linux/kernel/irq/manage.c
Ivan Kokshaysky eee45269b0 [PATCH] Alpha: convert to generic irq framework (generic part)
Thanks to Christoph for doing most of the work.

This allows automatic SMP IRQ affinity assignment other than default "all
interrupts on all CPUs" which is rather expensive.  This might be useful if
the hardware can be programmed to distribute interrupts among different
CPUs, like Alpha does.

Signed-off-by: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Richard Henderson <rth@twiddle.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-06 08:33:40 -08:00

380 lines
9.1 KiB
C

/*
* linux/kernel/irq/manage.c
*
* Copyright (C) 1992, 1998-2004 Linus Torvalds, Ingo Molnar
*
* This file contains driver APIs to the irq subsystem.
*/
#include <linux/config.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/interrupt.h>
#include "internals.h"
#ifdef CONFIG_SMP
cpumask_t irq_affinity[NR_IRQS] = { [0 ... NR_IRQS-1] = CPU_MASK_ALL };
#if defined (CONFIG_GENERIC_PENDING_IRQ) || defined (CONFIG_IRQBALANCE)
cpumask_t __cacheline_aligned pending_irq_cpumask[NR_IRQS];
#endif
/**
* synchronize_irq - wait for pending IRQ handlers (on other CPUs)
* @irq: interrupt number to wait for
*
* This function waits for any pending IRQ handlers for this interrupt
* to complete before returning. If you use this function while
* holding a resource the IRQ handler may need you will deadlock.
*
* This function may be called - with care - from IRQ context.
*/
void synchronize_irq(unsigned int irq)
{
struct irq_desc *desc = irq_desc + irq;
if (irq >= NR_IRQS)
return;
while (desc->status & IRQ_INPROGRESS)
cpu_relax();
}
EXPORT_SYMBOL(synchronize_irq);
#endif
/**
* disable_irq_nosync - disable an irq without waiting
* @irq: Interrupt to disable
*
* Disable the selected interrupt line. Disables and Enables are
* nested.
* Unlike disable_irq(), this function does not ensure existing
* instances of the IRQ handler have completed before returning.
*
* This function may be called from IRQ context.
*/
void disable_irq_nosync(unsigned int irq)
{
irq_desc_t *desc = irq_desc + irq;
unsigned long flags;
if (irq >= NR_IRQS)
return;
spin_lock_irqsave(&desc->lock, flags);
if (!desc->depth++) {
desc->status |= IRQ_DISABLED;
desc->handler->disable(irq);
}
spin_unlock_irqrestore(&desc->lock, flags);
}
EXPORT_SYMBOL(disable_irq_nosync);
/**
* disable_irq - disable an irq and wait for completion
* @irq: Interrupt to disable
*
* Disable the selected interrupt line. Enables and Disables are
* nested.
* This function waits for any pending IRQ handlers for this interrupt
* to complete before returning. If you use this function while
* holding a resource the IRQ handler may need you will deadlock.
*
* This function may be called - with care - from IRQ context.
*/
void disable_irq(unsigned int irq)
{
irq_desc_t *desc = irq_desc + irq;
if (irq >= NR_IRQS)
return;
disable_irq_nosync(irq);
if (desc->action)
synchronize_irq(irq);
}
EXPORT_SYMBOL(disable_irq);
/**
* enable_irq - enable handling of an irq
* @irq: Interrupt to enable
*
* Undoes the effect of one call to disable_irq(). If this
* matches the last disable, processing of interrupts on this
* IRQ line is re-enabled.
*
* This function may be called from IRQ context.
*/
void enable_irq(unsigned int irq)
{
irq_desc_t *desc = irq_desc + irq;
unsigned long flags;
if (irq >= NR_IRQS)
return;
spin_lock_irqsave(&desc->lock, flags);
switch (desc->depth) {
case 0:
WARN_ON(1);
break;
case 1: {
unsigned int status = desc->status & ~IRQ_DISABLED;
desc->status = status;
if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) {
desc->status = status | IRQ_REPLAY;
hw_resend_irq(desc->handler,irq);
}
desc->handler->enable(irq);
/* fall-through */
}
default:
desc->depth--;
}
spin_unlock_irqrestore(&desc->lock, flags);
}
EXPORT_SYMBOL(enable_irq);
/*
* Internal function that tells the architecture code whether a
* particular irq has been exclusively allocated or is available
* for driver use.
*/
int can_request_irq(unsigned int irq, unsigned long irqflags)
{
struct irqaction *action;
if (irq >= NR_IRQS)
return 0;
action = irq_desc[irq].action;
if (action)
if (irqflags & action->flags & SA_SHIRQ)
action = NULL;
return !action;
}
/*
* Internal function to register an irqaction - typically used to
* allocate special interrupts that are part of the architecture.
*/
int setup_irq(unsigned int irq, struct irqaction * new)
{
struct irq_desc *desc = irq_desc + irq;
struct irqaction *old, **p;
unsigned long flags;
int shared = 0;
if (irq >= NR_IRQS)
return -EINVAL;
if (desc->handler == &no_irq_type)
return -ENOSYS;
/*
* Some drivers like serial.c use request_irq() heavily,
* so we have to be careful not to interfere with a
* running system.
*/
if (new->flags & SA_SAMPLE_RANDOM) {
/*
* This function might sleep, we want to call it first,
* outside of the atomic block.
* Yes, this might clear the entropy pool if the wrong
* driver is attempted to be loaded, without actually
* installing a new handler, but is this really a problem,
* only the sysadmin is able to do this.
*/
rand_initialize_irq(irq);
}
/*
* The following block of code has to be executed atomically
*/
spin_lock_irqsave(&desc->lock,flags);
p = &desc->action;
if ((old = *p) != NULL) {
/* Can't share interrupts unless both agree to */
if (!(old->flags & new->flags & SA_SHIRQ)) {
spin_unlock_irqrestore(&desc->lock,flags);
return -EBUSY;
}
/* add new interrupt at end of irq queue */
do {
p = &old->next;
old = *p;
} while (old);
shared = 1;
}
*p = new;
if (!shared) {
desc->depth = 0;
desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT |
IRQ_WAITING | IRQ_INPROGRESS);
if (desc->handler->startup)
desc->handler->startup(irq);
else
desc->handler->enable(irq);
}
spin_unlock_irqrestore(&desc->lock,flags);
new->irq = irq;
register_irq_proc(irq);
new->dir = NULL;
register_handler_proc(irq, new);
return 0;
}
/**
* free_irq - free an interrupt
* @irq: Interrupt line to free
* @dev_id: Device identity to free
*
* Remove an interrupt handler. The handler is removed and if the
* interrupt line is no longer in use by any driver it is disabled.
* On a shared IRQ the caller must ensure the interrupt is disabled
* on the card it drives before calling this function. The function
* does not return until any executing interrupts for this IRQ
* have completed.
*
* This function must not be called from interrupt context.
*/
void free_irq(unsigned int irq, void *dev_id)
{
struct irq_desc *desc;
struct irqaction **p;
unsigned long flags;
if (irq >= NR_IRQS)
return;
desc = irq_desc + irq;
spin_lock_irqsave(&desc->lock,flags);
p = &desc->action;
for (;;) {
struct irqaction * action = *p;
if (action) {
struct irqaction **pp = p;
p = &action->next;
if (action->dev_id != dev_id)
continue;
/* Found it - now remove it from the list of entries */
*pp = action->next;
/* Currently used only by UML, might disappear one day.*/
#ifdef CONFIG_IRQ_RELEASE_METHOD
if (desc->handler->release)
desc->handler->release(irq, dev_id);
#endif
if (!desc->action) {
desc->status |= IRQ_DISABLED;
if (desc->handler->shutdown)
desc->handler->shutdown(irq);
else
desc->handler->disable(irq);
}
spin_unlock_irqrestore(&desc->lock,flags);
unregister_handler_proc(irq, action);
/* Make sure it's not being used on another CPU */
synchronize_irq(irq);
kfree(action);
return;
}
printk(KERN_ERR "Trying to free free IRQ%d\n",irq);
spin_unlock_irqrestore(&desc->lock,flags);
return;
}
}
EXPORT_SYMBOL(free_irq);
/**
* request_irq - allocate an interrupt line
* @irq: Interrupt line to allocate
* @handler: Function to be called when the IRQ occurs
* @irqflags: Interrupt type flags
* @devname: An ascii name for the claiming device
* @dev_id: A cookie passed back to the handler function
*
* This call allocates interrupt resources and enables the
* interrupt line and IRQ handling. From the point this
* call is made your handler function may be invoked. Since
* your handler function must clear any interrupt the board
* raises, you must take care both to initialise your hardware
* and to set up the interrupt handler in the right order.
*
* Dev_id must be globally unique. Normally the address of the
* device data structure is used as the cookie. Since the handler
* receives this value it makes sense to use it.
*
* If your interrupt is shared you must pass a non NULL dev_id
* as this is required when freeing the interrupt.
*
* Flags:
*
* SA_SHIRQ Interrupt is shared
* SA_INTERRUPT Disable local interrupts while processing
* SA_SAMPLE_RANDOM The interrupt can be used for entropy
*
*/
int request_irq(unsigned int irq,
irqreturn_t (*handler)(int, void *, struct pt_regs *),
unsigned long irqflags, const char * devname, void *dev_id)
{
struct irqaction * action;
int retval;
/*
* Sanity-check: shared interrupts must pass in a real dev-ID,
* otherwise we'll have trouble later trying to figure out
* which interrupt is which (messes up the interrupt freeing
* logic etc).
*/
if ((irqflags & SA_SHIRQ) && !dev_id)
return -EINVAL;
if (irq >= NR_IRQS)
return -EINVAL;
if (!handler)
return -EINVAL;
action = kmalloc(sizeof(struct irqaction), GFP_ATOMIC);
if (!action)
return -ENOMEM;
action->handler = handler;
action->flags = irqflags;
cpus_clear(action->mask);
action->name = devname;
action->next = NULL;
action->dev_id = dev_id;
select_smp_affinity(irq);
retval = setup_irq(irq, action);
if (retval)
kfree(action);
return retval;
}
EXPORT_SYMBOL(request_irq);