spec->args[1];
conf.tr_conf = dma_spec->args[2];
if (conf.req_line >= ddata->dma_requests) {
dev_err(ddata->dma_dev.dev, "Invalid request line\n");
return NULL;
}
/* Request dma channel among the generic dma controller list */
c = dma_request_channel(mask, stm32_dma3_filter_fn, &conf);
if (!c) {
dev_err(ddata->dma_dev.dev, "No suitable channel found\n");
return NULL;
}
chan = to_stm32_dma3_chan(c);
chan->dt_config = conf;
chan->config_set |= STM32_DMA3_CFG_SET_DT;
return c;
}
static u32 stm32_dma3_check_rif(struct stm32_dma3_ddata *ddata)
{
u32 chan_reserved, mask = 0, i, ccidcfgr, invalid_cid = 0;
/* Reserve Secure channels */
chan_reserved = readl_relaxed(ddata->base + STM32_DMA3_SECCFGR);
/*
* CID filtering must be configured to ensure that the DMA3 channel will inherit the CID of
* the processor which is configuring and using the given channel.
* In case CID filtering is not configured, dma-channel-mask property can be used to
* specify available DMA channels to the kernel.
*/
of_property_read_u32(ddata->dma_dev.dev->of_node, "dma-channel-mask", &mask);
/* Reserve !CID-filtered not in dma-channel-mask, static CID != CID1, CID1 not allowed */
for (i = 0; i < ddata->dma_channels; i++) {
ccidcfgr = readl_relaxed(ddata->base + STM32_DMA3_CCIDCFGR(i));
if (!(ccidcfgr & CCIDCFGR_CFEN)) { /* !CID-filtered */
invalid_cid |= BIT(i);
if (!(mask & BIT(i))) /* Not in dma-channel-mask */
chan_reserved |= BIT(i);
} else { /* CID-filtered */
if (!(ccidcfgr & CCIDCFGR_SEM_EN)) { /* Static CID mode */
if (FIELD_GET(CCIDCFGR_SCID, ccidcfgr) != CCIDCFGR_CID1)
chan_reserved |= BIT(i);
} else { /* Semaphore mode */
if (!FIELD_GET(CCIDCFGR_SEM_WLIST_CID1, ccidcfgr))
chan_reserved |= BIT(i);
ddata->chans[i].semaphore_mode = true;
}
}
dev_dbg(ddata->dma_dev.dev, "chan%d: %s mode, %s\n", i,
!(ccidcfgr & CCIDCFGR_CFEN) ? "!CID-filtered" :
ddata->chans[i].semaphore_mode ? "Semaphore" : "Static CID",
(chan_reserved & BIT(i)) ? "denied" :
mask & BIT(i) ? "force allowed" : "allowed");
}
if (invalid_cid)
dev_warn(ddata->dma_dev.dev, "chan%*pbl have invalid CID configuration\n",
ddata->dma_channels, &invalid_cid);
return chan_reserved;
}
static const struct of_device_id stm32_dma3_of_match[] = {
{ .compatible = "st,stm32mp25-dma3", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, stm32_dma3_of_match);
static int stm32_dma3_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct stm32_dma3_ddata *ddata;
struct reset_control *reset;
struct stm32_dma3_chan *chan;
struct dma_device *dma_dev;
u32 master_ports, chan_reserved, i, verr;
u64 hwcfgr;
int ret;
ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
if (!ddata)
return -ENOMEM;
platform_set_drvdata(pdev, ddata);
dma_dev = &ddata->dma_dev;
ddata->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ddata->base))
return PTR_ERR(ddata->base);
ddata->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(ddata->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(ddata->clk), "Failed to get clk\n");
reset = devm_reset_control_get_optional(&pdev->dev, NULL);
if (IS_ERR(reset))
return dev_err_probe(&pdev->dev, PTR_ERR(reset), "Failed to get reset\n");
ret = clk_prepare_enable(ddata->clk);
if (ret)
return dev_err_probe(&pdev->dev, ret, "Failed to enable clk\n");
reset_control_reset(reset);
INIT_LIST_HEAD(&dma_dev->channels);
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
dma_dev->dev = &pdev->dev;
/*
* This controller supports up to 8-byte buswidth depending on the port used and the
* channel, and can only access address at even boundaries, multiple of the buswidth.
*/
dma_dev->copy_align = DMAENGINE_ALIGN_8_BYTES;
dma_dev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
dma_dev->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
dma_dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) | BIT(DMA_MEM_TO_MEM);
dma_dev->descriptor_reuse = true;
dma_dev->max_sg_burst = STM32_DMA3_MAX_SEG_SIZE;
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
dma_dev->device_alloc_chan_resources = stm32_dma3_alloc_chan_resources;
dma_dev->device_free_chan_resources = stm32_dma3_free_chan_resources;
dma_dev->device_prep_dma_memcpy = stm32_dma3_prep_dma_memcpy;
dma_dev->device_prep_slave_sg = stm32_dma3_prep_slave_sg;
dma_dev->device_prep_dma_cyclic = stm32_dma3_prep_dma_cyclic;
dma_dev->device_caps = stm32_dma3_caps;
dma_dev->device_config = stm32_dma3_config;
dma_dev->device_pause = stm32_dma3_pause;
dma_dev->device_resume = stm32_dma3_resume;
dma_dev->device_terminate_all = stm32_dma3_terminate_all;
dma_dev->device_synchronize = stm32_dma3_synchronize;
dma_dev->device_tx_status = stm32_dma3_tx_status;
dma_dev->device_issue_pending = stm32_dma3_issue_pending;
/* if dma_channels is not modified, get it from hwcfgr1 */
if (of_property_read_u32(np, "dma-channels", &ddata->dma_channels)) {
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1);
ddata->dma_channels = FIELD_GET(G_NUM_CHANNELS, hwcfgr);
}
/* if dma_requests is not modified, get it from hwcfgr2 */
if (of_property_read_u32(np, "dma-requests", &ddata->dma_requests)) {
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR2);
ddata->dma_requests = FIELD_GET(G_MAX_REQ_ID, hwcfgr) + 1;
}
/* G_MASTER_PORTS, G_M0_DATA_WIDTH_ENC, G_M1_DATA_WIDTH_ENC in HWCFGR1 */
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR1);
master_ports = FIELD_GET(G_MASTER_PORTS, hwcfgr);
ddata->ports_max_dw[0] = FIELD_GET(G_M0_DATA_WIDTH_ENC, hwcfgr);
if (master_ports == AXI64 || master_ports == AHB32) /* Single master port */
ddata->ports_max_dw[1] = DW_INVALID;
else /* Dual master ports */
ddata->ports_max_dw[1] = FIELD_GET(G_M1_DATA_WIDTH_ENC, hwcfgr);
ddata->chans = devm_kcalloc(&pdev->dev, ddata->dma_channels, sizeof(*ddata->chans),
GFP_KERNEL);
if (!ddata->chans) {
ret = -ENOMEM;
goto err_clk_disable;
}
chan_reserved = stm32_dma3_check_rif(ddata);
if (chan_reserved == GENMASK(ddata->dma_channels - 1, 0)) {
ret = -ENODEV;
dev_err_probe(&pdev->dev, ret, "No channel available, abort registration\n");
goto err_clk_disable;
}
/* G_FIFO_SIZE x=0..7 in HWCFGR3 and G_FIFO_SIZE x=8..15 in HWCFGR4 */
hwcfgr = readl_relaxed(ddata->base + STM32_DMA3_HWCFGR3);
hwcfgr |= ((u64)readl_relaxed(ddata->base + STM32_DMA3_HWCFGR4)) << 32;
for (i = 0; i < ddata->dma_channels; i++) {
if (chan_reserved & BIT(i))
continue;
chan = &ddata->chans[i];
chan->id = i;
chan->fifo_size = get_chan_hwcfg(i, G_FIFO_SIZE(i), hwcfgr);
/* If chan->fifo_size > 0 then half of the fifo size, else no burst when no FIFO */
chan->max_burst = (chan->fifo_size) ? (1 << (chan->fifo_size + 1)) / 2 : 0;
}
ret = dmaenginem_async_device_register(dma_dev);
if (ret)
goto err_clk_disable;
for (i = 0; i < ddata->dma_channels; i++) {
char name[12];
if (chan_reserved & BIT(i))
continue;
chan = &ddata->chans[i];
snprintf(name, sizeof(name), "dma%dchan%d", ddata->dma_dev.dev_id, chan->id);
chan->vchan.desc_free = stm32_dma3_chan_vdesc_free;
vchan_init(&chan->vchan, dma_dev);
ret = dma_async_device_channel_register(&ddata->dma_dev, &chan->vchan.chan, name);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Failed to register channel %s\n", name);
goto err_clk_disable;
}
ret = platform_get_irq(pdev, i);
if (ret < 0)
goto err_clk_disable;
chan->irq = ret;
ret = devm_request_irq(&pdev->dev, chan->irq, stm32_dma3_chan_irq, 0,
dev_name(chan2dev(chan)), chan);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Failed to request channel %s IRQ\n",
dev_name(chan2dev(chan)));
goto err_clk_disable;
}
}
ret = of_dma_controller_register(np, stm32_dma3_of_xlate, ddata);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Failed to register controller\n");
goto err_clk_disable;
}
verr = readl_relaxed(ddata->base + STM32_DMA3_VERR);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_put(&pdev->dev);
dev_info(&pdev->dev, "STM32 DMA3 registered rev:%lu.%lu\n",
FIELD_GET(VERR_MAJREV, verr), FIELD_GET(VERR_MINREV, verr));
return 0;
err_clk_disable:
clk_disable_unprepare(ddata->clk);
return ret;
}
static void stm32_dma3_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
}
static int stm32_dma3_runtime_suspend(struct device *dev)
{
struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev);
clk_disable_unprepare(ddata->clk);
return 0;
}
static int stm32_dma3_runtime_resume(struct device *dev)
{
struct stm32_dma3_ddata *ddata = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(ddata->clk);
if (ret)
dev_err(dev, "Failed to enable clk: %d\n", ret);
return ret;
}
static const struct dev_pm_ops stm32_dma3_pm_ops = {
SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
RUNTIME_PM_OPS(stm32_dma3_runtime_suspend, stm32_dma3_runtime_resume, NULL)
};
static struct platform_driver stm32_dma3_driver = {
.probe = stm32_dma3_probe,
.remove_new = stm32_dma3_remove,
.driver = {
.name = "stm32-dma3",
.of_match_table = stm32_dma3_of_match,
.pm = pm_ptr(&stm32_dma3_pm_ops),
},
};
static int __init stm32_dma3_init(void)
{
return platform_driver_register(&stm32_dma3_driver);
}
subsys_initcall(stm32_dma3_init);
MODULE_DESCRIPTION("STM32 DMA3 controller driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@foss.st.com>");
MODULE_LICENSE("GPL");